Introductory Lectures Model Theory III: Tameness

David Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago

October 16, 2020

MSRI Program on Decidability, Definability and Computability in Number Theory

-		
lave	Marker	
Dave	IVIAI KEI	

Two notions of tameness we've seen

- *T* is strongly minimal if in every *M* ⊨ *T* every definable subset of *M* is either finite or cofinite.
- If L = {<,...}, then T is o-minimal if in every M ⊨ T every definable subset of M is a finite boolean combination of points and intervals with endpoints in M ∪ {±∞}.

In this lecture we will introduce several other notions of tameness and interplay between tameness and field theory

o-minimal ordered fields

Real closed fields are o-minimal.

Theorem (Pillay–Steinhorn)

An o-minimal ordered field is real closed.

Let (F, <) be an ordered field. Suppose $f(X) \in K[X]$, a < b, f(a) < 0and f(b) > 0. Consider $X = \{x \in (a, b) : f(x) < 0\}$. Since X is open, $b \notin X$ there is a < c < b: $c \notin X$ and $(a, c) \subseteq X$. We must have f(c) = 0.

Types

Let $\mathcal{M} \models T$, $A \subseteq \mathcal{M}$. Let $\mathcal{M} \prec \mathcal{N}$ and $b = (b_1, \dots, b_n) \in \mathcal{N}$. $tp(b/A) = \{\phi(v_1, \dots, v_n) : \mathcal{N} \models \phi(b), \phi \text{ with parameters from } A\}.$ Let $S_n(A)$ be the set of all types in n variables over A.

Let $K \models ACF$, $k \subset K \subset L$, $L \models ACF$ and $b \in L^n$.

By quantifier elimination p = tp(b/k) is determined by

$$I_p = \{f \in k[X] : "f(z) = 0" \in p\}$$

a prime ideal of k[X].

Moreover for any prime ideal $J \subset k[X]$, there is $p \in S_n(k)$ with $J = I_p$ Let p be the type of $X_1/J, \ldots, X_n/J$ in $k[X]/J^{alg}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

κ -stability

We say T is κ -stable if $|S_n(A)| = \kappa$, whenever $|A| = \kappa$.

Fact: If T is \aleph_0 -stable, then T is κ -stable for all infinite κ . (Note: We usually say ω -stable instead of \aleph_0 -stable)

By the Hilbert Basis Theorem, if k is a field every ideal in in $k[X_1, \ldots, X_n]$ is finitely generated.

If k is infinite, the number of prime ideals in $k[X_1, ..., X_n]$ is exactly k. Thus $|S_n(k)| = |k|$.

Thus ACF is κ -stable for all infinite κ .

The same is true of any strongly minimal theory.

Our first goal is to prove the converse that every infinite ω -stable field is algebraically closed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Morley Rank

Let X be a definable set. For α an ordinal

•
$$\operatorname{RM}(X) \ge 0$$
 if and only if $X \neq \emptyset$;

- $\operatorname{RM}(X) \ge \alpha + 1$ if and only if there are disjoint definable set Y_0, Y_1, \ldots with $Y_i \subset X$ and $\operatorname{RM}(Y_i) \ge \alpha$;
- For α a limit ordinal $RM(X) \ge \alpha$ if and only if $RM(X) \ge \beta$ for all $\beta < \alpha$.

We say $\operatorname{RM}(X) = \infty$ if $\operatorname{RM}(X) \ge \alpha$ for all α .

We say $\operatorname{RM}(X) = \alpha$ if $\operatorname{RM}(X) \ge \alpha$ but $\operatorname{RM}(X) \not\ge \alpha + 1$.

If $\operatorname{RM}(X) = \alpha$ we define the *Morley degree* of X to be the maximal d such that there are disjoint definable $Y_1, \ldots, Y_d \subset X$ with $\operatorname{RM}(Y_i) = \alpha$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Morley Rank and ω -stability

Theorem

T is ω -stable if and only if every definable set has Morley rank $< \infty$.

In ACF, RM(X) is the dimension of the Zariski closure of X. Morley rank can be though of a a general (ordinal valued) notion of dimension.

We can extend Morley rank to types. $RM(tp(b/A)) = min(RM(X) : b \in X \text{ and } X \text{ is definable with parameters}$ from A).

