
5 Counterexamples to Vaught’s Conjecture

A sentence σ ∈ Lω1,ω is a counterexample to Vaught’s Conjecture, or simply a
counterexample, if

ℵ0 < I(σ,ℵ0) < 2ℵ0 ,

i.e., σ has uncountably many countable models but fewer than continuum many
models.

Fix σ a counterexample.
A key fact about counterexamples is that there are few types for any count-

able fragment. Let F be a fragment. Let

SF(σ) = {tpM
F (a) : M |= σ, a ∈Mn for some n}

be the set of complete F -types realized in models of σ. We say that a sentence
σ is scattered if |SF(σ)| ≤ ℵ0 for every countable fragment F with σ ∈ F .

Lemma 5.1 If σ is a counterexample, then σ is scattered.

Proof Fix F a countable fragment. Then

SF (σ) = {p : ∃M = (N, . . .),M |= σ, ∃a ∈Mn tpM(a) = p}

is a Σ1
1-set (for details see the proof of Theorem 4.4.12 in [10]) . Thus, if it is

uncountable, it has cardinality 2ℵ0 (see for example [5] 14.13) But this is only
possible if I(σ,ℵ0) = 2ℵ0 .

Countable Models

We begin by showing a counterexample has exactly ℵ1 countable models. The
proof is exactly the same as the proof for first order theories in S4.4 of [10].

Theorem 5.2 (Morley) If σ is scattered, then I(σ,ℵ0) ≤ ℵ1. Thus if σ is a
counterexample, I(T,ℵ0) = ℵ1.

Proof The proof uses an analysis of models is similar to Scott’s analysis (but
faster). We build a sequence of countable fragments (Fα : α < ω1) such that

σ ∈ F0, if p ∈ SFα
(σ), then

∧

φ∈p

φ ∈ Fα+1 and Fα =
⋃

β<αFβ for α a limit

ordinal.
If M |= σ, let tpM

α (a) be the Fα-type realized by a in M.
For each countable M |= σ there is γ < ω1 such that if tpM

γ (a) = tpM
γ (b),

then tpM
γ+1(a) = tpM

γ+1(b). We call γ the height of M.
Suppose M and N are countable models of σ, M has height γ, and

M ≡Fα+1
N .

Claim N has height γ.

23



Suppose tpN
γ (a) = tpN

γ (b). Call this type p. Suppose ψ(v) ∈ Fγ+1 such that

N |= ψ(a) ∧ ¬ψ(b). Then

N |= ∃v∃w
[(

∧

φ∈p

(φ(v) ∧ φ(w))
)

∧ ψ(v) ∧ ¬ψ(w)
]

.

Since this sentence is in Fγ+1 is also true in M, contradicting that M has height
γ.

Let P = {a 7→ b : tpM
γ (a) = tpN

γ (b)}. We claim that P is a back-and-forth
system.

Suppose tpM
γ (a) = tpN

γ (b) and c ∈M . Let p(v, w) be the Fγ-type of (a, c).
Then

M |= ∃v, w
∧

φ∈p

φ(v, w).

As this is an Fγ+1-formula, it is true in N . Thus there is (b
′
, d′) ∈ N realizing

p. Since p extends tpM
γ (a), we must have tpN

γ (b) = tpN
γ (b

′
). Since N has height

γ, tpN
γ+1(b) = tpN

γ+1(b
′
). But

N |= ∃w
∧

φ∈p

φ(b
′
, w).

As this is an Fγ+1-formula, there is d ∈ N such that (b, d) realizes p. Thus
a, c 7→ b, d ∈ P . The other direction is similar.

Thus if M ≡Fγ+1
N are countable models of height γ they are isomorphic.

If M is a countable model of σ is determined up to isomorphism by its height
γ and Thγ+1(M) = tpM

γ+1(∅). As there are at most ℵ1 choices for γ and, given
γ only countably many choices for its Fγ+1-theory, I(σ,ℵ0) ≤ ℵ1.

Our next goal is to show that every counterexample has an uncountable
model. The proof uses the idea of “minimal counterexamples” introduced by
Harnik and Makkai.

Minimal Counterexamples

Definition 5.3 Suppose σ is a counterexample. We say that σ is a minimal
counterexample if for every sentence ψ ∈ Lω1,ω, either σ ∧ ψ or σ ∧ ¬ψ has at
most countably many countable models.

