Calculus I

Midterm II Review

Spring 2015

- 1. Let $y = \tan^{-1}(x)$. Use implicit differentiation to find dy/dx.
- **2.** Find and classify all critical points of $f(x) = x/\ln(x)$.
- **3.** Find the derivative:

(a)
$$\sin(x)^x$$

(b)
$$\log_7(x^2+1)$$

(a)
$$\sin(x)^x$$
 (b) $\log_7(x^2+1)$ (c) $(3x^2+4x)^{18}$

(d)
$$\cos^{-1}(\sqrt{x})$$

- **4.** Let $f(x) = e^{2x-1}$. Find $(f^{-1})'(1)$.
- **5.** Let

$$f(x) = \frac{x^3}{3} + x^2 - 3x + 1.$$

- (a) Find and classify all critical points. (b) On what intervals is f(x) increasing? (c) On what interval is f(x) decreasing?
- **6.** A joyous calculus student throws her calculus textbook into the air in a fit of exuberance. She is standing on the roof of BSB, which is 50 feet in the air. The height of the book at time t is given by

$$h(t) = -15t^2 + 25t + 50.$$

- (a) Find the velocity of the book at t seconds. (b) When is the book at its highest point? (c) When does the book hit the ground?
- 7. Consider the function $f(x) = -x^4 + 2x^2 3$. Does it have an absolute maximum? Absolute minimum?
- 8. Draw the graph of a function satisfying ALL of these properties: (i) f(0) = 0. (ii) f'(0) = 1. (iii) f'(2) = 0. (iv) x = 4 is an absolute maximum.
- **9.** A differentiable function f(x) satisfies f(0) = 0, $f(\pi) = 3$, $f'(\pi) = 2$, f'(0) = 4. Find the equation of the line tangent to $f(\sin(x))$ at the point $x = \pi$.