
Sample Second Exam - Math 215 - Fall 2010

Write all your proofs with care, using full sentences and correct reasoning.

1. Prove 1
2

+ 2
22 + 3

23 + · · ·+ n
2n = 2− n+2

2n for all n = 1, 2, 3, · · · .

Solution. This is a straightforward induction argument. Solution omitted.

2. Prove that, for a positive integer n, a 2n × 2n square grid with any one
square removed can be covered using L-shaped non-overlapping tiles. Each
tile consists in three adjacent grid squares in an L-shaped pattern.

Solution. We have discussed this in class.

3. Prove that the following two statements are equivalent:

A⇒ (B ⇒ C)

and
(A ∧B)⇒ C.

In your proof, do not use truth tables. Use the fact that

A⇒ B = (∼ A) ∨B,

and give a completely algebraic proof.

Solution.
A⇒ (B ⇒ C) = (∼ A) ∨ ((∼ B) ∨ C)

= ((∼ A) ∨ (∼ B)) ∨ C) = (∼ (A ∧B)) ∨ C = (A ∧B)⇒ C.

4. Define the composition of the function f : X −→ Y and the function
g : Y −→ Z to be the function g ◦ f : X −→ Z with g ◦ f(x) = g(f(x))
for all x ∈ X. Prove that if f is surjective and g is surjective, then g ◦ f is
surjective.

Solution. Let z ∈ Z. Then z = g(y) for some y ∈ Y since g is surjective.
And then y = f(x) for some x ∈ X since f is surjective. Therefore g◦f(x) =
g(f(x)) = g(y) = z. Hence g ◦ f is surjective.

5. Given sets A and B, consider the following two statements about a func-
tion f : A −→ B.
(i) ∃b ∈ B such that ∀a ∈ A, f(a) = b.
(ii) ∀b ∈ B, ∃a ∈ A such that f(a) = b.
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One of these statements is the definition for f to be a surjective mapping
from A to B. Which one is it? For the other statement, please explain what
it says and give an example of a function from A = {1, 2, 3} to B = {1, 2}
that has this property.

Solution. The correct choice is (ii). The rest of the solution is omitted.

6. (a) Let N = {1, 2, 3, · · ·} be the set of natural numbers. Let P (N) denote
the set of subsets of N. Let F : N −→ P (N) be any well-defined mapping
from N to its power set P (N). Show that F is not surjective. Your proof
should not depend upon any particular choice of F.

Solution. Let C = {n ∈ N |n /∈ F (n)}. Then it follows at once that C is not
of the form F (n) for any n ∈ N. For if C = F (m) for some m, then m ∈ C
iff m /∈ F (m). But this means m ∈ C iff m /∈ C. This is a contradiction, and
we conclude that C is not equal to F (m).

(b) Prove that there is a 1− 1 correspondence between the set

O = {1, 3, 5, 7, 9, 11, · · ·}

of odd natural numbers and the set N of all natural numbers.

Solution. Map n ∈ N to 2n− 1 ∈ O.

(c) Make the special assumption that if x is any set, then it is not the case
that x is a member of x. On the basis of this special assumption prove that
there does not exist a set U such that for all sets y, y ∈ U.

Solution. If U is a set, then U would have to be a member of itself. We
have said that no set is a member of itself. Therefore U is not a set.

7. (a) Prove that
√

5 is irrational.

Solution. Omitted.

(b) Prove that there exist irrational numbers a and b such that ab is rational.

Solution. Consider
√

2. If
√

2
√

2
is rational, we can take a = b =

√
2. If
√

2
√

2

is irrational, then we take a =
√

2
√

2
and b =

√
2. Then ab = (

√
2
√

2
)
√

2 =√
2

2
= 2, and so it is rational. This proves the result without deciding

whether
√

2
√

2
is irrational or rational. In fact,

√
2
√

2
is irrational, but this is

much harder to prove.
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8. Using discrete calculus, find a formula for

S(n) = 13 + 23 + 33 + · · ·+ n3.

Solution. Hint: Use the fact that ∆S(n) = (n + 1)3. Lets start at the
bottom and do the needed work. Recall that

∆(F (n)) = F (n + 1)− F (n).

We are using the fact that

∆(n(r)) = rn(r−1)

where
n(r) = n(n− 1)(n− 2) · · · (n− r + 1).

You have to discriminate between nr and n(r). Let Int(f(n)) denote any
function such that ∆(Int(f(n)) = f(n).

1. n = n1 = n(1) so nothing new here. Thus Int(n) = (1/2)n(2) + k =
(1/2)n(n− 1) + k.

2. n2 = n(n− 1) + n = n(2) + n(1). Therefore

Int(n2) = (1/3)n(3) + (1/2)n(2) + k.

3. Start with n(3) = n(n− 1)(n− 2) = n3 − 3n2 + 2n and rewrite as

n3 = n(3) + 3n2 − 2n.

Then substitute the formula you have for n2 and get

n3 = n(3) + 3n(2) + n(1).

(calculations omitted, but you can check this.) Now you can find
Int(n3) and also Int((n + 1)3), which is what is needed to solve the
present problem.
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4. By multiplying out n(4) = n(n − 1)(n − 2)(n − 3) and using what we
already have, you should be able to show that

n4 = n(4) + 6n(3) + 7n(2) + n(1)

and from this you can find Int(n4). And you can use this to solve the
homework problem about the sum of fourth powers!

9. The following problem is due to the Reverend Charles Lutwidge Dodgson
(27 January 1832 to 14 January 1898), also known as Lewis Caroll. He is the
author of books on Symbolic Logic and also the books “Alice’s Adventures
in Wonderland” and “Through the Looking-Glass.”

From the following three assertions we are to make whatever deductions are
possible.

(i) Nobody who really appreciates Beethoven fails to keep silence while the
Moonlight Sonata is being played.

(ii) Guinea-pigs are hopelessly ignorant of music.

(iii) No one who is hopelessly ignorant of music ever keeps silence while the
Moonlight Sonata is being played.

These can be interpreted as statements about various sets. Let
G = the set of guinea-pigs.
H = the set of creatures that are hopelessly ignorant of music.
K = the set of creatures who keep silence while the Moonlight Sonata is
being played.
R = the set of creatures that really appreciate Beethoven.

Rewrite each of (i), (ii), (iii) as a statement about sets in set theoretic
notation. For example, statement (i) says that R ⊆ K. Use this rewrite to
deduce that “Guinea pigs do not really appreciate Beethoven.”

Solution.
(i) R ⊆ K.

(ii) G ⊆ H.

(iii) H ⊆ Kc.
Conclusion: G ⊆ Kc, hence, since R ⊆ K, G ⊆ Rc. That is, “Guinea pigs
do not really appreciate Beethoven.”.
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