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THE LARGE SCALE GEOMETRY OF SOME METABELIAN GROUPS

JENNIFER TABACK AND KEVIN WHYTE

Abstract. We study the large scale geometry of the upper triangular subgroup of
PSL2(Z[ 1

n
]), which arises naturally in a geometric context. We prove a quasi-isometry

classification theorem and show that these groups are quasi-isometrically rigid with
infinite dimensional quasi-isometry group. We generalize our results to a larger class
of groups which are metabelian and are higher dimensional analogues of the solvable
Baumslag-Solitar groups BS(1, n).

1. Introduction

We consider quasi-isometries of the upper triangular subgroup Γn of PSL2(Z[ 1
n
]).

These groups arise in a geometric way because they are subgroups of both PSL2(R) and
PSL2(Qp), for all p dividing n. Both PSL2(R) and PSL2(Qp) act on their respective
Bruhat-Tits buildings; for PSL2(Qp) this building is a regular p + 1 valent tree, and
for PSL2(R) it is H2. Then G = PSL2(R) × Πpi|nPSL2(Qpi

) has an induced action on

H2×Πk
i=1Ti, where Ti is the Bruhat-Tits building of PSL2(Qpi

). This action is properly
discontinuous and has cofinite volume, but its restriction to Γn is no longer cofinite.
However, the induced action of Γn on the product of trees is cocompact; the quotient is
a k-torus. The stabilizer of any point is an infinite cyclic group which acts parabolically
on H2. Thus Γn has a decomposition as a k dimensional complex of groups [BH].

The upper triangular subgroup Γn arises naturally as the stabilizer of a point at infinity
under the action of G on H2×Πk

i=1Ti. For n prime, this group of upper triangular matrices

is isomorphic to the solvable Baumslag-Solitar group BS(1, p2) = 〈a, b|aba−1 = bp2

〉, and
our results on quasi-isometries and rigidity generalize the results of [FM1]. In this case,
the rigidity of the groups Γn should be useful for understanding the groups PSL2(Z[ 1

n
]),

analogously to how the results of Farb and Mosher are used in [T].

The upper triangular groups Γn are also basic examples of metabelian groups, fitting
into the short exact sequence

1 → Z[
1

n
] → Γ → Zk → 1.

In the sections below, we describe geometric models for these groups as warped prod-
ucts of R with the product of trees on which Γn acts. This identifies Γn as a cocompact
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2 JENNIFER TABACK AND KEVIN WHYTE

lattice in the isometry group R ⋊ (Sim(Qm1
) × · · · × Sim(Qmk

)) of this model space,
where Sim(Qm) is the group of similarities of the m-adic rationals. We also describe the
group of all self quasi-isometries of Γn and classify them up to quasi-isometry.

Our results rely on the technology available for groups acting on trees. However,
products of trees are substantially more complicated than trees. For example, a group
which acts freely on a tree is free, while groups which act freely on a product of trees
need not be products of free groups. Such groups can, in fact, be simple [BM].

Our results generalize immediately to a larger class of groups which do not arise as
nicely in a geometric context but are interesting nonetheless. This larger class of groups
generalizes the solvable Baumslag-Solitar groups BS(1, n) = 〈a, b|aba−1 = bn〉. Let
S = (n1, n2, · · · nk) where (ni, nj) = 1 when i 6= j, and define Γ = Γ(S) by

Γ = Γ(S) = 〈a1, . . . , ak, b|a
−1
i bai = bni , aiaj = ajai, i 6= j〉.

These groups are k+1 dimensional metabelian groups, fitting into a short exact sequence

1 → A → Γ → Zk → 1

where the map onto Zk is given by sending the {ai} to a basis and sending b to 0.
The kernel, A, is normally generated by b and is an infinitely generated abelian group.
Thus these groups provide natural examples of finite type solvable groups which are not
polycyclic.

The groups Γn are also of the above form. Namely, let n = pe1

1 pe2

2 · · · pek

k where the pi

are distinct primes. Then Γn is isomorphic to Γ(p2e1

1 , . . . , p2ek

k ), where the isomorphism
is given by:

ai 7→

(

pei

i 0
0 pi

−ei

)

b 7→

(

1 1
0 1

)

.

