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AbstractPetersen's theorem is a classic result in matching theory from 1891, stating thatevery 3-regular bridgeless graph has a perfect matching. Our work explores e�cientalgorithms for �nding perfect matchings in such graphs. Previously, the only relevantmatching algorithms were for general graphs, and the fastest algorithm ran in O(n3=2)time for 3-regular graphs. We have developed an O(n log4 n)-time algorithm for per-fect matching in a 3-regular bridgeless graph. When the graph is also planar, we haveas the main result of our paper an optimal O(n)-time algorithm. We present threeapplications of this result: terrain guarding, adaptive mesh re�nement, and quadran-gulation.Keywords: Petersen's theorem, perfect matching, 3-regular graphs1 IntroductionIn 1891, Petersen [36] published a pioneering paper in matching theory, and he is nowconsidered one of the two principal founders of matching theory [28, p. xi]. In the paper, heproved what is now known as Petersen's theorem: \Ein primitiver graph vom dritten Grademuss wenigstens drei Bl�atter haben."1 In modern terminology (see Section 2), the theoremimplies that every 3-regular bridgeless graph has a perfect matching.Petersen's original proof is very complicated. The American school of topologists recog-nized the importance of the theorem [3], and two members of that school, namely Brahanain 1917 [7] and Frink in 1926 [16], published simpli�ed proofs. The interested reader can�An extended abstract of this paper appeared at the 10th Annual ACM-SIAM Symposium on DiscreteAlgorithms (SODA'99).yDepartment of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, email:fbiedl, eddemaine, alubiwg@uwaterloo.ca. This work was done while the �rst author was at McGillUniversity.zSchool of Computer Science, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6,Canada, email: jit@scs.carleton.ca.1In English, \A primitive graph of third degree must have at least three leaves." A graph is primitive ifits edges cannot be partitioned into smaller regular subgraphs. A graph has kth degree if it is k-regular. Soa primitive 3-regular graph of third degree is a graph without perfect matching. A leaf is a 2-edge-connectedcomponent with exactly one incident bridge. 1



�nd extracts from Frink's paper [16] and Petersen's paper [36] in [3]. Frink's proof containeda slight aw which was later corrected by K�onig [25] in the �rst textbook on graph theoryever written [28, p. xvi]. Independently, Errera [13] published another proof of Petersen'stheorem. Petersen's theorem is now usually known as a simple corollary of the theorem ofTutte [28, 44] characterizing the existence of perfect matchings in general graphs.The goal of this paper is to �nd an e�cient algorithm for Petersen's theorem, that is, toconstruct e�ciently a perfect matching in a 3-regular bridgeless graph.The �rst polynomial-time maximum matching algorithm for general graphs was discov-ered by Edmonds [11]. His method, using augmenting paths and \blossoms," is the basisfor several faster algorithms; see [28]. The ultimate work in this direction to date is thealgorithm of Micali and Vazirani [30, 37, 46], with a running time of O(mpn), where n andm are the numbers of vertices and edges, respectively. Devising a faster matching algorithmfor general graphs using augmenting paths and blossoms seems di�cult, and no alternativeshave been discovered.We are interested in 3-regular graphs. Here m = 32n, so the algorithm mentioned aboveruns in O(n3=2) time. We develop an algorithm to �nd a perfect matching in a 3-regularbridgeless graph with time complexity O(n log4 n), using recent results on dynamic mainte-nance of 2-edge-connectivity information [22]. In our main applications of Petersen's theo-rem, the graph is also planar. In this case we obtain an optimal O(n)-time algorithm, whichis self-contained in that it does not rely on results on dynamic maintenance of 2-edge connec-tivity information. Our algorithms are not based on the ideas of Edmonds' algorithm|wego back in time, past Edmonds' algorithm, past Tutte's theorem, back to the early proofs ofPetersen's theorem. It is tantalizing to imagine a faster general matching algorithm basedon alternatives to augmenting paths, but we have nothing to suggest along these lines.The class of planar 3-regular bridgeless graphs, to which our linear-time algorithm ap-plies, is quite rich. This class is exactly the class of duals of planar triangulations in which theoutside face is a triangle. A perfect matching in a 3-regular planar graph gives us a pairing oftriangles in the dual graph such that every triangle has a unique partner. Section 1.1 showshow such a pairing gives a good heuristic for placing guards to watch a triangulated terrain.Pairings are also important for adaptive re�nement of triangular meshes in numerical simu-lations and for converting triangulations into quadrangulations, as described in Sections 1.2and 1.3, respectively.There have been a few matching algorithms for other specialized classes of graphs withrunning times faster than that of the best general matching algorithm. Schrijver [40] gives anO(km)-time algorithm for �nding a perfect matching in a k-regular bipartite graph, whichis guaranteed to exist by a theorem of K�onig from 1916. Schrijver's method also deviatesfrom the standard approach of augmenting paths; instead, it repeatedly �nds an arbitrarycycle, doubling every second edge in the cycle, and removing the remaining edges in thecycle. Gabow, Kaplan, and Tarjan [17] give an O(m log4 n)-time algorithm to test whethera general graph has a unique perfect matching, using a theorem of Kotzig from 1959 thatcharacterizes such graphs in terms of bridges. Like our algorithm for nonplanar graphs, theiralgorithm is based on the recent data structure for maintaining 2-edge-connectivity [22]. Inaddition, using Edmonds' blossom-shrinking approach, they give an O(m)-time algorithmto test whether a given perfect matching is unique. Thurston [43] describes O(n)-time2



