MCS 521 - Combinatorial Optimization
 Fall 2013
 Problem Set 3

Lev Reyzin
Due: $11 / 26 / 13$ at the beginning of class

Related readings: Relevant parts of chapters $4,5,7$, and 8

Instructions: Atop your problem set, please write your name and list your collaborators (see syllabus for the collaboration policy).

1. Suppose G is a connected graph and has the property that for every node v there is a maximum matching of G not covering v. What are the strongest bounds you can prove on $\nu(G)$ as a function of $|V|$? Prove your answer correct. (Hint: consider shrinking tight odd circuits.)
2. Find the maximum matching and a minimizing set A in the Tutte-Berge formula for the graph in Figure 1 below.

Figure 1: a graph
3. Give an example to show that the bound of $\frac{3}{2} \mathcal{O} \mathcal{P} \mathcal{T}$ for Christofides's heuristic cannot be improved. (If you are unable to do so, give the tightest example you can.) Explain why your example works.
4. Formulate the problem of finding a minimum-cost perfect matching in a bipartite graph as a minimum-cost flow problem.
5. Let $G=(V, E)$ be a graph and let
$\mathcal{I}=\{J \subseteq E:$ each component of the subgraph (V, J) contains at most one circuit $\}$.
Prove that (E, \mathcal{I}) is a matroid.