The decomposition of Γn into a k-dimensional complex of groups can be generalized
to the groups Γ(S). Indeed, the presentation given is that of a k-torus of infinite cyclic
groups, generalizing the fact that all the Baumslag-Solitar groups are HNN extensions
of Z. This decomposition is fundamental to our study of the geometry of these groups.
The groups Γ(S) have geometric models analogous to those of the Γn. As a result, our
quasi-isometry classification and rigidity results immediately generalize to this larger
class of groups. We are able to identify Γ(S) as a cocompact lattice in the isometry
group of the model space, describe its quasi-isometry group, and classify these groups
up to quasi-isometry.

1.1. Statement of Results. Let Γn be the upper triangular subgroup of PSL2(Z[ 1
n
])

and Xn the model space for Γn which is quasi-isometric to Γn and constructed below in
§3.
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Theorem 1.1 (Quasi-isometry classification). Let Γn be the upper triangular subgroup
of PSL2(Z[ 1

n
]), and Γm the upper triangular subgroup of PSL2(Z[ 1

m
]). If n = pe1

1 · · · pek

k

and m = qf1

1 · · · qfl

l where {pi} and {qj} are sets of distinct primes, then Γn and Γm are
quasi-isometric iff k = l and for i = 1, 2, · · · , k, after possibly reordering, pi = qi.

Theorem 1.2 (Quasi-isometry group). Let n = pe1

1 · · · pek

k where all pi are distinct
primes. The quasi-isometry group, QI(Γn), is isomorphic to the product

Bilip(R) × Bilip(Qp1
) × · · · × Bilip(Qpk

).

Theorem 1.3 (Cusp group rigidity). If Γ′ is a finitely generated group which is quasi-
isometric to Γn then there is a finite normal subgroup F of Γ′ so that Γ′/F is commen-
surable to Γn, meaning that Γ′/F and Γn have isomorphic subgroups of finite index.

When we replace Γn by the more general group Γ(S) defined above, where all elements
in S are pairwise relatively prime, we obtain the following generalizations of the above
theorems.

Theorem 1.4. Consider the sets S1 = (n1, n2, · · ·nk) and S2 = (m1,m2, · · · ,ml) with
(ni, nj) = (mi,mj) = 1 for i 6= j. Define Γ1 = Γ(S1) and Γ2 = Γ(S2). The groups Γ1

and Γ2 are quasi-isometric iff k = l and for i = 1, 2, · · · k, after possibly reordering, each
ni is a rational power of mi.

Theorem 1.5. Let S = (n1, n2, · · · nk). The quasi-isometry group QI(Γ(S)) is isomor-
phic to the product

Bilip(R) × Bilip(Qn1
) × · · · × Bilip(Qnk

).

Theorem 1.6. Let Γ′ be any finitely generated group quasi-isometric to Γ(S). There are
integers m1,m2, · · · ,mk, with each mi a rational power of ni, and a finite normal sub-
group F of Γ′ so that Γ′/F is isomorphic to a cocompact lattice in Iso(X(m1, · · · ,mk)) =
R ⋊ (Sim(Qm1

) × · · · × Sim(Qmk
)).

1.2. Outline of the Proofs. The key to all of our results is understanding the self
quasi-isometries of the model space X = Xn for Γn, and in general for Γ(S), constructed
in §3. This model space is the warped product of R and a product of trees Πk

i=1Ti. We
begin with a definition crucial to understanding the following outline of the proofs, and
refer the reader to §2 for additional definitions. Throughout, let f : X → X be any
quasi-isometry.

When considering points in Πk
i=1Ti it is important to define a notion of height on each

tree Ti. Fix a basepoint (t1, t2, · · · , tk) ∈ Πk
i=1Ti. The height of a vertex t ∈ Ti is the

height change between t and the i-th coordinate ti of the basepoint. Extend this notion
to a height function hi on each tree Ti through linear interpolation along the edges. The
metric on X is then given by a warped product of R and Πk

i=1Ti where on each tree Ti

the warping function is given by e−hi .

In the following outline, as in the majority of the paper, we only consider the groups
Γn. The similarities in the construction of the model spaces for the groups Γn and Γ(S)
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ensure that the generalizations of the proofs are immediate. Let n = pe1

1 , pe2

2 , · · · , per
r

where the pi are distinct primes.