algorithms, based on group-theoretic techniques developed by Conway, for testing for perfectmatchings in �nite subgraphs of the planar square grid or hexagonal grid in which every face(except the outside face) is an equilateral triangle or square. Hansen and Zheng [20] giveanother O(n)-time algorithm for the hexagonal case. Kenyon and R�emila [24] give an O(n)-time algorithm for the analogous problem on the planar triangular lattice.The rest of this paper is organized as follows. This section continues with applicationsof algorithms for Petersen's theorem. Section 2 de�nes our terminology. In Section 3, wedescribe a simple O(n2)-time algorithm based on Frink's proof of Petersen's theorem [16],and show how to improve it to O(n log4 n) time. Section 4 presents an O(n)-time algorithmfor planar graphs. Some corollaries are given in Section 5, before we conclude in Section 6.1.1 Application to Terrain GuardingA classic problem in computational geometry is the problem of illuminating or guardingan object, using as few guards as possible. Our results on perfect matchings provide animprovement in the time complexity needed to �nd good guard placements in terrains, aswe explain in this subsection.Much of the research in the area of illumination has been carried out in two dimensions(see [34, 41, 45] for overviews). A step towards the corresponding problems in three dimen-sions is the study of polyhedral terrains, i.e., polyhedral surfaces that intersect every verticalline in at most a single point. The problem of guarding a polyhedral terrain was investigatedby De Floriani et al. [15] who showed that the minimum number of guards needed to see theentire terrain can be found using a set covering algorithm. Cole and Sharir [10] subsequentlyshowed that the problem is NP-hard. Goodchild and Lee [19] and Lee [27] presented someheuristics for placing guards at a subset of the vertices of a terrain.Most of the work to date on guarding triangulated polyhedral terrains has focused onthe underlying combinatorial problem of guarding a triangulated plane graph. A planegraph is guarded by a set of guards (placed on vertices or edges) if at least one guard isincident to every face of the graph. The relation between the geometric and underlyingcombinatorial problems is based on the observation that the visible region associated with aguard contains the union of all faces incident to that guard, and that this is all it containswhen the underlying polyhedral terrain is convex. Therefore, upper bounds on the numberof guards needed to guard a plane graph provide upper bounds on the number of guardsneeded to guard polyhedral terrains.Bose, Shermer, Toussaint and Zhu [5] showed that bn=2c vertex guards are always su�-cient and sometimes necessary to guard an n-vertex triangulated polyhedral terrain. Withrespect to edge guards (guards free to patrol an entire edge of the terrain), they establishedthat at least b(4n� 4)=13c edge guards are necessary in the worst case to guard the surfaceof an n-vertex triangulated polyhedral terrain. The complementary result that bn=3c edgeguards are always su�cient was proved by Everett and Rivera-Campo [14]. Both su�ciencyresults apply to arbitrary triangulated polyhedral terrains and are based on the Four-ColorTheorem, for which practical algorithms are not known to exist.Recently, Bose, Kirkpatrick and Li [4] presented O(n3=2)-time algorithms to guard an n-vertex triangulation with bn=2c vertex guards or bn=3c edge guards. The key behind these3



algorithms is to avoid the use of the Four-Color Theorem by relying instead on matchings.Speci�cally, because the dual graph of the triangulation is 3-regular and bridgeless, ithas a perfect matching. Removing the edges in the primal graph that correspond to thematched edges in the dual graph makes the primal graph bipartite, and thus yields a vertex2-coloring of the triangulation. The authors show that using this K3-free 2-coloring, one canobtain guard placements with bn=2c vertex guards or bn=3c edge guards.The time complexity of these algorithms is dominated by the time to �nd the perfectmatching in a planar 3-regular bridgeless graph. Therefore, with our results these algorithmscan be implemented in optimal O(n) time.The �rst use of matchings in terrain guarding was by Gr�unbaum and O'Rourke in1983 [35], who proved that b(2F � 4)=3c vertex guards su�ce (and are sometimes neces-sary) to guard a convex polyhedron with F faces. They used a theorem by Nishizeki [33]that bounds the size of maximum matchings in a graph with vertex degrees � 3. It wouldbe interesting to know whether a matching achieving these bounds can be found in such agraph in linear time.1.2 Application to Adaptive Mesh Re�nementMany numerical simulations involve the solution of continuous (e.g., partial di�erential)equations in some domain, which for our purposes is just a polygon. One typically discretizesthis problem to a �nite mesh (i.e., subdivision) of the domain. In general, the more detailedthe mesh, the more accurate the simulation. However, the areas of the domain that requirethe most accuracy are often di�cult to predict before simulation, and may vary over time.One can solve this problem by adaptively re�ning the mesh where the most error occurs.One method for adaptive re�nement of triangular meshes is newest-vertex bisection [31,32]. In this method, each triangle has one vertex marked as the newest vertex, denotedin our �gures by a small circle near the vertex. The neighbor of a triangle is the triangleincident to the opposite edge of the newest vertex. A triangle is compatible if either it hasno neighbor or its newest vertex opposes its neighbor's newest vertex, that is, the neighborrelation is symmetric. To re�ne two compatible triangles, we bisect each triangle from itsnewest vertex to the midpoint of the opposite edge (see Figure 1), and assign the vertices atthe midpoint to be the newest vertices of the new triangles.! !Figure 1: Two iterations of uniform newest-vertex bisection applied to a pair of triangleswith opposing newest vertices.For newest-vertex bisection to be applied e�ectively, we must �rst assign the newestvertices such that every triangle is compatible (a compatible assignment). Re�nement fromsuch a state has several important properties. For example, if triangles are re�ned uniformlyas above, then compatibility is maintained. A simple generalization of the above re�nement4



