Introductory Lectures Model Theory II: Quantifier Elimination

David Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago

October 14, 2020

MSRI Program on Decidability, Definability and Computability in Number Theory

Last time I pointed out that the natural way to express that a field F is orderable would be quantifying over subsets of F^2

 $\exists R \subset F^2 \ [R \text{ is a linear order compatible with } + \text{and } \cdot]$

which we can't do in a first order sentence.

BUT..

Using the Artin–Schrier theory of ordered fields

F is orderable if and only if -1 is not a sum of squares. This can be expressed in the theory: field axioms +

 $\{\forall x_1\forall x_2 \ x_1^2+x_2^2+1\neq 0,\ldots,\forall x_1,\ldots,\forall x_n \ x_1^2+\cdots+x_n^2+1\neq 0,\ldots\}.$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Fundamental Problems for a mathematical structure ${\cal M}$

- Understand $Th(\mathcal{M})$.
 - Is it decidable?
 - Find an axiomatization.
- Understand the definable subsets of \mathcal{M}^n .
 - Give more natural description
 - Prove they have good properties.

Lesson: Quantifiers lead to complexity

 $\mathcal{L}=\{+,\cdot,-,0,1\}.$

The theory of algebraically closed fields (ACF) is axiomatized by:

the field axioms;

►
$$\forall y_0 \forall y_{n-1} \exists x \; x^n + y_{n-1} x^{n-1} + \dots + y_0 = 0, \; n = 2, 3, \dots$$

Theorem (Tarski)

ACF has quantifier elimination, i.e., for any formula $\phi(v_1, \ldots, v_n)$ there is a formula $\psi(v_1, \ldots, v_n)$ with no quantifiers such that

$$ACF \models \forall \mathsf{v} \ [\phi(\mathsf{v}) \leftrightarrow \psi(\mathsf{v})].$$

Let K be an algebraically closed field and suppose $X \subseteq K^n$ is definable.

By quantifier elimination X has a quantifier free definition.

What can we say without quantifiers? Finite boolean combinations of $p(x_1, ..., x_n) = 0$, $p \in K[X_1, ..., X_n]$

definable = boolean combination of varieties= constructible sets

Corollary (strong minimality)

If K is algebraically closed and $X \subset K$ is definable then either X or $K \setminus X$ is finite.

Any definable subset of K is a Boolean combination of sets p(x) = 0 which are finite unless p is constant.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Corollary (Chevalley)

If $X \subseteq K^{n+m}$ is constructible and π is the projection onto first *n*-coordinates, then the image $\pi(X)$ is construcible.

$$\mathsf{x} \in \pi(X) \Leftrightarrow \exists y_1 \ldots \exists y_m (\mathsf{x},\mathsf{y}) \in X$$

and by quantifier elimination we can find an equivalent quantifier free formula.

Model Completeness

In any language \mathcal{L} if we have structures $\mathcal{M} \subset \mathcal{N}$, we say that \mathcal{N} is an *elementary extension* of \mathcal{M} if for any formula $\phi(x_1, \ldots, x_n)$ and any $a \in \mathcal{M}^n$

$$\mathcal{M} \models \phi(\mathsf{a}) \Leftrightarrow \mathcal{N} \models \phi(\mathsf{a}).$$

We write $\mathcal{M} \prec \mathcal{N}$.

Corollary (Model Completeness of ACF) If $K \subset L$ are algebraically closed fields, then $K \prec L$. **Proof** Let $\phi(x_1, \ldots, x_n)$ be a formula and $a \in K^n$. There is a quantifier free ψ such that $ACF \models \forall x \ [\phi(x) \leftrightarrow \psi(x)]$ An easy induction shows that for quantifier free ψ ,

$$\mathsf{K}\models\psi(\mathsf{a})\Leftrightarrow\mathsf{L}\models\psi(\mathsf{a}).$$

Corollary

Let K be algebraically closed and let $P \subseteq K[X_1, ..., X_n]$ be a prime ideal and $g \in K[X] \setminus P$. There there is $x \in K^n$ such that f(x) = 0 for $f \in P$ but $g(x) \neq 0$. Let $f_1, ..., f_m$ generate P. Let $L = (K[X]/P)^{alg}$.