• Warped product structure is preserved. We first show that any quasi-
isometry preserves, up to bounded distance, the horocycles, i.e. the subsets of
the form R × (t1, · · · , tk). In other words, that there is a quasi-isometry f̄ of
the product of trees T1 × · · · × Tk, so that f and f̄ commute with the projection
X → T1 × · · · × Tk. Results of [KL] imply that, up to permuting the factors, f̄
splits as a product of quasi-isometries f̄i of the trees Ti.

• Quasi-isometries are almost height translations on the tree factors. The
geometry of the space X restricts the quasi-isometries f̄i. The warping function
can be reconstructed as the (logarithm of the) amount of stretching induced by
closest point projection between the horocycles. This splits as a sum of functions,
hi, on each of the trees. The quasi-isometries f̄i preserve these warping functions,
in the sense that hi(f̄i(x)) − hi(f̄i(y)) differs from hi(x) − hi(y) by a uniformly
bounded amount. We call such quasi-isometries almost height translations. In
[FM1], the group of almost height translations of Tn is identified as Bilip(Qn).

• f induces a bilipschitz homeomorphism of R. This shows that the group
of quasi-isometries of T1 × · · · × Tk which quasi-preserve the warping function
is Bilip(Qp1

) × · · · × Bilip(Qpr). All of these quasi-isometries extend to quasi-
isometries of X. The quasi-isometries of X which induce the identity on T1 ×
· · · ×Tr induce a bilipschitz homeomorphism of R. This allows us to identify the
quasi-isometry group of X, and prove theorem 1.2 (quasi-isometry group).

• These methods hold for quasi-isometries between Γn and Γm. Consider
a quasi-isometry f : Γn → Γm. Using the above methods again shows that f
induces a bilipschitz homeomorphism of R and a quasi-isometry on the product
of trees which is a bounded distance from a product quasi-isometry. Theorem
1.1 (quasi-isometry classification) now follows by combining results of [FM1] and
[W1].

• Quasi-actions. Understanding the quasi-isometries of X lets us understand
groups quasi-isometric to Γ via the quasi-action principle. Suppose Γ′ is quasi-
isometric to Γn (and hence to X), and let f : Γ′ → X be a quasi-isometry. For
every γ′ ∈ Γ′ we get a quasi-isometry of X by x 7→ f(γ′f−1(x)). These quasi-
isometries all have uniform constants, and compose, up to bounded distance,
according to the multiplication table of Γ′. In other words, Γ′ quasi-acts on X,
and therefore gives an almost height translation action on each of the Ti.

• Obtaining similarity actions on Qn. According to [MSW], these almost
height translation actions are equivalent, via a quasi-isometry Ti → T ′

i , to a
height translation action on trees T ′

i . In terms of the pi-adics, this says that
there is some qi so that the bilipschitz action of Γ′ on Qpi

is bilipschitz equivalent
to a similarity action on Qqi

. Similarly, the bilipschitz action on R is equivalent
to an affine action on R. Further, the uniformity of the quasi-isometry constants
implies that the expansion factor of the affine action on R is the inverse of the
product of the factors from the similarity actions on the Qqi

. This shows Γ′ is a
lattice in the subgroup of Aff(R) × Sim(Qq1

) × · · · × Sim(Qqk
) which satisfies
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this condition. This subgroup is R ⋊ Sim(Qq1
) × · · · × Sim(Qqk

), and can be
identified as the isometry group of a complex X ′, proving theorem 1.3.

2. Preliminaries

2.1. Definitions and Notation. We begin with the definition of a quasi-isometry.

Definition. Let K ≥ 1 and C ≥ 0. A (K,C)-quasi-isometry between metric spaces
(X, dX) and (Y, dY ) is a map f : X → Y satisfying:

1. 1
K

dX(x1, x2) − C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C for all x1, x2 ∈ X.

2. For some constant C ′, we have NbhdC′(f(X)) = Y .

We will assume that our quasi-isometries have been changed by a bounded amount
using the standard “connect-the-dots” procedure to be continuous. (See, for example,
[SW].) A quasi-isometry has a coarse inverse, i.e. a quasi-isometry g : Y → X so that
f ◦ g and g ◦ f are a bounded distance from the appropriate identity map in the sup
norm. A map satisfying 1. but not 2. in the definition above is called a quasi-isometric
embedding.

