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Basics

A differential field is a field K of characteristic 0 with a derivation
D : K → K

D(a + b) = D(a) + D(b) and D(ab) = aD(b) + bD(a).

A differential polynomial in variables X1, . . . ,Xn over K is an element of
the ring K{X1, . . . ,Xn} which is

K [X1, . . . ,Xn,D(X1), . . . ,D(Xn), . . . ,D(m)(X1), . . . ,D(m)(Xn), . . . ].

The order of f ∈ K{X1, . . . ,Xn} is the largest m such that some D(m)

occurs.
The constant subfield of K is CK = {x ∈ K : D(x) = 0}.
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Prehistory

A differential field K is existentially closed if for any finite system Σ of
polynomial differential equations having a solution in some L ⊇ K already
has a solution in K .

Theorem (Robinson 1959)

The theory of existentially closed differential fields T is complete, model
complete and decidable.

Robinson’s axiomatization was quite difficult and built on theory of
differential ideals developed by Ritt and Kolchin.
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Blum’s Thesis 1968

Definition

We say that (K ,D) is differentially closed K |= DCF if
• K is an algebraically closed field of characteristic zero;
• If f (X ), g(X ) ∈ K{X} are nonzero and order(f ) > order(g), then there
is x ∈ K such that f (x) = 0 ∧ g(x) 6= 0.

Theorem (Blum)

DCF is a complete theory with quantifier elimination axiomatizing the
theory of existentially closed differential fields.
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ω-stability

Let K |= DCF and p be a 1-type over a differential field k ⊆ K .
By quantifier elimination p is determined by
Ip = {f ∈ k{X} : f (x) = 0 ∈ p}, a prime differential ideal.
p 7→ Ip is a bijection between S1(k) and prime differential ideals of k{X}.

Theorem (Ritt–Raudenbush Basis Theorem)

Any radical differential ideal in k{X1, . . . ,Xn} is finitely generated.

Thus |S1(k)| = |k |.

Corollary (Blum)

DCF is ω-stable.
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Differential Closures

Definition

We say that K ⊇ k is a differential closure of k if K is differentially closed
and for any differentially closed L ⊇ k there is a differential embedding
j : K → L fixing k pointwise.

Blum observed differential closures = prime model extensions in DCF.

Theorem

In ω-stable theories:
[Morley 1965] prime model extensions exist;
[Shelah 1972] prime model extensions are unique; i..e., if M and N are
prime over A there is an isomorphism between M and N fixing A.
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Differential Closures

Corollary

Any differential field k has a differential closure K and any two differential
closures of k are isomorphic over k.

In some ways differential closures behave like algebraic closures or real
closures but in other ways they do not. Differential closures need not be
minimal.

Theorem (Kolchin/Rosenlicht/Shelah 1974)

Differential closures need not be minimal. For example, if K is a
differential closure of Q then there is L ⊂ K with L isomorphic to K .
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The Least Misleading Example

Gerald Sacks in his 1972 book Saturated Model Theory described
differentially closed fields as the least misleading example of an ω-stable
theory.

Reasons to Study DCF

Many interesting phenomena from pure model theory, particularly
geometric stability theory, have found natural manifestations in
differentially closed fields.

Model theoretic methods have provided useful insights into
differential algebraic geometry and differential Galois theory.

Model theoretic and differential algebraic methods have combined in
applications to number theory (diophantine and transcendence
questions)
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Differential Algebraic Groups

If K is a differential field we can define the Kolchin topology on Kn, the
smallest topology where {x ∈ Kn : p(x) = 0} are closed for
p ∈ K{X1, . . . ,Xn}.
The group objects in this topology are the differential algebraic groups.

There is a good general theory of stable/ω-stable groups that can be used
to analyze differential algebraic groups

Theorem (Pillay 1997)

If G is a differential algebraic group, then there is a differential algebraic
group embedding of G into an algebraic group H.

Dave Marker (UIC) 50 Years of DCF January 20, 2019 9 / 1



Differential Galois Theory

Let L(X ) = anD
(n)(X ) + · · ·+ a1D(X ) + a0X .

Let k be a differential field with Ck algebraically closed and let K/k be a
differential closure. Then CK = Ck .
The solutions to L(X ) = 0 in K from an n-dimensional vector space over
CK . Let f1, . . . , fn be a basis and let l = k〈f1, . . . , fn〉. We call l a
Picard–Vessiot extension of k .
Let GalD(l/k) be the differential automorphisms of l fixing k pointwise.

Theorem (Lie/Kolchin)

GalD(l/k) is isomorphic to the Ck points of a linear algebraic group
defined over Ck .
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Differential Galois Theory

Kolchin generalized this to the class of strongly normal extensions for
which the differential Galois groups are exact the general algebraic groups
over Ck .