scheme allows re�ning the mesh by varying amounts in di�erent regions. Because we startfrom a compatible assignment, we can bound the number of extra triangles introduced inthe transition between a coarse region and a re�ned region. Throughout this process, thequality of triangles is preserved: newest-vertex bisection only introduces eight equivalenceclasses of congruent triangles.It remains to show how to �nd a compatible assignment of newest vertices. Conceptually,we need a perfect pairing of triangles; then we can assign newest vertices to make each pairof triangles neighbors. However, any number of boundary triangles can \pair with theboundary." Consider a modi�ed dual graph, in which a \boundary vertex" is created forevery boundary edge in the primal (see Figure 2). Then any perfect matching in this graphresults in a compatible assignment of newest vertices. Furthermore, this graph is always3-regular and bridgeless [31], so by Petersen's theorem it has a perfect matching.
Figure 2: The relationship between perfect matchings and pairings in triangulations. We show(from left to right) a triangulation with a modi�ed dual graph, a perfect matching in this dualgraph, and the resulting compatible assignment of newest vertices in the triangulation.The time complexity of assigning the newest vertices is thus dominated by the time to�nd the perfect matching in a planar 3-regular bridgeless graph. With our results this canbe implemented in optimal linear time.1.3 Application to QuadrangulationIn a variety of numerical simulations, such as those involving the ow of incompressibleuid, triangulations can be inappropriate meshes. This is because triangles are rigid andcan lock (become unable to move), e�ectively halting the simulation. In such cases, it ispreferable to use a quadrangulation, that is, a subdivision of the domain into quadrangles(quadrilaterals). There are many other applications in which quadrangles have advantagesover triangles, including scattered bivariate data interpolation [26] and elasticity analysis [1].In contrast with triangulations, which have been studied for several decades [2], relativelylittle is known about quadrangulations. For this reason, several people have considered theproblem of converting triangulations to quadrangulations, most recently in a computational-geometry setting [39].We obtain an immediate result in this area using the modi�ed dual graph described inthe previous section. By deleting the duals of matched edges, except those on the boundaryor the outside face, we obtain a weak quadrangulation, that is, a mesh that has quadranglesexcept for some triangles along the boundary. Weak quadrangulations are usually acceptablefor numerical simulations. By our results, this weak quadrangulation can be found in optimallinear time. 5



2 TerminologyThis section de�nes the graph-theory terminology used in this paper.Maximum matching is a classic problem in graph theory with many practical applica-tions [28]. Briey, let G = (V;E) denote a graph with vertex set V and edge multiset E,where each edge e 2 E is a set (v; w) of two vertices v; w 2 V . We use n and m to denotejV j and jEj, respectively. Unless we specify that G is simple, we allow it to have multi-edgesand loops. Edges with multiplicity one, two, and three will be called simple, double, andtriple edges, respectively. Two edges are called incident if they share an endpoint.A matching in G is a subset M of edges such that for every vertex v, at most one edge ein M covers v, that is, satis�es v 2 e 2 M . An edge e is called matched if it is contained inthe matching, and unmatched otherwise. A maximum matching is a matching with largestpossible cardinality. A perfect matching (or 1-factor) is a matching such that every vertex iscovered. Given a matching of a graph, an alternating cycle is a cycle (a closed path that doesnot repeat any vertices) every second edge of which is matched. Reversal of an alternatingcycle (that is, switching matched and unmatched edges), yields another matching of thesame cardinality. An augmenting path is a path (without repeated vertices) between twouncovered vertices on which every second edge is matched.A graph is k-regular if every vertex has degree k, that is, k incident edges. Such a graphsatis�es m = k2n. An edge cut in a graph G is a subset C of edges such that G�C has moreconnected components than G, that is, there are vertices v and w that are connected by apath in G but not in G� C. G is k-edge connected if all edge cuts in G have cardinality atleast k. A bridge in a graph G (also called a cut edge or isthmus) is an edge cut of cardinalityone. We call a graph bridgeless if it has no bridges, that is, it is 2-edge connected.A graph is called planar if it can be drawn in the plane without edge crossings. A speci�cplanar embedding is given by the clockwise circular order of edges around each vertex. Aplanar drawing subdivides the plane into regions called faces; these faces are determined bythe planar embedding alone. Whenever we speak of a planar graph, we assume that some(arbitrary) planar embedding has been �xed beforehand; this can be computed in lineartime [6, 23, 29]. The dual graph G� of a planar graph G is obtained by creating a vertexin G� for every face in G, and adding an edge (F1; F2) in G� for every edge e in G thatis incident to the two faces F1 and F2; (F1; F2) is called the dual edge of e. The planarembedding of the dual graph is determined by the embedding of the primal graph.3 Nonplanar Case3.1 Frink's Proof of Petersen's TheoremIn this section, we overview Frink's proof of Petersen's theorem, which is the basis for ouralgorithms. Frink's original proof [16] is available in [3]. It contains a slight aw whichwas corrected in K�onig's detailed version of the proof [25]. As we will see, the proof isconstructive, leading to a simple O(n2)-time algorithm.The proof is by induction on n. Let G be a bridgeless 3-regular graph. Note that because6