We define the quasi-isometry group QI(X) of a space X to be the collection of all self
quasi-isometries of X, identifying those which differ by a bounded amount in the sup
norm.

Given a group G and a metric space X, a quasi-action of G on X associates to each
g ∈ G a quasi-isometry of X, i.e. Ag : X → X, subject to certain conditions. This map
is defined by Ag(x) = g · x, and the collection of these maps has uniform quasi-isometry
constants, so that AId = IdX and dsup(Ag ◦Ah, Agh) is bounded independently of g and
h.

2.2. Previous results. The following theorems will be referred to repeatedly in §4. We
state them below for easy reference.

2.2.1. Rigidity of Baumslag-Solitar groups. Since the geometry of the group Γn is so
dependent on its various Baumslag-Solitar subgroups, we will often refer to the following
classification and rigidity results for the solvable Baumslag-Solitar groups due to Farb
and Mosher.

Theorem 2.1 ([FM1] Theorem 7.1). For integers m,n ≥ 2, the groups BS(1,m) and
BS(1, n) are quasi-isometric if and only if they are commensurable. This happens if and
only if there exist integers r, j, k > 0 such that m = rj and n = rk.
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Theorem 2.2 ([FM1] Theorem 8.1). The quasi-isometry group of BS(1, n) is given by
the following isomorphism:

QI(BS(1, n)) ∼= Bilip(R) × Bilip(Qn).

2.2.2. Products of trees and groups acting on products of trees. A major step in the proofs
below is to show that a quasi-isometry f : Γ1 → Γ2 induces a map on the product of
trees on which each group acts. Once this is accomplished, we use the following result of
Kleiner and Leeb to show that our map is uniformly close to a product of quasi-isometries.

Theorem 2.3 ([KL] Theorem 1.1.2). Let Ti and T ′
i be irreducible thick Euclidean Tits

buildings with cocompact affine Weyl group. Let X = En×Πk
i=1Ti and X ′ = En′

×Πk′

i=1T
′
i

be a metric products. Then for all K,C > 0 there exist K ′, C ′, D′ so that the following
holds: If f : X → X ′ is a (K,C)-quasi-isometry, then n = n′, k = k′ and there are
(K ′, C ′)-quasi-isometries fi : Ti → Tj so that d(p ◦ f,Πk

i=1fi ◦ p) ≤ D′ where p is the
projection map.

The following result of [MSW] will be needed for the proof of rigidity of the groups Γ.
It applies to bushy trees, meaning that each vertex is a uniformly bounded distance from
a vertex having at least three unbounded complementary components. In addition we
require bounded valence, meaning that vertices have uniformly finite bounded valence.
All of the trees in the discussion below satisfy these properties.

Theorem 2.4 ([MSW]). If G × T → T is a quasi-action of a group G on a bounded
valence, bushy tree T , then there is a bounded valence, bushy tree T ′, an isometric action
G× T ′ → T ′, and a quasi-isometry f : T ′ → T which intertwines the actions of G on T ′

and the quasi-action of G on T to within a uniformly bounded distance.

3. The Geometric Models

To illustrate the geometry of Γn, and Γ(S) in general, we describe a metric (k + 1)-
complex X quasi-isometric to Γn, i.e. on which Γn acts properly discontinuously and
cocompactly by isometries. We begin with the simplest case of the upper triangular
subgroup Γn of PSL2(Z[ 1

n
]). We then describe the geometry of the more general groups

Γ(S). For all of these groups, the complex X is a warped product of R with a product
of trees on which the group acts. When the ni are not relatively prime, the group Γ(S)
does not act on a product of trees, and we do not consider this case here.

First recall that the Baumslag-Solitar groups BS(1, n) = 〈a, b|aba−1 = bn〉, for integral
n ≥ 2, for integral n ≥ 2, act properly discontinuously and cocompactly by isometries on
a metric 2-complex we denote Yn. This complex Yn is topologically the product T × R

where each vertex of the tree has 1 incoming edge and n outgoing edges. Metrically we
define a height function on T so that if l ⊂ T is a line on which the height function is
strictly increasing, then l ×R is metrically a hyperbolic plane (1). See [FM1] for a more
detailed construction of this complex, and figure .
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Figure 1. The geometric model of the solvable Baumslag-Solitar group
BS(1, 3), which is topologically a warped product of a tree and R.

a a

b

b b

Figure 2. The “horobrick” building block for the geometric model of
BS(1, 2).

