The Logical Complexity of Schanuel's Conjecture

David Marker
Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

March 12, 2017

Schanuel's Conjecture

Schanuel's Conjecture: If $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ are \mathbb{Q}-linearly independent, then the transcendece degree of $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, \exp \left(\lambda_{1}\right), \ldots, \exp \left(\lambda_{n}\right)\right)$ is at least n.

Question from FOM: The natural formulation of Schanuel's Conjecture is Π_{1}^{1}. Is there an equivalent arithmetic formulation?

After a long digression I will argue

- If Schanuel's Conjecture is false there are recursive counterexamples.
- Schanuel's Conjecture is equivalent to a Π_{3}^{0}-sentence.

Exponential Algebraic Closure

We begin with a discussion of Exponential Algebraic Closure introduced by Alex Wilkie and developed further by Jonathan Kirby.

Definition

An exponential field is a characteristic zero field K and an non-trivial $E: K \rightarrow K$ such that $E(a+b)=E(a) E(b)$.

All of our fields will have characteristic zero.

Exponetial Derivations

Definition

A derivation on K is a map $D: K \rightarrow K$ such that

$$
D(a+b)=D(a)+D(b) \text { and } D(a b)=a D(b)+b D(a)
$$

An exponential derivation is a derivation $D: K \rightarrow K$ such that $D(E(a))=D(a) E(a)$

Definition

For $C \subset K$ let $\operatorname{EDer}(K / C)$ be the set of exponential derivations on K such that $D(c)=0$ for $c \in C$.
Define $\operatorname{Der}(K / C)$ similarly.

Exponential Algebraic Closue

The Classical Case: Let K be a field of characteristic $0, a \in K, B \subset K$, then $a \in \operatorname{acl}(B)$ if and only if $D(a)=0$ for all $D \in \operatorname{Der}(K / B)$.

Definition (Exponential Closure)

Let K be an exponential field, $a \in K$ and $C \subset K$. Then $a \in \operatorname{Ecl}(C)$ if and only if $D(a)=0$ for all $D \in \operatorname{EDer}(K / C)$.

Basic properties:

- $\operatorname{Ecl}(A)$ is an exponential field;
- $A \subseteq \operatorname{Ecl}(A)$;
- $\operatorname{Ecl}(\operatorname{Ecl}(A))=\operatorname{Ecl}(A)$;
- $A \subseteq B \Rightarrow \operatorname{Ecl}(A) \subseteq \operatorname{Ecl}(B)$.

Exchange

Lemma (Exchange)

If $b \in \operatorname{Ecl}(A, c)$, then $b \in \operatorname{Ecl}(A)$ or $c \in \operatorname{Ecl}(A, b)$
Proof Suppose $b \in \operatorname{Ecl}(A, c)$ but $c \notin \operatorname{Ecl}(A, b)$. Let $D \in \operatorname{EDer}(K / A)$. Want $D(b)=0$ so $b \in \operatorname{Ecl}(A)$.

Since $c \notin \operatorname{Ecl}(A, b)$, there is $D_{1} \in \operatorname{Der}(K / A)$ with $D_{1}(c)=1$ and $D_{1}(b)=0$.

Let $D_{2}=D-D(c) D_{1} \in \operatorname{EDer}(K / A)$.
Then $D_{2}(b)=D(b)$ and $D_{2}(c)=D(c)-D(c)=0$.
Thus, since $b \in \operatorname{Ecl}(A, c), D(b)=D_{2}(b)=0$ and $b \in \operatorname{Ecl}(A)$.

Finite Character

Lemma (Finite Character)

If $b \in \operatorname{Ecl}(A)$, then there is $A_{0} \subseteq A$ finite such that $b \in \operatorname{Ecl}\left(A_{0}\right)$.

Sketch of Proof

Corollary

a) Ecl is a pregeometry;
b) Any two bases for $\operatorname{Ecl}(A)$ have the same cardinality, which we will call $\operatorname{Edim}(A)$.