$$L \models \exists x_1 \ldots \exists x_n f_1(x) = \cdots = f_m(x) = 0 \land g(x) \neq 0$$

Namely take $x_1 = X_1/P, \dots x_n = X_n/P$. By model completeness

$$L \models \exists x_1 \ldots \exists x_n \ f_1(x) = \cdots = f_m(x) = 0 \land g(x) \neq 0$$

Skip Bounds

同 と く ヨ と く ヨ と …

Corollary

For any d, m, n there is k (depending only on d, m, n) such that in any algebraically closed field K if $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$ have degree at most d, then $f_1(X) = \cdots = f_m(X) = 0$ has a solution in K if and only if

$$1\neq \sum_{i=1}^m g_i f_i$$

where each g_i has degree at most k.

Proof of Bounds

Write down generic polynomials F_1, \ldots, F_m of degree di.e. $F_i = \sum_{|j| \le d} c_{i,j} X^j$ (j a multi-index, $c_{i,j}$ new variables) For each I there is a sentence Φ_I saying that

$$1 \neq \sum_{i \neq 1}^m g_i F_i$$

where each g_i has degree at most I. Let $T = ACF \cup \{ \forall x \neg \bigwedge_{i=1}^{n} F_i(x) = 0 \} \cup \{ \Phi_I : I = 1, 2, ... \}$. T is not satisfiable. If we had a model of T, we would have a contradiction to Hilbert's Nullstellensatz.

By the Compactness Theorem. Some finite subset of T is not satisfiable. But then there is a k such that if $F_1 = \cdots = F_m = 0$ has no solution, then we can find 1 using polynomials of degree at most k.

- 本間 と 本語 と 本語 と 一語

Recall that a theory T is *complete* if for all sentences ϕ either $T \models \phi$ or $T \models \neg \phi$.

ACF is not complete For each *n*, let ψ_n be the sentence $\underbrace{1+1+\dots+1}_{n-\text{times}} = 0$ Then ACF $\not\models \psi_n$ and ACF $\not\models \neg \psi_n$. For *p* prime let ACF_{*p*} = ACF+ ψ_p Let ACF₀ = ACF \cup { $\neg \psi_n : n = 2, 3, \dots$ }. Corollary

If p = 0 or p > 0 is prime, the ACF_p is complete.

To show ACF₀ is complete. Suppose $K, L \models ACF_0$ and ϕ is a sentence.

We must show $K \models \phi \Leftrightarrow L \models \phi$. By quantifier elimination there is a quantifier free sentence ψ such that $ACF \models \phi \leftrightarrow \psi$. Quantifier free sentences can't say much.

$$\mathsf{K}\models\psi\Leftrightarrow\mathbb{Q}\models\psi\Leftrightarrow\mathsf{L}\models\psi$$

Thus

$$\mathsf{K}\models\phi\Leftrightarrow\mathsf{L}\models\phi.$$

The proof for ACF_p is similar using \mathbb{F}_p instead of \mathbb{Q} .

Corollary ACF_0 axiomatizes $Th(\mathbb{C})$.

Corollary

The following are equivalent:

- 1. ϕ is true in some $K \models ACF_0$;
- 2. ϕ is true in every $K \models ACF_0$;
- 3. For all sufficiently large primes $p \phi$ is true in every $K \models ACF_p$;
- 4. For infinitely many p, ϕ is true in some $K \models ACF_p$.

2) \Rightarrow 3) By the Completeness Theorem, there is a proof of ϕ from ACF₀. That proof uses only finitely many sentences $\neg \Psi_n$ and thus work in ACF_p for large p.

4) \Rightarrow 1) If not that ACF₀ $\models \neg \phi$, and by the above ACF_p $\models \neg \phi$ for all sufficiently large primes.

Corollary

If $f : \mathbb{C}^n \to \mathbb{C}^n$ is an injective polynomial map, then f is surjective.

There are sentences $\Phi_{n,d}$ saying that if $f : K^n \to K^n$ is an injective polynomial map where all polynomials have degree at most d from $K^n \to K^n$, then f is surjective.

 $\Phi_{n,d}$ is true in all finite fields

 $\Phi_{n,d}$ is true in $\mathbb{F}_p^{\text{alg}}$. If there was a counterexample f it would already be a counterexample in some \mathbb{F}_{p^n} .