3.1. The geometric model of Γn. We give the most comprehensive description of the
model space X in this case because the trees on which Γn acts are easier to understand
than the trees on which Γ(S) acts. We present several ways to understand the complex
X.

When p is prime, the group BS(1, p), acts on the Bruhat-Tits tree Tp associated to
PSL2(Qp). This is not true for BS(1, n) when n is not prime. We will describe the
BS(1, n) tree below.

Assume p is prime, and consider the geometric model Yp of BS(1, p). Let (x, y) be the
coordinates on the upper half space model of hyperbolic space, where y > 0. One can
also view Yp as built from the “horobrick” with 0 ≤ x ≤ n and 1 ≤ y ≤ p. The vertical
sides of this brick have length log p. In the Cayley graph of BS(1, p) this horobrick has
the form given in figure 2.

If n = pe1

1 , pe2

2 , · · · , per
r , then Γn acts on the product of the trees Πk

i=1Ti, where Ti is the
tree on which BS(1, pi) acts, i.e. it has 1 incoming edge at each vertex and pi outgoing
edges. The complex X is the same warped product of Πk

i=1Ti with R as we saw above
for BS(1, p).

Analogously for Γn, there is an (k + 1)-dimensional building block used to construct
the complex X, whose 1-skeleton is the Cayley graph of Γ. When n is a product of two
primes, an examples of this block is given in figure 3. It is not difficult to see that the
correct branching occurs when these blocks are arranged so as to form the appropriate
Baumslag-Solitar subcomplexes. In general the (k + 1)-dimensional building block will
be an (k + 1)-cube, with appropriate edge labels in terms of the generators of Γ(S). We
refer to the horocycle along which the sheets meet as branching horocycles.
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a a

a a

b b

c
c

cc
b

bb b

b b b b b b

Figure 3. The analogous building block for Γ(2, 3).

A second way of understanding the complex X is in terms of some of its special
subspaces. Let n = pe1

1 pe2

2 · · · pek

k where the pi are prime. Then

Γn
∼= 〈a1, . . . , ak, b|a

−1
i bai = bp

2ei
i , aiaj = ajai, i 6= j〉.

We consider in particular two types of subspaces of X:

• Ypi
, corresponding to BS(1, p2ei

i ) generated by ai and b in the presentation above

• Zl, for 1 ≤ l ≤ k, generated by l distinct generators ai in the presentation above.

Notice that the BS(1, pi) subgroups of Γ all share the generator b; In X this means
that the subcomplexes Ypi

for i = 1, 2, · · · , k, are joined along branching horocycles.
Namely, consider a subcomplex Ypi

of X. At each branching horocycle of Ypi
there is

a copy of Ypj
for all j 6= i attached along that horocycle. The same is true for every

branching horocycle of those Ypj
and the process continues.

For any point x ∈ X, there is a Ypi
subspace for each i = 1, 2, · · · , n in X which

contains x. For each i, the set {am
i · x|m ∈ Z} is a line in the Cayley graph of Γ which

is the 1-skeleton of X. These lines form the axes of a Zn subspace of X. The orbit of x
under the group generated by the entire collection {ai} is a Zn subspace of X, for any
x ∈ X. The Zl subspaces for l < k are contained in the Zn subspaces and are formed by
taking the orbit of x ∈ X under the group generated by a subset of l of the generators
ai.

3.2. The geometric model of Γ(S). When Γ = Γ(n1, n2, · · ·nk) and the ni are rela-
tively prime, but not all prime, the product of trees on which Γ = Γ(n1, n2, · · · nk) acts
is not as simple.

We first discuss the tree T n on which the group BS(1, n) acts when n is not prime.
Suppose that n = pe1

1 , pe2

2 , · · · , per
r , and let Ti be the Bruhat-Tits tree associated to

PSL2(Qpi
). The tree T n is a subspace of Πr

i=1Ti, whose branching may not be constant,
but depends on the exponents of the primes.