Poizat (1983) gave a model theoretic proof of Kolchin’s result by showing
that the group GalD(l/k) is isomorphic to a definable group in K which is
a definable subset of Cm

K .
This paper also introduced the model theoretic ideas of elimination of
imaginaries.

Pillay (1997-98) generalized Kolchin’s strongly normal theory and found a
natural class of extensions where GalD(l/k) can be an arbitrary finite
dimensional differential algebraic group.
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Strongly Minimal Sets

Definition

A definable set X ⊆Mn is strongly minimal if X is infinite and for every
definable Y ⊂ X either Y or X \ Y is finite.

General Examples:

ACF: K an algebraically closed field and X ⊆ Kn an irreducible
algebraic curve (± finitely many points).

DCF: K differentially closed, C the field of constants.

Equality: M an infinite set with no structure and X =M.

Successor: M an infinite set f :M→M a bijection with no finite
orbits, X =M.

DAG: M a torsion free divisible abelian group, X ⊆Mn a translate
of a one-dimensional subspace defined over Q.
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Model Theoretic Algebraic Closure

Definition

If a ∈M, B ⊂M, a is algebraic over B if there is a formula
φ(x , y1, . . . , ym) and b ∈ Bm such that φ(a,b) and {x ∈M : φ(x ,b)} is
finite.
Let cl(B) = {a : a algebraic over B}.

ACF: cl(A)= algebraic closure of field generated by A.

DCF: cl(A)=algebraic closure of differential field generated by A.

equality: cl(A) = A.

Successor: cl(A) =
⋃

a∈A orbit of a

DAG: cl(A) = spanQ(A).
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Geometry of Strongly Minimal Sets

Definition

A strongly minimal set X is geometrically trivial or degenerate if
cl(A) =

⋃
a∈A cl({a}) for all A ⊆ X .

Equality and Successor are geometrically trivial

Definition

A strongly minimal set X is modular if c ∈ cl(B ∪ {a}), then c ∈ cl(b, a)
for some b ∈ B, for all a ∈ X , B ⊆ X .

DAG is non-trivial modular: If c =
∑

mibi + na where mi , n ∈ Q, then
c = b + na where b =

∑
mibi .

ACF is non-modular
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When are two strongly minimal sets “the same”?

Definition

Two strongly minimal sets X and Y are non-orthogonal (X 6⊥ Y ) if there
is a definable finite-to-finite correspondence R ⊆ X × Y .

Idea: “non-orthogonal”= intimately related, “orthogonal”=not related.

In ACF: If X is a curve there is ρ : X → K rational so X 6⊥ K .

In DCF: If X and Y are strongly minimal sets defined over a differentially
closed field K , then X ⊥ Y if and only if for a ∈ X (K) \ X (K ),
Y (K 〈a〉dcl) = Y (K )–i.e., adding points to X does not force us to add
points to Y .
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Zilber’s Principle

Zilber’s Principle: Complexity of the combinatorial geometry is an avatar
of algebraic structure.

trivial strongly minimal sets have no infinite definable groups

modular strongly minimal sets are controlled by groups.

Theorem (Hrushovski)

If X is a nontrivial modular strongly minimal set, there is an interpretable
modular strongly minimal group G such that X 6⊥ G .

Zilber Conjectured that non-modular strongly minimal sets only occur in
the presence of an algebraically closed field, but Hrushovski refuted this in
general.
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Strongly Minimal Sets in DCF–Early Results

The field of constants C is non-locally modular. Indeed if X ⊆ Cn is
definable in K , X is definable in C .

There are many trivial strongly minimal sets

Theorem (Kolchin/Rosenlicht/Shelah 1974)

The differential equation y ′ = y3 − y2. Defines a trivial strongly minimal
set. If a1, . . . , an, b1, . . . , bn are distinct solutions with ai , bi 6= 0, 1, then
there is an automorphism σ of K with σ(ai ) = bi .

Dave Marker (UIC) 50 Years of DCF January 20, 2019 17 / 1



Zilber’s Principle for DCF

Theorem (Hrushovski-Sokolović)

If X ⊆ Kn is strongly minimal and non-locally modular, then X 6⊥ C .

The original proof used the high powered model theoretic machinery of
Zariski Geometries developed by Hrushovski and Zilber.

This was later given a more elementary conceptual proof by Pillay and
Ziegler.
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Nontrivial Modular Strongly Minimal Sets in DCF

Where do we look for nontrivial modular strongly minimal sets?

By Hrushovski’s result we should look for a modular strongly minimal
group G .

By Pillay’s result we may assume that G ⊆ H where H is an algebraic
group.

By strong minimality we may assume that H is commutative and has
no proper infinite algebraic subgroups.

If H is Ga, G must be a finite dimensional C -vector space so G 6⊥ C .