the reductions to come do not preserve simplicity, we cannot assume that G is simple.2However, G cannot have loops, because any loop in a 3-regular graph is incident to a bridge.In the base case, the graph only has triple edges. Pick one of the three edges in eachconnected component to obtain a perfect matching.Assuming we are not in the base case, the graph has an edge that is not a triple edge.By 3-regularity, either this edge or one incident to it must be a simple edge e = (v; w). Calle the reduction edge. Let a, b, and w be the three neighbors of v, and let c, d, and v bethe three neighbors of w (see Figure 3). By our assumption that e is simple, a; b 6= w andc; d 6= v, but we may have some of a, b, c, and d being equal.vwa b
c d ! a b

c d or a b
c dFigure 3: The straight and crossing reductions in Frink's proof.Reduce the graph by removing the vertices v and w, and interconnecting a, b, c, and dwith two new edges called reduced edges. There are two possible reductions (see Figure 3):either connect a to c and b to d, called the straight reduction; or connect a to d and b to c,called the crossing reduction.3 Clearly both reductions lead to 3-regular graphs.Lemma 3.1 [25, p. 182] One of the reductions results in a bridgeless graph with the samenumber of connected components as the original graph.As a result of this lemma, one reduced graph satis�es the conditions of Petersen's theorem.(In fact, we did not need the number of connected components to be preserved, and we willexploit this freedom later.) By induction, �nd a perfect matching in this reduced graph. Tocomplete the proof, this matching must be extended to a perfect matching in the originalgraph. This operation is purely local if at most one of the two reduced edges is in thematching of the reduced graph (see Figure 4 for the case of the straight reduction).If both reduced edges are matched, then reverse an alternating cycle containing one ofthe reduced edges. If the other reduced edge was in the alternating cycle as well, thennow neither of the reduced edges is matched; otherwise, exactly one of the reduced edges ismatched. In either case, extend the matching as in Figure 4. This argument relies on thefollowing lemma.Lemma 3.2 [16] [25, p. 187] Given any perfectly matched 3-regular bridgeless graph andsome edge e in the graph, there exists an alternating cycle that includes e.2Indeed, this was Frink's error, to assume that the graph was simple.3In the nonplanar case, where the drawing of the graph is arbitrary, these names e�ectively mean \onereduction" and \the other." We use this terminology to be consistent with the planar case, where thesenames gain signi�cance, assuming that the planar embedding is as in Figure 3.7



a b
c d ! vwa b

c d
a b

c d ! vwa b
c dFigure 4: Extending to a perfect matching in Frink's proof. Matched edges are drawn thick,and unmatched edges are drawn hollow.Converting induction into recursion, we have a simple algorithm for Petersen's theorem.Each step of the recursion consists of checking for the base case, �nding an edge of multiplicityone, picking and applying an appropriate reduction, and possibly �nding and reversing analternating cycle. All of these operations are easy to perform in O(n) time, except for �ndingan alternating cycle which is somewhat more di�cult.Lemma 3.3 Given any perfectly matched 3-regular bridgeless graph and some edge e in thegraph, an alternating cycle including e can be found in O(n) time.Proof: We show how �nding an alternating cycle reduces to �nding an augmentingpath, which can be done in O(m) time for general graphs with m edges (see e.g. [42]) usingthe Gabow-Tarjan set-union algorithm [18].We distinguish two cases. If e = (v; w) is matched, then delete e and �nd an augmentingpath in the resulting graph. By Lemma 3.2, there is an alternating cycle through e inthe original graph, and thus there exists an augmenting path from v to w in the modi�edgraph. Furthermore, such an augmenting path must be found, because all other verticeshave an incident matched edge. We can complete this augmenting path to an alternatingcycle through e.If e is not matched, then let e1 and e2 be the other two edges incident to v. One ofthem, say e1, must be matched because we have a perfect matching. No alternating cyclecan contain both unmatched edges e and e2, so the alternating cycle containing e is also analternating cycle in G�e2. We can �nd this alternating cycle by �nding an augmenting pathin G � fe1; e2g. This path must connect v and the other endpoint of e1 (all other verticeshave an incident matched edge). Because e is the only edge incident to v, this augmentingpath must contain e, and thus e1 completes it to an alternating cycle containing e. 2As a consequence, each step in the recursion takes O(n) time, and hence the matchingalgorithm takes O(n2) time.3.2 Improving the Time ComplexityThe two main bottlenecks in reducing the time complexity are (a) determining which of thetwo reductions results in a bridgeless graph with the same number of connected components,and (b) �nding an alternating cycle. In this section, we show how to avoid the necessity of8