Define a folding function Fi : Ti → R as follows. If hi is the height function defined
on Ti, then Fi(t) = hi(t) for t ∈ Ti. Combining folding functions on the Ti we get a map
F (r) : Πr

i=1Ti → Rr defined by F (r) = (F1, F2, · · · , Fr). Consider the grid of lines in Rr

of the form (x1, x2, · · · , xj−1, R, xj+1, · · · , xr) where xi ∈ Z. So we really have r families



THE LARGE SCALE GEOMETRY OF SOME METABELIAN GROUPS 9

of parallel lines in Rr. View each family as representing folded copies of one of the trees
Ti under F (r).

The branching of the tree T n is determined by the line e1x1 + e2x2 + · · ·+ erxr = 0 in
Rr. When the line crosses a line in the family of parallel lines corresponding to Ti, the
tree T n branches n times. When the line crosses the intersection of two lines, one from
the family of Ti and one from the family of Tj , the branching is i + j.

Example. Consider the group BS(1, 6). The tree T 6 on which it acts is a subset of
T2 × T3, determined by the line y = x in the plane R2, since the exponent of each prime
is 1. This line only crosses vertices of the grid of lines, so the branching is uniform of
valence 6.

Example. Consider the group BS(1, 12). The tree T 12 on which it acts is a subset of
T2 × T3, only now the line in R2 which determines the branching is 2x = y. From the
way this line crosses the grid of lines, we see that the branching of T is not uniform. The
vertices alternate between valence 2 and valence 6, where the valence 2 arises from the
line crossing only a horizontal grid line, and the valence 6 arises when the line crosses a
vertex in this grid of lines.

Example. Consider the group BS(1, 60). The tree T 60 on which it acts is a subset of
T2 × T3 × T5, and now the folding map F (3) is a map to R3. The line in R3 determining
the branching of T is 2x+ y + z = 0. Again we see that the amount of branching at each
valence varies.

Now consider Γ = Γ(n1, n2, · · · nk) where the ni are not all prime. Consider any ni,
and let p1, p2, · · · , pr be the list of primes dividing ni, with Ti the Bruhat-Tits tree of
PSL2(Qpi

). Then let T i be the tree on which BS(1, ni) acts (described above) which

is a subspace of Πr
i=1Ti. Then Γ acts on Πk

i=1T
i. The complex X(S) is then warped

product of Πk
i=1T

i with R.

4. The Structure of Quasi-Isometries

The key step in the proofs of the theorems in this paper is understanding the structure
of the quasi-isometries of Γ, or equivalently of X. We begin with two groups Γ1 and Γ1

and a (K,C)-quasi-isometry between their geometric models, f : X1 → X2.

Let π be the projection X → Πk
i=1Ti. Define a horocycle of the complex X to be

a subset of the form π−1((t1, t2, · · · , tk)) where (t1, t2, · · · , tk) is a point in Πk
i=1Ti. A

hyperplane in X is a subcomplex of the form π−1(×l1×· · ·×ln) where each li is a geodesic
in Ti. The first goal is to show that the quasi-isometry f preserves horocycles and hence
induces a quasi-isometry of a product of trees. These arguments are similar to those in
[W2].
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Lemma 4.1. For any (K,C) there is an R > 0 so that for any f : X1 → X2, a (K,C)-
quasi-isometry, and every hyperplane H of X1, there is a subset Y of Πk

i=1Ti so that the
image f(H) is within R of π−1(Y ).

Proof. Let g be a quasi-inverse of f , so that g ◦f is a bounded distance from the identity
map, and hence proper. By a standard connect-the-dots argument, we may assume f and
g are continuous. As the Xi are uniformly contractible, the compositions are homotopic
to the identity through homotopies of length at most R0 (depending only on the Xi

and the constants (K,C)). The the maps f and g are, in particular, proper homotopy
equivalences.

Consider the fundamental class [H] in Huf
n+1(X1). The push forward f∗([H]) is thus

a non-trivial class in Huf
n+1(X2). Further, this class clearly has a representative c with

support contained in the R0 neighborhood of f(H). The simplicial structure of X2 forces
the coefficients of c to be constant along horocycles. Thus the support of c is of the form
Y ×R for some subcomplex Y of Πk

i=1Ti. This shows that the R0-neighborhood of f(H)
contains Y × R.