Thus $ACF_0 \models \Phi_{n,d}$

Corollary

For p = 0 or p > 0 prime ACF_p is decidable.

To decide if $ACF_p \models \phi$ search for a proof of ϕ or $\neg \phi$.

Corollary

ACF is also decidable.

To decide if ACF $\models \phi$ search for either a proof of ϕ from ACF or a prime *p* and a proof of $\neg \phi$ from ACF_{*p*}.

Theorem

Let T be a theory. Suppose that for all quantifier free formulas $\phi(x_1, y_1, \ldots, y_m)$, all $\mathcal{M}, \mathcal{N} \models T$, all $\mathcal{A} \subset \mathcal{M}, \mathcal{N}$ and all $a_1, \ldots, a_m \in \mathcal{A}$

(*) if $\mathcal{M} \models \exists x \ \phi(x, a_1, \dots, a_n)$, then $\mathcal{N} \models \exists x \ \phi(x, a_1, \dots, a_n)$. Then T has quantifier elimination

QE for Algebraically Closed Fields

Let ACF be the axioms for algebraically closed fields

Theorem (Tarski)

ACF has quantifier elimination.

Suppose K, L are algebraically closed fields and $\mathcal{A} \subset K \cap L$ is a domain.

 $\phi(v)$ is a quantifier free formula with parameters from \mathcal{A} such that there is $b \in K$ with $K \models \phi(b)$.

 $\phi(v)$ is a Boolean combination of formulas of the form p(v) = 0where $p(X) \in \mathcal{A}[X]$.

Without loss of generality $\phi(v)$ is

$$\bigwedge_{i=1}^n f_i(v) = 0 \land g(v) \neq 0$$

where $f_1, \ldots, f_n, g \in \mathcal{A}[X]$

$$\bigwedge_{i=0}^n f_i(v) = 0 \land g(v) \neq 0$$

case 1 There are no nonzero f_i , in this case $\phi(v)$ is just $g(v) \neq 0$. We can find $c \in L$ such that $g(c) \neq 0$.

case 2 For some *i*, f_i is nonzero and $f_i(b) = 0$. Let K_0 be the algebraic closure of A in K. Then $b \in K_0$

There is a field embedding $\sigma : K_0 \to L$ fixing \mathcal{A} and $L \models \phi(\sigma(b))$.

What is $Th(\mathbb{R})$?

We start by some giving axioms (RCF) in the language $\mathcal{L}_{or} = \{+, \cdot, <, 0, 1\}$ that we know are true in \mathbb{R} . We say that $(K, +, \cdot, <)$ is a *real closed field* if

- ► *K* is an ordered field;
- ▶ (sign change) If $f \in K[X]$, a < b and f(a)f(b) < 0, there is $c \in (a, b)$ such that f(c) = 0.

Sign change can be expressed by axioms ϕ_1, ϕ_2, \ldots where ϕ_n is

$$\forall \alpha_0 \dots \forall \alpha_n \left[\forall a \forall b \left(a < b \land \left(\sum_{i=0}^n \alpha_i a^i \right) \left(\sum_{i=0}^n \alpha_i b^i \right) < 0 \right) \rightarrow da = 0$$

$$\exists c \ a < c < b \land \sum_{i=0}^{n} lpha_i c^i = 0. \Big]$$

Theorem (Tarski)

RCF has quantifier elimination, i.e., for any \mathcal{L}_{or} -formula $\phi(v_1, \ldots, v_n)$, there is an \mathcal{L}_{or} formula $\psi(v_1, \ldots, v_n)$ without quantifiers such that

$$\mathrm{RCF} \models \forall v_1, \ldots, \forall v_n \ (\phi(v_1, \ldots, v_n) \leftrightarrow \psi(v_1, \ldots, v_n)).$$

In particular any definable set is definable by a quantifier free formula.

The proof closely follows the proof for algebraically closed fields.

The key algebraic fact needed is that every ordered field (F, <) has a unique real closure.

What are the quantifier free definable sets in a real closed field K? Boolean combinations of

$$p(x_1,...,x_n) = 0$$
 and $q(x_1,...,x_n) > 0$

for $p, q \in K[X_1, \ldots, X_n]$.