�nding alternating cycles, hence removing bottleneck (b), and how to solve bottleneck (a)in O(log4 n) time, reducing the overall complexity to O(n log4 n) time.We can remove the use of alternating cycles in Frink's proof by entirely avoiding the casein which both reduced edges are matched. To do this, we strengthen Petersen's theorem tothe following: every 3-regular bridgeless graph has a perfect matching not using a particularedge eNM, called the nonmatching edge. This result follows immediately from Lemma 3.2,but makes the induction easier and the resulting algorithm faster.Note that in Frink's proof the choice of the reduction edge e was arbitrary; now chooseone of the edges incident to eNM. Assume for now that there exists a simple edge e that isincident to eNM; with respect to the labeling of Figure 3, eNM = (a; v) (say) and e = (v; w).Reduce as before, and de�ne the new nonmatching edge to be the reduced edge that isincident to one of the ends of eNM, thus either (a; c) or (a; d) depending on the reduction.In the resulting graph, compute a perfect matching that does not use the new nonmatchingedge. As a consequence of this restriction, at most one of the reduced edges is matched, sothe matching can be extended as in Figure 4, without the need for alternating cycles. Notethat neither extension causes eNM = (a; v) to be matched, as required.Unfortunately, all edges incident to eNM may be double edges, but the reduction edge e isnot allowed to be a double edge. In this case, perform a di�erent reduction: pick some doubleedge incident to eNM, and reduce this double edge and the two other incident edges (oneof which is eNM) down to a single nonmatching edge (see Figure 5). Recursively computea perfect matching in the resulting 3-regular bridgeless graph, and extend it to a perfectmatching of G by adding one side of the double edge to the matching.eNM ! ! !Figure 5: Reduction and extension for a double edge incident to the nonmatching edge eNM.The nonmatching edge is drawn hollow.In this algorithm, each step in the recursion takes constant time except for determiningthe correct reduction (if e is simple). This amounts to testing whether one of the reductionsresults in a bridgeless graph with the same number of connected components. If not, the otherreduction must have this desired property by Lemma 3.1. By Menger's theorem, a graphis bridgeless precisely if there are two edge-disjoint paths between any pair of vertices. Areduction can only potentially destroy this property between pairs from a, b, c, d that are notconnected by a reduced edge [25, p. 182]. As a consequence, testing whether the resultinggraph is bridgeless reduces to testing the existence of two edge-disjoint paths between aconstant number of pairs of vertices.Thus we want to maintain a dynamic graph subject to insertion and deletion of edges,and support queries that ask whether a pair of vertices are connected by two edge-disjointpaths. This 2-edge-connectivity problem has a fairly long history. It was a long-standingopen problem whether deterministic polylogarithmic update time was possible. Previously,the best worst-case result was O(pn) update time [12], and the best randomized resultwas O(log5 n) expected update time [21]. Recently, Holm, de Lichtenberg, and Thorup [22]developed a data structure with O(log4 n) worst-case update and query time.9



Therefore, we can �nd perfect matchings in 3-regular bridgeless graphs in O(n log4 n)time, which is asymptotically smaller than the previous best algorithm running in O(n3=2)time [30].Theorem 1 Let G be a 3-regular bridgeless graph, and let eNM be an edge of G. Then thereexists a perfect matching of G that does not contain eNM, and it can be found in O(n log4 n)time.We note that the same 2-edge-connectivity data structure has been used to test whethera general graph has a unique perfect matching in O(n log4 n) time [17].4 Planar CaseBecause our interest in perfect matchings arose from applications with planar graphs, wewould like to improve the time complexity even further in this case. This section describes analgorithm for �nding perfect matchings in planar 3-regular bridgeless graphs in O(n) time,which is optimal.For planar graphs we avoid using a dynamic 2-edge-connectivity data structure andinstead read the required information from the dual graph, using the property that a bridgein the primal graph is a loop in the dual graph. So �x a planar embedding (if not givenalready), compute the dual graph, update the dual graph throughout the changes to theprimal graph, and test for loops as needed. The main impediment to this plan is that thecrossing reduction used in the previous section does not preserve the planar embedding, oreven planarity (see Figure 6). vw !
Figure 6: Applying the crossing reduction to a planar 3-regular bridgeless graph can introducea K3;3.To remedy this we exploit the remaining freedom in the choice of the reduction edge.In particular, we choose among the potential reduction edges adjacent to the nonmatchingedge eNM, searching for a straight reduction that maintains bridgelessness. In this way weavoid the crossing reduction entirely.We begin by describing the main reduction. The following section formulates and imple-ments the necessary primal and dual graph operations, and the last section gives the detailsof the algorithm. 10



4.1 The Main ReductionAssume that eNM and all its incident edges are simple; all other cases will be treated inSection 4.3. Let eNM = (v; w), and let xl and xr be the two other vertices adjacent to w incounterclockwise order after v (see Figure 7). By assumption these four vertices are distinct.De�ne Fl to be the face incident to (v; w) and (w; xl), Fr to be the face incident to (v; w)and (w; xr), and H to be the face incident to (w; xl) and (w; xr). Let Gl denote the faceother than Fl and H that is incident to xl, and Gr denote the face other than Fr and H thatis incident to xr.
eNM FrFl HGr

Glv w xlxr ! HFrFl Gl
Grv xl or HFrFl Gl

Grv xr
Figure 7: De�nitions of vertex and face names, and the resulting faces if we reduce edges(w; xr) and (w; xl), respectively.Note that any two faces with a common edge are distinct because the graph is bridgeless,but we may have Fr = Gl, Fl = Gr, or Gl = Gr. Here we discuss the case Gl 6= Gr; the othercase is again left to Section 4.3. We want to apply the straight reduction to either (w; xl) or(w; xr) (see Figure 7), and have to show that one of them leads to a bridgeless graph.Lemma 4.1 If Gl 6= Gr then either applying the straight reduction to (w; xl) or applying itto (w; xr) results in a bridgeless graph. The correct reduction can be found by testing whetherFr is adjacent to Gl or by testing whether Fl is adjacent to Gr.Proof: Suppose we are about to apply the reduction to the edge (w; xl). In the dual graph,this corresponds to identifying the faces Fr and Gl, after deleting the edges (Fl; Fr), (Fr; H),and (H;Fl) (see Figure 8).Assume the primal graph will contain a bridge after the reduction; this corresponds toa loop appearing in the dual graph. The incident vertex of this loop must be the combinedvertex formed by contracting Fr and Gl, because the primal graph is bridgeless before thereduction, and no edges will be added to the dual graph during the reduction. Hence, if theprimal graph will have a bridge after the reduction, then Fr and Gl must be adjacent beforethe reduction.Now if Gl 6= Gr, we claim that at most one of (Fr; Gl) and (Fl; Gr) is an edge in the dualgraph before the reduction. Assume to the contrary that they were both edges in the dualgraph. Because the primal graph is bridgeless, the dual graph has no loops. In particular,the edges (Fr; Gl) and (Fl; Gr) in the dual graph must have distinct endpoints, i.e., Fr 6= Gl11



xrwxlFr
GlFl H !