To complete the proof we must show that a neighborhood of Y ×R (= supp(c)) contains
f(H). If not, then there are arbitrarily large balls in f(H) which are not contained in
Y ×R. Applying the inverse map, g, this would give a representative of [H] whose support
misses large balls in H. This is impossible, as any representative of the fundamental class
has full support. �

Lemma 4.2 (Horocycles are preserved). For every (K,C) there is an R so that if f is
a (K,C)-quasi-isometry of X and h is a horocycle in X then there is a horocycle h′ so
that dH(f(h), h′) ≤ R.

Proof. This is an immediate consequence of the previous lemma. For any horocycle h
there are a finite number of hyperplanes H1, · · · ,Hk in X1 which have coarse intersection
at Hausdorff distance at most R from h (the constants k and R depend only on the
geometry of X1). The previous lemma implies that the image of h is Hausdorff equivalent
to a complex of the form Y × R for some subset Y of X2. Applying the same argument
to the inverse map g and each horocycle in Y ×R, we conclude that Y must be of finite
diameter (bounded independently of h). This proves the lemma. �

Corollary 4.3 (Factor preserving). Consider the groups Γ1 = Γ(n1, n2, · · · nk) and Γ2 =
Γ(m1,m2, · · · ,ml) where (ni, nj) = (mi,mj) = 1 for i 6= j, and a quasi-isometry f :
Γ1 → Γ2 between them. Then:

(1) k = l,
(2) f induces a quasi-isometry fT : Πk

i=1Ti → Πk
i=1T

′
i ,and

(3) there are (K ′, C ′)-quasi-isometries fi : Ti → T ′
i (after possibly reindexing the

tree factors) so that fT is a bounded distance from the product quasi-isometry
f1 × · · · × fk.
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Proof. Since every point (t1, t2, · · · , tn) ∈ Πk
i=1Ti determines a horocycle in X, it follows

from lemma 4.2 that the quasi-isometry f induces a quasi-isometry on the product of
trees: fT : Πk

i=1Ti → Πl
i=1Ti. It now follows from theorem 2.3 that k = l and thus there

are the same numbers of parameters in Γ1 and Γ2. It then follows from theorem 2.3 that
this map is a bounded distance from a product f1 × · · · × fk of quasi-isometries. �

Corollary 4.4 (Bilipschitz maps). Let f : Γ1 → Γ2 be a (K,C)-quasi-isometry. Then
there are bilipschitz maps g : R → R and fi : Ti → Ti (after possibly re-indexing the tree
factors) so that f is a bounded distance from (g, f1, · · · fk).

Proof. Applying corollary 4.3 we may assume that the quasi-isometry f preserves the
individual tree factors. We use the notation of corollary 4.3 and let fi denote the induced
map on the i-th tree factor. It follows that the quasi-isometry f restricts to a map on each
Baumslag-Solitar subcomplex Ti × R, which is also a quasi-isometry. Applying theorem
2.2 of Farb and Mosher, we conclude that fi is a bounded distance from the product of
a bilipschitz map of Ti with a bilipschitz map of R. It is easy to see that we must obtain
the same bilipschitz map of R regardless of which Baumslag-Solitar subspace we restrict
to, and the corollary follows. �

We are now able to prove theorem 1.1.

Proof of Theorem 1.1. Applying corollary 4.4, we consider our quasi-isometry to be factor
preserving of the form (g, f1, · · · fn), with each individual map bilipschitz. Then any pair
(g, fi) : R × Ti → R × T ′

i is a quasi-isometry of BS(1, pi) to BS(1, qi), by theorem 2.2 .
It follows from theorem 2.1 that, after reordering, pi = qi. �

4.1. Description of the quasi-isometry group. We begin with a lemma important
for the proof of theorem 1.2.

Lemma 4.5 ([FM2]Rubber Band Principle). For all L,M > 0 there is a constant C
satisfying the following property. Suppose X and Y are path metric spaces and f : X → Y
is a map. Suppose that there are collections of isometrically embedded subspaces CX of
X and CY of Y satisfying:

• Any two points in X (or in Y ) can be connected by an M -quasi-geodesic made
up of a finite number of subpaths, each lying in an element of CX or CY .

• f induces a one-to-one correspondence between elements of CX and CY .
• f restricts to an L-quasi-isometry between corresponding elements of CX and CY .

Then f : X → Y is a C-quasi-isometry.