In real algebraic geometry these are known as the *semialgebraic* sets.

definable=quantifier free definable=semialgebraic

Corollary (o-minimality)

Any definable subset of \mathbb{R} is a finite union of points and intervals. In particular, \mathbb{Z} is not definable in \mathbb{R} .

Corollary (Tarski–Seidenberg Theorem)

The image of a semialgebraic set under a semialgebraic function is semialgebraic.

Corollary

The closure of a semialgebraic set is semialgebriac.

We say closures of definable sets are definable.

Remarkable Fact: o-minimality captures many of the good geometric and topological properties of semialgebraic sets.

o-minimality

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ is definable, then we can partition \mathbb{R} into definable sets $X_1 \cup \cdots \cup X_n$ such that f is continuous (or even \mathcal{C}^m) on each X_i .

Theorem (Cell Decomposition)

If $X \subseteq \mathbb{R}^n$ is definable, then X can be partitioned into finitely many disjoint cells, $X = C_1 \cup \cdots \cup C_m$.

In particular, X has finitely many connected components.

Theorem (Wilkie)

For any $X \subset \mathbb{R}^n$ definable in \mathbb{R}_{exp} there is an exponential algebraic variety $V \subset \mathbb{R}^{n+m}$ such that

$$\mathsf{x} \in X \Leftrightarrow \exists \mathsf{y} \in \mathbb{R}^m(\mathsf{x},\mathsf{y}) \in V.$$

V is a finite system of equations like

$$e^{x+y}-ye^{e^z}=0$$

Khovanskii proved that any such V has finitely many connected components.

Corollary

 \mathbb{R}_{exp} is o-minimal.

Wilkie's result shows model completeness. van den Dries, Macintyre and I showed quantifier elimination in an expanded language adding restrictions of analytic functions and In.

Open Questions

- ► Is Th(R_{exp})-decidable? Macintyre-Wilkie: Yes assuming Schanuel's Conjecture
- ► Find a natural axiomatization. Find a ∀∃-axiomatization.
- What's the right language for quantifier elimination?

Recall that \mathbb{Z}_p is definable in \mathbb{Q}_p . Thus we can also define

$$x|y \leftrightarrow \exists z \in \mathbb{Z}_p \ xz = y$$
. i.e., $v(x) \leq v(y)$.

Let P_n be a predicate for the n^{th} -powers in \mathbb{Q}_p . Consider the language $\mathcal{L}_{\text{Mac}} = \{+, \cdot, 0, 1, |, \mathbb{Z}_p, P_2, P_3, \dots\}$. Any subset of \mathbb{Q}^n definable using the \mathcal{L}_{Mac} -language is already

Any subset of \mathbb{Q}_p^n definable using the \mathcal{L}_{Mac} -language is already definable in the field language.

Theorem (Macintyre)

 $\operatorname{Th}(\mathbb{Q}_p)$ has quantifier elimination in the $\mathcal{L}_{\operatorname{Mac}}$.

Corollary

Any infinite definable subset of \mathbb{Q}_p has interior.

Quantifier Elimination in the Pas Langugage

Consider a valued field as a three sorted structure (K, Γ, k) with $v : K^{\times} \to \Gamma$ and $r : O \to k$.

Add a *angular component* $ac : K^{\times} \to k$ a multiplicative homomorphism that agrees with the residue map on the units.

For example: In K((t)) and $f = \sum_{n=m}^{\infty} a_n t^n$ with $a_m \neq 0$ we could let $ac(f) = a_m$.

angular components need not exist (but will in saturated enough models)

adding the angular component map adds new definable sets

Theorem (Pas)

Suppose K is a henselian field with residue field k of characteristic 0. Roughly, any formula is equivalent to a boolean combination of: i) quantifier free field formulas about K;

ii) formulas about the residue field and value group

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

Theorem

Let (K, v) and (L, v) be henselian valued fields with characteristic zero residue fields k and l. Then $K \equiv L$ if and only if i) $v(K) \equiv v(L)$; ii) $k \equiv l$.

If D is a non-principle ultrafilter on the primes

$$\prod_D \mathbb{Q}_p \equiv \prod_D \mathbb{F}_p((t))$$

Corollary

If $\mathbb{F}_p((t)) \models \phi$ for all primes p, then $\mathbb{Q}_p \models \phi$ for all sufficiently large primes.