Figure 8: The straight reduction of (w; xl), and corresponding changes to the dual graph.Stars and dashed lines denote vertices and edges in the dual graph, respectively.and Fl 6= Gr. In the dual graph a triangle is formed by H;Fr; Fl. Add a new dual vertex T tothe middle of this triangle, and join T to H, Fr, and Fl (see Figure 9). Clearly this maintainsplanarity. However, there is a K3;3 formed by the dual vertices T;Gr; Gl and Fr; Fl; H, andthese are six distinct vertices because Gr 6= Gl. This is a contradiction, because no planargraph can contain a K3;3.
HGr

Gl
FrFl HGr

Gl
FrFl T

Figure 9: If Gl 6= Gr, then not both (Fl; Gr) 2 E(G�) and (Fr; Gl) 2 E(G�); otherwise wehave a planar K3;3.Thus, if Fr and Gl are adjacent, then Fl and Gr cannot be adjacent, and reducing edge(w; xr) yields a bridgeless graph; otherwise, reducing edge (w; xl) yields a bridgeless graph.Alternatively, the correct reduction can be found by testing whether Fl is adjacent to Gr. 2Note that this lemma allows the graph to become disconnected (in the case Fr = Gl),unlike Frink's lemma (Lemma 3.1).4.2 Data StructureWe now formulate and implement the dynamic graph operations needed to perform reduc-tions. Refer to Figure 8 for the main reduction.Consider �rst the update operations. In the primal graph we want to delete isolatedvertices, and to delete and insert edges. These edge operations correspond in the dual graphto contracting two vertices and to splitting a vertex, respectively. We avoid some of these12



operations by not keeping the primal and dual graphs in lock-step, but rather performing asmall sequence of operations in the primal graph and a small sequence of operations in thedual graph, obtaining once more a pair of dual planar graphs. It is the responsibility of themain algorithm, not the update operations in this section, to maintain the correspondencebetween the primal and dual graphs. For update operations in the dual graph, we will makedo with the ability to delete edges and contract pairs of vertices. We have already seen thatthese su�ce in the main reduction.As for queries, we want to list the vertices and edges incident to a vertex in the primalgraph, and we want to be able to �nd the dual of an edge in either graph; note that thisallows us to �nd the incident faces of edges and vertices as well. Finally, to decide on thecorrect reduction, we want to answer adjacency queries of the form, \Are F1 and F2 adjacentvertices in the dual graph?"To solve this dynamic-graph problem we use incidence lists to store edges in cyclic orderaround the vertices, both in the primal and the dual graph. Every edge refers to both itsentries in the incidence lists, and to the dual edge in the other graph. Because the maximumdegree of the primal graph is three, this allows us to perform the operations in the primalgraph and to �nd the dual of an edge in constant time.However, the operations in the dual graph in general take more than constant time,because the maximum degree is not bounded. To remedy this problem, we will narrow oursights and limit the dual operations.For our main reduction, observe that we only need to contract a vertex to Fl or Fr, andwe only need to query whether a vertex is adjacent to Fl or Fr; in fact, queries to just one ofthese su�ce, as shown in Lemma 4.1. Call the nonmatching edge eNM the special edge. Oneof the two faces incident to it will be maintained as a special face; in the dual graph we callit the special vertex. The special vertex will be one of Fl or Fr, not always the same one; wecan �nd out which one by storing a ag. The other of Fl, Fr will be called the sibling of thespecial vertex.The main reduction (see Figure 8) disconnects the primal graph if Fr = Gl, so we mustdeal with a nonmatching edge in each connected component. Thus the special edge willchange as the algorithm progresses. However, the special vertex will retain its identity; onlyits sibling may change, and this can happen only after the old sibling is contracted into thespecial vertex.We verify in the next section that the following dual operations are su�cient to determinewhich reduction should be done, and to perform the reduction.� Query whether a vertex v in the dual graph is incident to the special vertex.� Delete an edge e in the dual graph.� Contract a vertex v of the dual graph with the special vertex or its sibling. Thecontracted vertices share a face in the dual graph, and this face is known at the timeof the contraction.To implement the queries, we store with every dual vertex v an integer vs that speci�esthe number of edges between v and the special vertex. To answer the adjacency query forv, test whether vs > 0, which takes constant time.13