Two properties of Morley rank that we will use:

- $\operatorname{RM}(X \cup Y) = \max(\operatorname{RM}(X), \operatorname{RM}(Y)).$
- If $f : X \to Y$ is definable surjective and finite-to-one, then RM(X) = RM(Y).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\omega\text{-stable groups-DCC}$

Suppose $(G, \cdot, ...)$ is an ω -stable group and $H \subset G$ is a definable subgroup. Then $G = \bigcup_{g \in G} gH$ and $\operatorname{RM}(H) = \operatorname{RM}(gH)$. If $[G : H] < \aleph_0$, $\operatorname{RM}(H) = \operatorname{RM}(G)$, $\operatorname{deg}(H) < \operatorname{deg}(G)$. If $[G : H] \ge \aleph_0$, $\operatorname{RM}(H) < \operatorname{RM}(G)$.

Theorem (Baldwin–Saxl)

In an ω -stable group, there is no infinite proper descending chain of definable subgroups.

We say G is connected if there are no definable subgroups of finite index.

Corollary

If G is an ω -stable group, there is a definable connected $G^0 \subseteq G$ with $[G:G^0] < \infty$. G^0 is fixed by every definable group automorphism of G.

イロト 不得 トイヨト イヨト 二日

$\omega\text{-stable groups-generic types}$

Let X be defined by $\phi(x, a)$ with $RM(X) = \alpha$. There are deg(X) many p types of rank α with $\phi(x, a) \in p$. We call such p generic types of X.

If G is an ω -stable group and $H \subset G$ is a definable subgroup with [G:H] = n then $\deg(G) \ge n$ so G has multiple generic types.

Theorem

An ω -stable group G is connected if and only if there is a unique generic type.

Let $(K, +, \cdot, ...)$ be an infinite ω -stable field.

claim 1 The additive group (K, +, ...) is connected.

Suppose not. Let K^0 be the connected component of K.

For $a \in K$, automorphism $x \mapsto ax$ fixes K^0 setwise-but then K^0 is a nontrivial ideal.

claim 2 The multiplicative group $(K^{\times}, \cdot, ...)$ is connected.

By claim 1 there is a unique type of maximal rank in K. This must be the unique generic type for (K, \cdot) as well. Thus K^{\times} is connnected.

claim 3 Every $a \in K$ has an n^{th} -root for all n.

Consider the multiplicative homomorphism $x \mapsto x^n$. This map is finite to one, so the image K^n has the same rank as K^{\times} . Since K^{\times} is connected $K^{\times} = K^n$.

claim 4 If *K* has characteristic p > 0, then the Artin–Schreier map $x \mapsto x^p + x$ is surjective.

This map is a finite-to-one additive homomorphism. As above in case 3 it must be surjective.

claim 5 Suppose K contains all m^{th} roots of unit for all $m \le n$. Then K has no Galois extensions of degree n.

Suppose [L : K] is Galois of degree n and p|n is prime. There is $K \subseteq F \subset L$ such that L/F is a Galois extension of degree p. Let $L = F(\alpha)$.

The field F is interpretable in K and hence it is also ω -stable. So F is ω -stable and contains all m^{th} roots of unity for $m \leq p$

If $p \neq \text{char}(K)$, the minimal polynomial of α is $X^p - a$. But $x \mapsto x^p$ is surjective, so $X^p - a$ is not irreducible.

If p = char(K), the minimal polynomial of α is $X^p + X - a$. But $x \mapsto x^p + x$ is surjective, so $X^p + X - a$ is not irreducible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

claim 6 K contains all roots of unity.

Suppose K contains all $m^{\rm th}$ -roots of unity for m < n and η is an $n^{\rm th}$ root of unity.

 $K(\eta)/K$ is Galois of degree at most n-1, so by claim 5 $\eta \in K$.

Theorem (Macintyre)

Every infinite ω -stable field is algebraically closed.

By 5) and 6) an ω -stable field can have no proper algebraic extensions.

Local Notions of Tameness-Stability

A formula $\phi(x, y)$ has the order property if for all *n* there are a_1, \ldots, a_n b_1, \ldots, b_n such that

 $\phi(\mathsf{a_i},\mathsf{b_j})$

if and only if i < j.

For example in any linear order we can ϕ to be the formula x < y, $a_1 < a_2 < \cdots < a_n$ and $b_i = a_i$.

Stability

Theorem (Shelah)

Let T be a theory. The following are equivalent

- No formula has the order property.
- **2** T is κ -stable for some infinite κ .
- **3** *T* is κ -stable exactly if $\kappa^{\aleph_0} = \kappa$.

If any of these equivalent conditions hold, we say T is stable.

Separably closed fields

Let K be a field of characteristic p > 0 that is separably closed but not algebraically closed.