If H is Gm or a simple abelian variety defined over C , either
I G ⊆ H(C ) and G 6⊥ C , or
I G ∩ H(C ) is finite. In this case let l : H → Kd be the logarithmic

derivative. Then G 6⊥ l(G ) is a a finite dimensional C vector space and
G 6⊥ C .
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Modular Strongly Minimal Sets in DCF

Theorem (Hrushovski-Sokolović)

If A is a simple abelian variety that is not isomorphic to one defined
over C and A] is the Kolchin-closure of the torsion points, then A] is
a modular strongly minimal set.

If X is a modular strongly minimal set, then there is A as above such
that X 6⊥ A].

A]
0 6⊥ A]

1 if and only if A0 and A1 are isogenous.

The key tool is the Buium–Manin homomorphism, a differential algebraic
homomorphism µ : A→ Kn such that ker(µ) = A] and the result that A]

is Zariski dense and has no proper proper infinite differential algebraic
subgroups.
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Application: The number of countable DCF

In 1984 Shelah proved Vaught’s Conjecture for ω-stable theories, but it
took almost ten years to show I (DCF,ℵ0) = 2ℵ0 .

We can assign a dimension to A] which can be finite or infinite. As these
dimensions can be assigned independently we can code graphs into DCF.
(eni-DOP)
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Diophantine Applications

The strongly minimal sets A] play a fundamental role in Buium’s and
Hrushovski’s proofs of the Mordell-Lang Conjecture for function fields in
characteristic 0.

Corollary

If A is a simple abelian variety not isomorphic to a variety defined over C
with dim(A) ≥ 2 and X ⊂ A is a curve, then X contains only finitely
many torsion points.

Proof Since X ∩ A] is infinite and A] is strongly minimal, X ∩ A] is
cofinite in A] and hence Zariski dense in A, a contradiction.
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Trivial Pursuits

So far there is no good theory of the trivial strongly minimal sets.

Look for examples:

Rosenlicht style examples: y ′ = f (y), f a rational function over C .
We can determine triviality by studying the partial fraction
decomposition of 1/f .

Hrushovski–Itai 2004: For X a curve of genus at least 2 defined over
C there is a trivial Y ⊂ X such that K(X ) = K〈Y 〉.
They use these ideas to build many different superstable theories of
differential fields.
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Generic Painlevé Equations
Painlevé began the classification of second order differential equations
where the only movable singularities are poles. The classification gives rise
six families:
For example PII (α) : D(2)Y = 2Y 3 + tY + α where D(t) = 1.
Many questions arise about algebraic relations between solutions to an
individual equation and relations between solutions of different equations.
These were attacked by Nishioka, Umemura, Wantanabe...
Nagloo and Pillay 2014 gave a model theoretic interpretation of this earlier
work and used model theoretic ideas to significantly extend it. For
example,

Theorem

If α ∈ C is transcendental, then the solution set of PII (α) is strongly
minimal trivial and if y1, . . . , yn are distinct solutions, y1, . . . , yn are
algebraically independent.
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ℵ0-categoricity

Is there any structure theory for trivial strongly minimal sets in DCF

It was conjectured that if X is a trivial strongly minimal set and A ⊂ X is
finite, then cl(A) is finite.

Freitag and Moosa 2017, extending earlier unpublished work of
Hrushovski, showed that this is true for order 1 strongly minimal sets.
One tool of the proof is of independent interest–here is a simple case.

Theorem (Hrushovski)

Suppose V is an irreducible Kolchin closed set of order 2 defined over C
such that there are infinitely many irreducible Kolchin closed X ⊂ V of
order 1 defined over C . Then there is a nontrivial differential rational
f : V → C , in which case {f −1(c) : c ∈ C} is a family of Kolchin closed
subsets.
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The j-function

Theorem (Freitag–Scanlon)

There is a third order non-linear differential equation E (y) satisfied by the
j-function is strongly minimal, trivial but not ℵ0–categorical.

The proof relies on Pila’s Ax–Lindemann–Wierstrass Theorem for the
j-function with derivates.

Theorem (Pilla)

Let x1, . . . , xn be functions from a variety into the upper half plane
satisfying no modular relations. Then

j(x1), . . . , j(xn), j ′(x1), . . . , j ′(xn), j ′′(x1), . . . , j ′′(xn)

are algebraically independent.
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Fushsian Groups

Let Γ be a Fuchsian group of genus 0. Consider a uniformizing function jΓ
such that for the action of Γ on H.

Theorem (Casale, Freitag, Nagloo 20??)

Let V ⊆ Cn be an irreducible algebraic variety defined over C and let
t1, . . . , tn ∈ C(V ) taking values in H at p such that there is no relation
ti = γtj for i 6= j , γ ∈ Γ. Then

j(x1), . . . , jΓ(xn), j ′Γ(x1), . . . , j ′Γ(xn), j ′′Γ (x1), . . . , j ′′Γ (xn)

are algebraically independent over C(V ).

The function jΓ satisfies a trivial strongly minimal order 3 differential
equation.
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Thank You
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