To delete an edge e = (v; w) in the dual graph, decrement vs if w is special, decrementws if v is special, and delete e in the incidence lists of v and w. This takes constant time.To contract v into x, where x is the special vertex or its sibling, merge the incidencelists of v and x at the location indicated by the face containing both v and x; this takesconstant time. For each neighbor w of v, update the endpoints of edge (v; w) to (x; w), andin addition, if x is special, increment ws. This takes more than constant time for a singlecontraction, and we account for the work by charging it to the edges that are updated. Foran edge e in the dual graph, let es denote the number of endpoints of e (0, 1, or 2) thatare the special vertex or its sibling. Note that every edge updated during a contractionincreases es for some edge e, because we only contract to the special vertex or its sibling.The only way es could decrease would be if one endpoint of e were deleted, or if the twoendpoints of e were contracted. But we only delete isolated vertices, and we never contractadjacent vertices, because this would create a loop in the dual graph and thus a bridge inthe primal graph. Hence es never decreases, which implies that endpoints of e are updatedduring contractions at most twice during the lifetime of e. Therefore the total time spentduring contractions is O(n).Finally, in order to deal with many connected components in the primal graph, we keep astack consisting of one nonmatching edge from each connected component. We pop the stackto obtain the current special edge, implicitly determining the current connected component.In order to preserve the identity of the special vertex, we maintain the invariant that if e isthe top edge on the stack (i.e., e belongs to the next connected component to be handled)then in the planar embedding there exists a face incident to e and at least one edge of thecurrent component. This means that when the current component is deleted, the specialface becomes incident to e, the new special edge. See the next section for details.4.3 AlgorithmWith our dual graph operations in hand, we now explain the details of the reduction to �nd aperfect matching. We distinguish cases by the multiplicity of the nonmatching edge eNM. Thecases of multiplicity more than one are easy to deal with; most of this section is concernedwith the case of multiplicity one. Recall that the subcase in which Gl 6= Gr was alreadyoverviewed in Section 4.1.In each case, there are three main steps. First, we reduce the graph to a smaller graph byapplying the operations supported by the data structure described in the previous section.Second, we update the stack while maintaining the stack invariant. At this point, we recur-sively �nd a perfect matching in the reduced graph. Finally, we must extend this matchingto a perfect matching in the original graph.4.3.1 eNM has Multiplicity ThreeIf the special edge eNM has multiplicity three, then its connected component C is a tripleedge (see Figure 10). We add one of the other two edges to the matching, and are done withC. If the stack is empty, we are done. Otherwise, delete the three edges of C and their dualedges. Contract the dual vertices of the three faces in C into one dual vertex; the specialvertex has then absorbed its sibling. Pop the stack to obtain the new special edge. By the14



stack invariant, the special face is incident to this new special edge. The other incident faceof this edge is the new sibling.
!

Figure 10: The case where we transit from one connected component to the next. The specialdual vertex and its sibling are circled.4.3.2 eNM has Multiplicity TwoIf the multiplicity of eNM is two, reduce the edges incident to eNM down to a single non-matching edge (see Figure 11). The dual graph can be updated by deleting three edges andcontracting two vertices. Recursively compute a perfect matching in the resulting graph,and extend it by adding the other side of the double edge eNM.!Figure 11: The case where the nonmatching edge is a double edge.4.3.3 eNM has Multiplicity OneAssume henceforth that eNM has multiplicity one. If there is a double edge incident toeNM, reduce the edges incident to the double edge down to a single nonmatching edge (seeFigure 12). The dual graph can be updated by deleting three edges and contracting twovertices. Recursively compute a perfect matching in the resulting graph, and extend it byadding one of the sides of the double edge.So assume from now on that eNM and all incident edges are single edges. Let eNM = (v; w),and de�ne xl; xr; Fl; Fr; Gl; Gr; and H as in Section 4.1 (see Figure 7). Let us �rst considerthe case where Gl = Gr. We have two subcases, depending on whether xl and xr are adjacent.If Gl = Gr and xl and xr are adjacent, i.e., if H is a triangle, then reduce H to a singlevertex (see Figure 13). In the dual graph, this corresponds to deleting the three incidentedges of H, and then deleting H. Recursively compute a perfect matching of the resultinggraph, and extend it by adding the edge of the triangle fw; xl; xrg that is not incident to a15



!Figure 12: The case where the nonmatching edge is incident to a double edge.GrHGl
xrw xl !

Figure 13: The case where Gl = Gr and H is a triangle.matched edge yet. Note that such a \triangle reduction" would be possible at any triangleand even in a nonplanar graph, but we apply it only in this case.If Gl = Gr but H is not a triangle, then there is an edge cut of cardinality two, sayfc1; c2g (see Figure 14). In this case, delete c1 and c2; contract xl, w, and xr to one vertexw0; and connect the two vertices of degree two with a new edge e. In the dual graph, thiscorresponds to deleting three edges incident to H.
Hw xrxl c1c2 ! ew0

Figure 14: The case where Gl = Gr and H is not a triangle, so (Gr; H) is a multi-edge in thedual graph. We split the graph into two connected components using the edge cut fc1; c2g.The current connected component C has now split in two, the component C 0 containingeNM and the component Ce containing the new edge e, which we want to be a nonmatchingedge. Push e (the nonmatching edge in the new component Ce) onto the stack, and continueworking on the other component C 0. To prove that the stack invariant still holds, consider16



three moments in time: t0 is the time before the reduction, t1 is the time just after thereduction when we push e onto the stack, and t2 is the time when we pop e from the stack.The stack invariant held at time t0, and it still holds at time t1, because the face Gl = Gris incident to both e and C 0. We claim that it will also hold at time t2. Let e� be the edgebelow e on the stack. By the stack invariant, at time t0 there was a face F common to e�and C, which at time t1 is part of C 0 or Ce or both. If F is part of Ce at time t1, then it isalso part of Ce at time t2, and therefore the stack invariant holds at t2. If F is part of C 0 attime t1, then at time t2 the component C 0 has been deleted, so face F has been expandedinto the face common to e and C 0, and has thus become incident to component Ce. So againthe stack invariant holds at time t2.Recursively compute a perfect matching in the resulting graph, and extend it by addingan edge incident to w that is not incident to a matched edge yet (see Figure 15).
!

