Math 215

Problem Sampler

1. Construct truth tables for the statements (a) (not A) or B, (b) (not A) and B, (c) $A \Rightarrow B$.
2. Construct truth tables for (a) not $(A$ or $B)$, (b) (not A) and (not B). Deduce that the two statements are equivalent.
3. Find a statement $S(A, B)$ using the two or more of the connectives \{and, or, not $\}$ that has the following truth table:

$$
S(T, T)=F, S(T, F)=F, S(F, T)=T, S(F, F)=F .
$$

4. The statement, "neither A nor B " is defined to be "not $(A$ or $B)$ " and is sometimes written symbolically as $A \downarrow B$.

Prove that $A \downarrow A \equiv($ not $A)$. [Hint: The form in 2(b) is useful for this problem.]
5. Write $(A \downarrow A) \downarrow(B \downarrow B)$ in a much simpler form. [Hint: Use 2(b) again.]
6. The statement " A implies B " written $A \Rightarrow B$ can be defined to be (not A) or B.

The statement " B implies A ", written $B \Rightarrow A$, would then be " $(\operatorname{not} B)$ or A ".
What is the truth table for $A \Leftrightarrow B$ which is $(A \Rightarrow B)$ and $(B \Rightarrow A)$?
$A \Leftrightarrow B$ can be read, " A if and only if B."
7. If $a<b$ and $c<d$, then $a+c<b+d$.
8. If $a<b$, then $-b<-a$. In this problem, $-x$ is a number with the property that $x+(-x)=0$.
9. If $1<a$, then $a<a^{2}$.
10. If $0<a<b$, then $a<\sqrt{a b}<\frac{a+b}{2}<b$. [Notice that there are two hypotheses and three conclusions.]
11. Prove that the following two statements are equivalent:

$$
A \Rightarrow(B \Rightarrow C) \quad \text { and } \quad(A \text { and } B) \Rightarrow C
$$

12. Show $\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$.
13. Find a formula for the sum

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\sum_{j=1}^{n} \frac{1}{j(j+1)}
$$

and prove your formula is correct.
14. Prove $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}$.
15. For non-zero integers a and b we say a divides b if there is an integer q such that

$$
b=a q .
$$

We express the fact that a divides b, or b is divisible by a, by writing $a \mid b$. Prove: (a) $a \mid b$ and $a|c \Rightarrow a|(b+c)$. (b) $a \mid b$ or $a|c \Rightarrow a| b c$.
16. Which of the following conditions are necessary for the positive integer n to be divisible by 6 ? If you think the condition is necessary you do not need to give a proof. But if you think the condition is not necessary, give an example of a number n that does not meet the condition but is divisible by 6 . (i) 3 divides n. (ii) 9 divides n. (iii) 12 divides n (iv) $n=12$. (v) 6 divides n^{2}. (vi) 2 divides n and 3 divides n. (vii) 2 divides n or 3 divides n.
17. Which of the conditions listed above are sufficient for the positive integer n to be divisible by 6 ? If you think the condition is sufficient you do not need to give a proof. But if you think the condition is not sufficient, give an example of a number n that meets the condition but is not divisible by 6 .
18. Let the statement $S(n)$ be $n!\geq 3^{n}$. $S(0)$ is true but $S(1)$ is false. Find the smallest number k greater than 1 such that $S(k)$ is true. Prove by induction that $S(n)$ is true for all $n \geq k$.
19. Prove that, for a positive integer n, a $2^{n} \times 2^{n}$ square grid with any one square removed can be covered using L-shaped tiles consisting in three adjacent grid squares.
20. For any sets A and B, recall $A-B=\{x \in A: x \notin B\}$.