Let $e = [K : K^p], e = 2, 3, ..., \infty$.

Theorem (Ersóv/Wood)

For a fixed e the theory $SCF_{p,e}$ of separably closed fields of characteristic p is a complete stable theory.

Stable Field Conjecture Every infinite stable field is separably closed.

Open Question: Is $\mathbb{C}(t)$ stable?

Recent Progress on the stable field conjecture

Definition

A field K is *large* if for any curve C defined over K if there is a smooth K point, then there are infinitely many K points.

Large fields: Separably closed fields, real closed fields, fields with a non-trivial henselian valuation, pseudofinite fields, pseudo-algebraically closed fields

Non-large fields: number fields, function fields

Theorem (Johnson, Trann, Walsberg, Yi)

Any large stable field is separably closed.

Independence Property

We say that a formula $\phi(x, y)$ has the *independence property* if for all n there are a_1, \ldots, a_n and $(b_J : J \subseteq \{1, \ldots, n\})$ such that

 $\phi(\mathsf{a}_i,\mathsf{b}_J)\Leftrightarrow i\in J.$

The independence property is related to the combinatorial property of having infinite Vapnick–Chervonenkis dimension.

Examples:

- edge relation in a random graph
- | in arithmetic where a_1, \ldots, a_n are distinct primes
- (Duret) $\exists z \ x + y = z^2$ in a pseudofinite field

イロト 不得 トイヨト イヨト 二日

NIP Theories

A theory is *NIP* if no formula has the independence property. Examples:

- stable theories;
- o-minimal theories;
- Pressburger arithmetic;
- algebraically closed valued fields;
- \mathbb{Q}_p ;
- henselian valued fields where the residue field has characteristic zero and NIP;
- any theory of colored linear orders

See Gabe Conant's map of the universe at www.forkinganddividing.com

Conjectures on NIP Fields

Shelah Conjecture If K is an infinite NIP field, then either

- K is algebraically closed;
- *K* is real closed;
- K admits a non-trivial henselian valuation

Henselianity Conjecture If (K, v) is an NIP valued field, then (K, v) is henselian.

3

Recent Progress

Theorem (Halevi, Hassson, Jahnke)

- Shelah's Conjecture \Rightarrow Henselianity Conjecture.
- Shelah's Conjecture ⇒ every infinite NIP field is either separably closed, real closed or admits a non-trivial definable henselian valuation

Theorem (Johnson)

The Henselianity Conjecture is true for NIP valued fields of positive characteristic.

ict-patterns

An *ict pattern* of depth κ is an array

$$(\phi_lpha(\mathsf{x},\mathsf{a}_{lpha,i}):lpha<\kappa,i=0,1,\dots)$$

such that for any function $f : \kappa \to \mathbb{N}$

$$\{\phi_{\alpha}(\mathsf{x},\mathsf{a}_{f(\alpha)}):\alpha<\kappa\}\cup\{\neg\phi_{\alpha}(\mathsf{x},\mathsf{a}_{i}):\alpha<\kappa,i\neq f(\alpha)\}$$

is consistent.

Example: E_0 , E_1 independent equivalence relations with infinitely many classes

 $\begin{array}{l} a_{0,0}, a_{0,1}, \ldots \ E_0\text{-inequivalent} \\ a_{1,0}, a_{1,1}, \ldots \ E_1\text{-inequivalent} \\ \text{Then } (E_i(x, a_{i,j}): i=0,1,j=0,1,2,\dots) \text{ is an ict-pattern of depth } 2. \end{array}$

ict-patterns and dp-finite theories

Theorem (Shelah)

T has the independence property if and only if there are ict-patterns of arbitrarily large depth.

Definition

- *T* is *dp-minimal* if every ict-patern has depth 1.
- T is *dp-finite* if for some N every ict-patern has depth at most N.

Examples of dp-minimal: o-minimal, strongly minimal, Pressburger arithmetic, \mathbb{Q}_p or finite extensions, algebraically closed valued fields, K[[t]] where K is algebraically closed or real closed

Examples of dp-finite: Hahn field $\mathbb{R}(((\Gamma)))$ where Γ is dp-finite.

Separably closed fields have an ict-pattern of depth \aleph_0

イロト イポト イヨト イヨト 三日

Shelah Conjecture for dp-finite fields

Theorem (Johnson)

If K is an infinite dp-finite field, then one of the following holds:

- K is algebraically closed;
- K is real closed;
- K admits a definable henselian valuation.