Exponential Closure and Transcendence

Theorem (Ax)

Let K be a field and $\Delta \subset \operatorname{Der}(K)$. Let $C=\bigcap_{D \in \Delta} \operatorname{ker}(D)$ and suppose $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in K$ such that $D y_{i}=y_{i} D x_{i}$ for all i and $D \in \Delta$. Then

$$
\operatorname{td}(\bar{x}, \bar{y} / C)-\operatorname{ldim}_{\mathbb{Q}}(\bar{x} / C) \geq \operatorname{rank}\left(D x_{i}\right)_{D \in \Delta, i=1, \ldots, n}
$$

where ldim_{Q} is the \mathbb{Q}-linear dimension of \bar{x} over C.
Let K be an exponential field and let $C \subset K$ such that
$C=\operatorname{Ecl}(C)=\bigcap_{D \in E \operatorname{Der}(K / C)} \operatorname{ker}(D)$.
Let $x_{1}, \ldots, x_{n} \in K$ and $y_{i}=E\left(x_{i}\right)$.
Suppose $m=\operatorname{Edim}(\bar{x} / C)$ and wlog x_{1}, \ldots, x_{m} is an Ecl-basis over C.
Choose D_{i} such that $D_{i}\left(x_{i}\right)=1$ and $D_{i}\left(x_{j}\right)=0$ for $i, j \leq m$ and $i \neq j$.
Then rank $\left(D_{i}\left(x_{j}\right)\right)=m$.
Thus $\operatorname{td}(\bar{x}, E(\bar{x}) / C)-I \operatorname{dim}_{\mathbb{Q}}(\bar{x} / C) \geq \operatorname{Edim}(\bar{x} / C)$

Essential Counterexample to Schanuel's Conjecture

Let $\delta(\bar{a} / B)=\operatorname{td}(\bar{a}, E(\bar{a}) / B, E(B))-\operatorname{ldim}_{\mathbb{Q}}(\bar{a} / B)$ and $\delta(\bar{a})=\delta(\bar{a} / \emptyset)$.

Corollary

If $C=\operatorname{Ecl}(C)$, then $\delta(\bar{x} / C) \geq \operatorname{Edim}(\bar{x} / C)$.

Schanuel's Conjecture asserts that $\delta(\bar{x}) \geq 0$ for all \bar{x}.

Definition

We say that \bar{a} is an essential counterexample if $\delta(\bar{a})<0$ and for all $\bar{b} \in \operatorname{span}_{\mathbb{Q}}(\bar{a}), \delta(\bar{b}) \geq \delta(\bar{a})$.

If \bar{a} is a counterexample, then there is $\bar{b} \in \operatorname{span}_{\mathbb{Q}}(\bar{a})$ an essential counterexample.

Exponential Algebraicity of Essential Counterexamples

Theorem (Kirby)

Let $\bar{a} \in \mathbb{C}_{\exp }$ be an essential counterexample to Schanuel's Conjecture, then $\bar{a} \in \operatorname{Ecl}(\emptyset)$.

Suppose \bar{a} is an essential counterexamble and $\bar{a} \notin \operatorname{Ecl}(\emptyset)$.
Let \bar{b} be a basis for $\operatorname{span}_{\mathbb{Q}}(\bar{a})$ over $\operatorname{Ecl}(\emptyset)$.
$t d(\bar{a}, E(\bar{a}) / \bar{b}, E(\bar{b})) \geq t d(\bar{a}, E(\bar{a})) / E c l(\emptyset))$ and $I \operatorname{dim}_{\mathbb{Q}}(\bar{a} / \bar{b})=I \operatorname{dim}_{\mathbb{Q}}(\bar{a} / \operatorname{Ecl}(\emptyset))$.

Thus $\delta(\bar{a} / \bar{b}) \geq \delta(\bar{a} / \operatorname{Ecl}(\emptyset))$
and by the Corollary $\delta(\bar{a} / \operatorname{Ecl}(\emptyset)) \geq \operatorname{Edim}(\bar{a} / \operatorname{Ecl}(\emptyset)) \geq 1$.
But then $\delta(\bar{b})<\delta(\bar{a})$ and \bar{a} is not an essential counterexample.

Problem

If there are counterexamples to Schanuel's Conjecture, there are counterexample in $\operatorname{Ecl}(\emptyset)$.

But.....
What is $\operatorname{Ecl}(\emptyset)$ in $\mathbb{C}_{\exp }$? Is it countable?

Khovanskii Systems

For $k \subseteq K$ an exponential subfield, let $k\left[X_{1}, \ldots, X_{n}\right]^{E}$ denote all exponential terms over k

For $f_{1}, \ldots, f_{n} \in k\left[X_{1}, \ldots, X_{n}\right]^{E}$ let $J(\bar{X})$ be the Jacobian matrix $J(\bar{X})=\left(\frac{\partial f_{i}}{\partial X_{j}}(\bar{X})\right)$.

Definition

Suppose $A \subset K$ and k is the exponential field generated by A. We say that a_{1} is in the Khovanskii exponential closure of A if there are $a_{2}, \ldots, a_{n} \in K$ and $f_{1}, \ldots, f_{n} \in k\left[X_{1}, \ldots, X_{n}\right]^{E}$ such that such that

$$
f_{1}(\bar{a})=\cdots=f_{n}(\bar{a})=0 \text { and } \operatorname{det} J(\bar{a}) \neq 0 .
$$

We say $a_{1}, \ldots, a_{n} \in \operatorname{ecl}(A)$.