Figure 15: The case where Gl = Gr and (Gr; H) is a multi-edge in the dual graph. We showhow to extend the recursively computed perfect matching to a perfect matching of G.This leaves the case Gl 6= Gr, which has already been treated in Section 4.1. Determinewhether the special dual vertex is Fl or Fr, test adjacency of the special vertex to Gr orGl, respectively, and apply the straight reduction to the appropriate edge, either (w; xr) or(w; xl), as described in the proof of Lemma 4.1.If, say, we reduce edge (w; xr), and if Fr and Gl are identical, then the primal graphbecomes disconnected. Declare the other reduced edge to be a nonmatching edge, andpush it onto the stack. The stack invariant holds because the face Fr = Gl is incident toboth nonmatching edges. An argument similar to the one used before shows that the stackinvariant still holds when this newly created component is popped o� the stack.Note that we can use the data structure of the dual graph to test for distinctness, andfor adjacency because Fr or Fl is special. Hence choosing the correct reduction edge, andadding entries to the stack, if necessary, takes constant time. Recursively compute a perfectmatching in the resulting graph, and extend it as in Figure 4.This �nishes the discussion of all cases. As we saw in the discussion of the data structure,the total time for all of the reductions is O(n). The �nal detail is how the recursion unwindsto recover a matching in the original graph. There are two possibilities. The �rst option isthat we could undo each reduction as we go up the recursion stack, but only maintain theprimal graph and the matching in that graph. The dual graph was only needed to detect17



bridges, and hence we do not need to maintain it in this recovery phase. The second optionis that whenever we delete edges in the primal graph, we only unlink them from the restof the graph, and leave them allocated. This allows us to store the perfect matching in thegraph at any step of the recursion, without explicitly maintaining the entire graph at eachlevel. Either way, we obtain the following theorem.Theorem 2 Let G be a planar 3-regular bridgeless graph, and let eNM be an edge of G. Thenthere exists a perfect matching of G that does not contain eNM, and it can be found in O(n)time.5 ExtensionsThis section describes some corollaries of the fact that we can e�ciently compute a perfectmatching of a 3-regular bridgeless graph that does not contain a speci�ed edge eNM.5.1 Avoiding Two EdgesAssume that we are given not one, but two edges eNM1 and eNM2 that should not be inthe perfect matching. We claim that such a perfect matching exists and can be found inO(n log4 n) time.Speci�cally, subdivide the edges eNM1 and eNM2 , and add a new edge eM connecting thetwo subdivision vertices (see Figure 16). Compute a perfect matching M in the resulting3-regular bridgeless graph in O(n log4 n) time. Now force eM to be matched: if it is not,reverse an alternating cycle including it. By Lemma 3.2, this takes O(n) time. The edgesthat are part of eNM1 and eNM2 therefore are now unmatched. Undo the modi�cation of thegraph to obtain a perfect matching that does not contain eNM1 and eNM2 .! !Figure 16: We can �nd a matching that does not contain two speci�ed edges by modifying thegraph and revising an alternating cycle, if necessary, to force the new edge into the matching.We do not know whether it is possible to �nd this matching in linear time for planargraphs, because introducing the new edge may destroy planarity.5.2 Petersen's Original TheoremThe blocktree of a graph is the tree of 2-edge-connected components, whose edges corre-spond to bridges in the graph. Petersen's original theorem in fact says that every 3-regulargraph whose blocktree has at most two leaves (i.e., whose blocktree is a path) has a perfectmatching. We can compute this matching in O(n log4 n) time as follows.18



Let G be the graph. Remove all bridges of G, and obtain the connected componentsG1; : : : ; Gs of the resulting graph. For i = 1; : : : ; s, Gi has up to two vertices of degree two(if there were more, then there would be a vertex of degree three in the blocktree). Removethese vertices of degree two; connect the loose ends of their incident edges; and mark thesenewly added edges as nonmatching edges.This results in a graph G0i with up to two nonmatching edges. Compute a perfect match-ing of this graph using the method in the previous section. Combining the perfect matchingsof G0i, i = 1; : : : ; s, and adding the bridges to the matching, we obtain a perfect matching ofG. ! !Figure 17: If the graph has bridges, but the blocktree is a path, then we can compute a perfectmatching by computing a matching in each 2-edge-connected component.6 Conclusion and Open ProblemsIt has been known for over a century that a perfect matching always exists in a 3-regularbridgeless graph, but until now, no e�cient algorithm was known to �nd one. Our algorithmstake O(n log4 n) time for nonplanar graphs, and optimal O(n) time for planar graphs. Asa consequence, we reduce to linear time the complexity of algorithms in three applicationareas: terrain guarding, adaptive mesh re�nement, and quadrangulation.Several algorithmic questions about matchings in special graphs remain.1. Can we �nd a perfect matching in a nonplanar 3-regular bridgeless graph in O(n) time?2. How quickly can we �nd a maximum matching in a 3-regular graph that has bridges?Does planarity help?3. Plesn��k [38] generalized Petersen's theorem to arbitrary regularity as follows: any r-regular (r � 1)-edge-connected graph with an even number of vertices has a perfectmatching not using r � 1 given edges. In particular, for any e 2 E, there is a per-fect matching M with e 2 M (we say that the graph is matching covered). Furthergeneralizations are also known [8, 9]. How quickly can these matchings be found?AcknowledgmentsWe thank Bill Cunningham, Jack Edmonds, David Kirkpatrick, and Daniel Younger forhelpful discussions. In particular, in an early meeting Jack pointed us in the right directionby suggesting we look at older proofs of Petersen's theorem. We also thank Joseph O'Rourkeand two anonymous referees for helpful comments on the paper.19
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