Prove $A-B=A-(A \cap B)$. That is, show $A-B \subset A-(A \cap B)$ and $A-B \supset A-(A \cap B)$.
21. Let

$$
A=\{(x, y): 0 \leq x \text { and } x \leq y\} B=\{(x, y): 0 \leq y \text { and } y \leq x\}
$$

Suppose $(x, y) \in A \cap B$. Show that $x=y$ and $0 \leq x$.
22. Let $X=\{a, b, c, d\}$ and $A=\{a, b\}$. Define the function $f: X \longrightarrow\{0,1\}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Make a table of values for the function f.
23. Let $g: X \longrightarrow\{0,1\}$ be defined by $g(x)=1-f(x)$ where f is the function in the previous problem. (a) What is $g(b)$? (b) Make a table of values for the function g. (c) Which elements of X are in $\{x \in X: g(x)=1\}$?
24. The sequence of Fibonacci numbers is defined recursively by

$$
u_{0}=0, \quad u_{1}=1, \quad \text { and } \quad u_{n}=u_{n-1}+u_{n-2} \quad \text { for } \quad n \geq 2 .
$$

Find the value of u_{n} for $n \leq 8$. As a check, $u_{8}=21$.
Show (by induction) that if $a \mid u_{n}$ and $a \mid u_{n+1}$, then $a=1$ or $a=-1$.
25. Let $A \subset X$ and $B=X-A$. Prove $A=X-B$.
26. Let $B \subset A \subset X$. Prove $X-A \subset X-B$.
27. Define the composition of the function $f: X \longrightarrow Y$ and the function $g: Y \longrightarrow Z$ to be the function $g \circ f: X \longrightarrow Z$ with $g \circ f(x)=g(f(x))$ for all $x \in X$. Prove that if f is injective and g is injective, then $g \circ f$ is injective.
28. For $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ show that: (a) If $g \circ f$ is injective, then f is injective. (b) If $g \circ f$ is surjective, then g is surjective.
29. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$. Deduce from the results of problem 28 that if $g \circ f$ is injective and $f \circ g$ is surjective, then f is bijective. [You will not need to consider elements $x \in X$ or $y \in Y$ for this problem, you can work with the statements about functions in problem 28 only.]
30. Let $W=\{n \in Z: n \geq 0\}$. Define $f: W \longrightarrow W$ by $f(n)=2 n$. For any real number r, let $\lfloor r\rfloor$ be the largest integer m with $m \leq r$. For example, $\lfloor 3 / 2\rfloor=1,\lfloor\sqrt{5}\rfloor=2,\lfloor\pi\rfloor=3$, and $\lfloor\ln 2\rfloor=0$. Define $g: W \longrightarrow W$ by $g(n)=\lfloor n / 2\rfloor$.
(a) Show $g \circ f(n)=n$. (b) Show $f \circ g(n)= \begin{cases}n, & \text { if } n \text { is even; } \quad \text { (c) } \\ n-1, & \text { if } n \text { is odd. }\end{cases}$ Which of the functions $f, g, f \circ g$, and $g \circ f$ are injective; which are surjective?
31. Show $1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$.
32. Let $A=\{a, b, c\}$. List all of the elements of the power set $\mathcal{P}(A)$.
33. Let $A=\{a, b, c\}$ and $B=\{0,1\}$. (a) Find all functions from A to B. Write down the functions explicitly using a table with a column for each element of A and a row for each function. You do not need to name each function. (b) For each function f in part (a), write down the set $A_{f}=\{x \in$ $A: f(x)=1\}$. Use the same table and put A_{f} in a last column. What can you say about the collection of sets you obtain?
34. Let $S \subset\{1,2, \ldots, 2 n\}$ where S has $n+1$ elements. Then S contains two numbers such that one divides the other. [Any number can be written uniquely as an odd number times a power of $2, m=(2 k-1) 2^{j}$. Consider the function $f: S \longrightarrow\{1,2, \ldots, n\}$ defined by $f(m)=k$.]
35. This problem is an extension of problem 29. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ be maps such that $g \circ f$ is injective and $f \circ g$ is surjective. From problem 29 we know that f is bijective. Show that g is also bijective. [Outline: Since f is bijective, the inverse map, f^{-1}, exsits and is bijective. Then $g=(g \circ f) \circ f^{-1}$. Since $g \circ f$ is injective and f^{-1} is injective, problem 27 implies that g is injective. Also $g=f^{-1} \circ(f \circ g)$. Prove a result like problem 27 for surjective maps and deduce that g is surjective.]

