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Two notions of tameness we’ve seen

T is strongly minimal if in every M |= T every definable subset of M
is either finite or cofinite.

If L = {<, . . . }, then T is o-minimal if in every M |= T every
definable subset of M is a finite boolean combination of points and
intervals with endpoints in M∪ {±∞}.

In this lecture we will introduce several other notions of tameness and
interplay between tameness and field theory
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o-minimal ordered fields

Real closed fields are o-minimal.

Theorem (Pillay–Steinhorn)

An o-minimal ordered field is real closed.

Let (F , <) be an ordered field. Suppose f (X ) ∈ K [X ], a < b, f (a) < 0
and f (b) > 0.
Consider X = {x ∈ (a, b) : f (x) < 0}. Since X is open, b 6∈ X there is
a < c < b: c 6∈ X and (a, c) ⊆ X .
We must have f (c) = 0.
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Types

Let M |= T , A ⊆M. Let M≺ N and b = (b1, . . . , bn) ∈ N .

tp(b/A) = {φ(v1, . . . , vn) : N |= φ(b), φ with parameters from A}.
Let Sn(A) be the set of all types in n variables over A.

Let K |= ACF, k ⊂ K ⊂ L, L |= ACF and b ∈ Ln.

By quantifier elimination p = tp(b/k) is determined by

Ip = {f ∈ k[X] : “f (z) = 0” ∈ p}

a prime ideal of k[X].

Moreover for any prime ideal J ⊂ k[X], there is p ∈ Sn(k) with J = Ip
Let p be the type of X1/J, . . . ,Xn/J in k[X]/Jalg.
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κ-stability

We say T is κ-stable if |Sn(A)| = κ, whenever |A| = κ.

Fact: If T is ℵ0-stable, then T is κ-stable for all infinite κ.
(Note: We usually say ω-stable instead of ℵ0-stable)

By the Hilbert Basis Theorem, if k is a field every ideal in in k[X1, . . . ,Xn]
is finitely generated.

If k is infinite, the number of prime ideals in k[X1, . . . ,Xn] is exactly k .
Thus |Sn(k)| = |k |.

Thus ACF is κ-stable for all infinite κ.

The same is true of any strongly minimal theory.

Our first goal is to prove the converse that every infinite ω-stable field is
algebraically closed.
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Morley Rank

Let X be a definable set. For α an ordinal

RM(X ) ≥ 0 if and only if X 6= ∅;
RM(X ) ≥ α + 1 if and only if there are disjoint definable set
Y0,Y1, . . . with Yi ⊂ X and RM(Yi ) ≥ α;

For α a limit ordinal RM(X ) ≥ α if and only if RM(X ) ≥ β for all
β < α.

We say RM(X ) =∞ if RM(X ) ≥ α for all α.

We say RM(X ) = α if RM(X ) ≥ α but RM(X ) 6≥ α + 1.

If RM(X ) = α we define the Morley degree of X to be the maximal d
such that there are disjoint definable Y1, . . . ,Yd ⊂ X with RM(Yi ) = α.
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Morley Rank and ω-stability

Theorem

T is ω-stable if and only if every definable set has Morley rank <∞.

In ACF, RM(X ) is the dimension of the Zariski closure of X .
Morley rank can be though of a a general (ordinal valued) notion of
dimension.

We can extend Morley rank to types.
RM(tp(b/A)) = min(RM(X ) : b ∈ X and X is definable with parameters
from A).

Two properties of Morley rank that we will use:
• RM(X ∪ Y ) = max(RM(X ),RM(Y )).
• If f : X → Y is definable surjective and finite-to-one, then
RM(X ) = RM(Y ).
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ω-stable groups–DCC

Suppose (G , ·, . . . ) is an ω-stable group and H ⊂ G is a definable
subgroup. Then G =

⋃
g∈G gH and RM(H) = RM(gH).

If [G : H] < ℵ0, RM(H) = RM(G ), deg(H) <deg(G ).
If [G : H] ≥ ℵ0, RM(H) < RM(G ).

Theorem (Baldwin–Saxl)

In an ω-stable group, there is no infinite proper descending chain of
definable subgroups.

We say G is connected if there are no definable subgroups of finite index.

Corollary

If G is an ω-stable group, there is a definable connected G 0 ⊆ G with
[G : G 0] <∞.
G 0 is fixed by every definable group automorphism of G .
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ω-stable groups–generic types

Let X be defined by φ(x, a) with RM(X ) = α. There are deg(X ) many p
types of rank α with φ(x, a) ∈ p.
We call such p generic types of X .

If G is an ω-stable group and H ⊂ G is a definable subgroup with
[G : H] = n then deg(G ) ≥ n so G has multiple generic types.

Theorem

An ω-stable group G is connected if and only if there is a unique generic
type.
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ω-stable fields

Let (K ,+, ·, . . . ) be an infinite ω-stable field.

claim 1 The additive group (K ,+, . . . ) is connected.

Suppose not. Let K 0 be the connected component of K .

For a ∈ K , automorphism x 7→ ax fixes K 0 setwise–but then K 0 is a
nontrivial ideal.

claim 2 The multiplicative group (K×, ·, . . . ) is connected.

By claim 1 there is a unique type of maximal rank in K . This must be the
unique generic type for (K , ·) as well. Thus K× is connnected.

Dave Marker (UIC) Model Theory III October 16, 2020 10 / 24



ω-stable fields

claim 3 Every a ∈ K has an nth-root for all n.

Consider the multiplicative homomorphism x 7→ xn.
This map is finite to one, so the image Kn has the same rank as K×.
Since K× is connected K× = Kn.

claim 4 If K has characteristic p > 0, then the Artin–Schreier map
x 7→ xp + x is surjective.