We are now able to prove theorem 1.2 and describe the quasi-isometry group of Γ.

Proof of Theorem 1.2. It is clear that we have a homomorphism

Φ : QI(X) → Bilip(R) × Bilip(Qp1
) × Bilip(Qp1

) × · · · × Bilip(Qpk
)
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given by Φ(f) = (fR, f1, f2, · · · , fn). In addition we get a homomorphism

Φi : QI(X) → QI(BS(1, pi)) ∼= Bilip(R) × Bilip(Qpi
)

for each i = 1, 2, · · · , n, given by Φ(f) = (fR, fi). Following the reasoning in [FM1], we
see that for any f ∈ ker(Φ), the quasi-isometry Φi(f) is a bounded distance Bi from the
identity map on Xn. Letting B = max{Bi}, the Rubber Band Principle implies that
Φ(f) is a bounded distance B from the identity.

To see that Φ is surjective, we again use the Rubber band Principle to piece to-
gether quasi-isometries of the Xn subcomplexes. Choose fR ∈ Bilip(R) and maps
fi ∈ Bilip(Qpi

). We must show that fR × f1 × · · · × fn is a quasi-isometry of Γ1. From
[FM1] we know that any pair (fR, fi) yields a quasi-isometry of Xi. We can assume the
quasi-isometry constants are uniform by taking the largest pair of constants from any of
these maps. Since the fR is common to any two pairs, we obtain a product map f of the
entire complex. Thus we have a collection of subspaces and map f = fR × f1 × · · · × fn

satisfying the Rubber Band Principle, so f is a quasi-isometry of Γ. �

5. Rigidity

We finish with the proof of theorem 1.3, which shows that this class of groups is
quasi-isometrically rigid.

Proof of Theorem 1.3. Let Γ′ be any finitely generated group quasi-isometric to Γ(S),
with X a the model space for Γ(S) as before, and let f : Γ′ → X be a quasi-isometry with
g a coarse inverse. We get a quasi-action of Γ′ on X where γ′x=f(γ′g(x)). By lemma
4.2, horocycles are preserved, so we get an induced quasi-action of Γ′ on the product
of trees Πk

i=1Ti. By passing to a finite index subgroup of Γ′ we may assume that the
quasi-action is the diagonal quasi-action of a collection of quasi-actions Γ′ on Ti. The
maps to the complexes of the Baumslag-Solitar subgroups of Γ(S) are Γ′ equivariant (to
within finite distance), and so quasi-preserve the height function. By [MSW], there are
trees T ′

i quasi-isometric to the Ti and actions of Γ′ on Ti which are quasi-conjugate to the
quasi-actions on the Ti. Further, each of these trees is homogeneous with a Γ′ invariant
orientation with one edge directed into each vertex. Thus we get an action of Γ′ on the
product of the T ′

i , with vertex stabilizers virtually cyclic, preserving the orientations,
and with finite quotient, in other words we get a description of Γ′ as a finite complex of
virtual Zs.

Consider the edges in this quotient which come from edges of a T ′
i . These are oriented,

and as there is exactly one edge oriented toward every vertex in T ′
i , the same is true in

the quotient. Since the quotient is finite, this implies that there is precisely one such edge
oriented away from each vertex of the quotient. This implies that these edges consist of
a finite union of circles. Further, this implies that for any v ∈ T ′

i , the action of stab(v)
on edges pointing away from v is transitive. Similarly, fixing any edge in T ′

i and looking
at two cells coming from T ′

i × T ′
j we have exactly two such two cells at every edge of

the quotient, with one oriented towards, and one away from, this edge. Continuing over
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higher dimensional cubes, we see that the quotient is product of oriented circles, with
the inclusions of the stabilizer of a cube to a face stabilizer is an isomorphism if it goes
against the orientation. Thus we may collapse such a cube, unless its opposite faces are
the same in the quotient. Making all such possible collapses gives a complex of groups
description of Γ′ with underlying complex a product of oriented loops, with stabilizers
all virtually Z, and with the inclusions isomorphism when going against the orientation.
As in [FM1], we may pass to a finite index subgroup of Γ′ which has such a description
with all stabilizers Z. Such a complex of groups has a presentation precisely of the form
Γ(S′) for some S′. Thus Γ′ is commensurable to G(S′) for some S′, as desired. �
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