Advantages of ecl

Suppose $F \subset K$ are exponential fields and $A \subset F$.
Then $\operatorname{ecl}^{F}(A) \subseteq \operatorname{ecl}^{K}(A)$.
Work in $\mathbb{C}_{\text {exp }}$
Suppose $f_{1}(\bar{a})=\cdots=f_{n}(\bar{a})=0$ and $\operatorname{det} J(\bar{a}) \neq 0$.
By the Inverse Function Theorem, there is an open neighborhood U of \bar{a} the function $\bar{x} \rightarrow\left(f_{1}(\bar{x}), \ldots, f_{n}(\bar{x})\right)$ is invertible.

Thus the solutions to the Khovanskii system are isolated.

```
Corollary
In C
i) If }A\subset\mathbb{C}\mathrm{ is countable, then }\operatorname{ecl}(A)\mathrm{ is countable.
ii) If a }\in\operatorname{ecl(\emptyset), then a is computable.
```

What is the relationship between Ecl and ecl?

$\mathrm{ecl} \subset \mathrm{Ecl}$

Lemma

If $f \in k\left[X_{1}, \ldots, X_{n}\right]^{E}, f(\bar{a})=0$ and $D \in \operatorname{Der}(K / k)$, then $\sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}(\bar{a}) D\left(a_{i}\right)=0$.

Let k be the exponential field generated by A and let f_{1}, \ldots, f_{n} be terms over k such that $f_{1}(\bar{b})=\cdots=f_{n}(\bar{b})=0$ and $\operatorname{det} J(\bar{b}) \neq 0$ By the Lemma

$$
J(\bar{a})\left(\begin{array}{c}
D\left(b_{1}\right) \\
\vdots \\
D\left(b_{n}\right)
\end{array}\right)=0
$$

Since $J(\bar{a})$ is invertible, $D\left(b_{1}\right)=\cdots=D\left(b_{n}\right)=0$ and $\bar{b} \in E c I(A)$.

Corollary

$\operatorname{ecl}(A) \subseteq \operatorname{Ecl}(A)$.
$\mathrm{ecl}=\mathrm{Ecl}$

Theorem (Kirby)
$\operatorname{ecl}(A)=\operatorname{Ecl}(A)$.
The proof is a careful analysis of extensions of exponential derivations.

Corollary

All essential counterexamples to Schanuel's conjecture are in ecl(() ; In $\mathbb{C}_{\text {exp }}$ there are countably many possible essential counterexamples, all of which are recursive.

Corollary

Schanuel's Conjecture is true if and only if there are no recursive counterexamples.
This can be written as a Π_{3}^{0}-sentence.

Thank You

References

J. Ax, On Schanuel's conjectures. Ann. of Math. (2) 93 1971, 252-268.
J. Kirby, Exponential Algebraicity in Exponential Fields, Bull. Lond. Math. Soc. 42 (2010), no. 5, 879-890.

Further Digression-Exponential Differential Forms

Let $\Omega^{E}(K / A)$ be the K-vector space constructed begining with the vector space generated by the formal differential forms $d x$ for $x \in K$ modulo the vector space generated by the relations:

- da, for $a \in A$
- $d(x+y)-d x-d y$
- $d(x y)-x d(y)-y d(x)$
- $d(E(x))-E(x) d x$.

We have a derivation $d: K \rightarrow \Omega^{E}(K / A)$ taking x to the image of $d x$.

Lemma (Universal Property)

- If $\eta: \Omega^{E}(K / A) \rightarrow K$ is K-linear, then $D=\eta \circ d \in E \operatorname{Der}(K / A)$.
- Moreover, if $D \in E \operatorname{Der}(K / A)$, there is a unique η_{D} such that
$D=\eta_{D} \circ d$.

Proof of Finite Character

Suppose $b \in \operatorname{Ecl}(A)$. Then $d b$ must be 0 in $\Omega^{E}(K / A)$.
We can find $a_{1}, \ldots, a_{m} \in A$ such that $d b$ is in the vector space generated by $d a_{1}, \ldots, d a_{n}$ and finite many relations $d(x+y)-d x-d y$, $d(x y)-x d(y)-y d(x), d(E(x))-E(x) d x$.
Then $d b$ is still zero in $\Omega^{E}\left(K / a_{1}, \ldots, a_{m}\right)$ and for $D \in \operatorname{EDer}\left(K / a_{1}, \ldots, a_{n}\right)$, then $D(a)=0$.