This map is a finite-to-one additive homomorphism.
As above in case 3 it must be surjective.
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ω-stable fields

claim 5 Suppose K contains all mth roots of unit for all m ≤ n. Then K
has no Galois extensions of degree n.

Suppose [L : K ] is Galois of degree n and p|n is prime.
There is K ⊆ F ⊂ L such that L/F is a Galois extension of degree p. Let
L = F (α).

The field F is interpretable in K and hence it is also ω-stable.
So F is ω-stable and contains all mth roots of unity for m ≤ p

If p 6= char(K ), the minimal polynomial of α is X p − a. But x 7→ xp is
surjective, so X p − a is not irreducible.

If p = char(K ), the minimal polynomial of α is X p + X − a. But
x 7→ xp + x is surjective, so X p + X − a is not irreducible.
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ω-stable fields

claim 6 K contains all roots of unity.

Suppose K contains all mth-roots of unity for m < n and η is an nth root
of unity.

K (η)/K is Galois of degree at most n − 1, so by claim 5 η ∈ K .

Theorem (Macintyre)

Every infinite ω-stable field is algebraically closed.

By 5) and 6) an ω-stable field can have no proper algebraic extensions.
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Local Notions of Tameness–Stability

A formula φ(x, y) has the order property if for all n there are a1, . . . , an
b1, . . . , bn such that

φ(ai, bj)

if and only if i < j .

For example in any linear order we can φ to be the formula x < y ,
a1 < a2 < · · · < an and bi = ai .
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Stability

Theorem (Shelah)

Let T be a theory. The following are equivalent

1 No formula has the order property.

2 T is κ-stable for some infinite κ.

3 T is κ-stable exactly if κℵ0 = κ.

If any of these equivalent conditions hold, we say T is stable.
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Separably closed fields

Let K be a field of characteristic p > 0 that is separably closed but not
algebraically closed.
Let e = [K : Kp], e = 2, 3, . . . ,∞.

Theorem (Ersóv/Wood)

For a fixed e the theory SCFp,e of separably closed fields of characteristic
p is a complete stable theory.

Stable Field Conjecture Every infinite stable field is separably closed.

Open Question: Is C(t) stable?
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Recent Progress on the stable field conjecture

Definition

A field K is large if for any curve C defined over K if there is a smooth K
point, then there are infinitely many K points.

Large fields: Separably closed fields, real closed fields, fields with a
non-trivial henselian valuation, pseudofinite fields, pseudo-algebraically
closed fields

Non-large fields: number fields, function fields

Theorem (Johnson, Trann, Walsberg, Yi)

Any large stable field is separably closed.
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Independence Property

We say that a formula φ(x, y) has the independence property if for all n
there are a1, . . . , an and (bJ : J ⊆ {1, . . . , n}) such that

φ(ai , bJ)⇔ i ∈ J.

The independence property is related to the combinatorial property of
having infinite Vapnick–Chervonenkis dimension.

Examples:

edge relation in a random graph

| in arithmetic where a1, . . . , an are distinct primes

(Duret) ∃z x + y = z2 in a pseudofinite field
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NIP Theories

A theory is NIP if no formula has the independence property.

Examples:

stable theories;

o-minimal theories;

Pressburger arithmetic;

algebraically closed valued fields;

Qp;

henselian valued fields where the residue field has characteristic zero
and NIP;

any theory of colored linear orders

See Gabe Conant’s map of the universe at
www.forkinganddividing.com
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Conjectures on NIP Fields

Shelah Conjecture If K is an infinite NIP field, then either

K is algebraically closed;

K is real closed;

K admits a non-trivial henselian valuation

Henselianity Conjecture If (K , v) is an NIP valued field, then (K , v) is
henselian.
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Recent Progress

Theorem (Halevi, Hassson, Jahnke)

1 Shelah’s Conjecture ⇒ Henselianity Conjecture.

2 Shelah’s Conjecture ⇒ every infinite NIP field is either separably
closed, real closed or admits a non-trivial definable henselian valuation

Theorem (Johnson)

The Henselianity Conjecture is true for NIP valued fields of positive
characteristic.
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ict-patterns

An ict pattern of depth κ is an array

(φα(x, aα,i ) : α < κ, i = 0, 1, . . . )

such that for any function f : κ→ N

{φα(x, af (α)) : α < κ} ∪ {¬φα(x, ai ) : α < κ, i 6= f (α)}

is consistent.

Example: E0, E1 independent equivalence relations with infinitely many
classes
a0,0, a0,1, . . . E0-inequivalent
a1,0, a1,1, . . . E1-inequivalent
Then (Ei (x , ai ,j) : i = 0, 1, j = 0, 1, 2, . . . ) is an ict-pattern of depth 2.
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ict-patterns and dp-finite theories

Theorem (Shelah)

T has the independence property if and only if there are ict-patterns of
arbitrarily large depth.

Definition

T is dp-minimal if every ict-patern has depth 1.

T is dp-finite if for some N every ict-patern has depth at most N.

Examples of dp-minimal: o-minimal, strongly minimal, Pressburger
arithmetic, Qp or finite extensions, algebraically closed valued fields, K [[t]]
where K is algebraically closed or real closed

Examples of dp-finite: Hahn field R(((Γ))) where Γ is dp-finite.

Separably closed fields have an ict-pattern of depth ℵ0
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Shelah Conjecture for dp-finite fields

Theorem (Johnson)

If K is an infinite dp-finite field, then one of the following holds:

K is algebraically closed;

K is real closed;

K admits a definable henselian valuation.
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