Lemma 5.4 (Harnik-Makkai) If σ is a counterexample, then there is a min-
imal counterexample θ with θ |= σ.

Proof
Fix σ a counterexample to Vaught’s Conjecture and suppose there is no min-

imal θ with θ |= σ. The basic idea is that we will build a tree of counterexamples
(στ : τ ∈ 2<ω) such that:
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i) σ∅ = σ;
ii) ση |= στ for τ ⊆ η;
iii) στ,0 ∧ στ,1 is unsatisfiable.

This is easy to do. At any stage τ , στ is a non-minimal counterexample. Thus
there is a ψ such that στ,0 = στ∧ψ and στ,1 = στ∧¬ψ are both counterexamples.

We would like to get a contradiction by considering

Tf = {σf |n : n ∈ ω}

for f ∈ 2ω. If each Tf is satisfiable, we could easily conclude that σ has 2ℵ0

models, a contradiction. The problem is that, in the absence of compactness,
we have no guarantee that Tf is satisfiable. We will need to exercise more care.

Add C a countable set of new constant symbols. Let Σ = {s : s is a finite set
of Lω1,ω-sentences using only finitely many constants from C, such that s∪{σ}
has uncountably many countable models}.

Claim Σ is a consistency property.

Let’s check (C4). Suppose
∨

φ∈X

φ ∈ s ∈ Σ. Since there are uncountably many

countable models of s. By the Pigeonhole-Principle, there are uncountably many
countable models of s ∪ {ψ} for some ψ ∈ X . Then s ∪ {ψ} ∈ Σ.

Suppose s is a finite set of Lω1,ω-sentences with only finitely many constants
from C. Let θ(c) be the conjunction of all sentences in s. In any countable
L-structure there are only countably many ways to interpret the constants c.
Thus s ∈ Σ if and only if σ ∧ ∃vθ(v) is a counterexample.

We will build a sequence of countable fragments F0 ⊆ F1 ⊆ . . . and F =
⋃

Fn. Let φ0, φ1, . . . , list all F -sentences and let t0, t1, . . . list all basic F -terms,
both lists should have list each item infinitely often.

We will also build a tree (sσ : σ ∈ 2<ω) such that:

i) s∅ = {σ} and each sσ ∈ Σ;
ii) sη ⊆ sτ for η ⊂ τ ;
iii) for each τ , there is an Lω1,ω sentence ψ with no constants from C such

that ψ ∈ sτ,0 and ¬ψ ∈ sτ,1;
iv) for i = 0, 1, if |τ | = n and sτ ∪ {φn} ∈ Σ, then φn ∈ στ,i, moreover if,

in addition, φn =
∨

ψ∈X ψ, then ψ ∈ στ,i for some σ ∈ X , and if φn = ∃v ψ(v),
then ψ(c) ∈ στ,i for some c ∈ C;

v) for i = 0, 1, if |τ | = n, there is c ∈ C such that tn = c ∈ sτ,i.

As in the proof of the Model Existence Theorem, conditions iv) and v) will
insure that Tf =

⋃

sf |n is satisfiable for all f ∈ 2ω. As above, condition iii) will
insure that if M |= Tf and N |= Tg, then their reducts to the original language
are non-isomorphic.

Let F0 be a countable fragment containing σ. In general, Fn+1 will be a

countable σ-fragment, containing Fn∪
⋃

|τ |≤n

sτ . Although our fragment increases
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in the construction, it is easy to build listings φ0, φ1, . . . and t0, t1, . . .. The only
additional condition we need is that φn ∈ Fn and tn is an Fn-term.

Let s∅ = {σ}.
Suppose we are given sτ where |τ | = n. As in the proof of the Model

Existence Theorem, it is easy to find s′τ ∈ Σ such that sτ ⊆ s′τ :
i) if sτ ∪ {φn} ∈ Σ, then φn ∈ s′τ , moreover, in that case if

a) if φn =
∨

x∈X ψ, then ψ ∈ s′τ for some ψ ∈ X , and
b) if φn = ∃v ψ(v), then ψ(c) ∈ s′τ for some c ∈ C;

ii) tn = c ∈ s′τ for some c ∈ C.

Let θ(c) be the conjunction of all formulas in s′τ . As remarked above, σ ∧
∃v θ(v) is a counterexample. Since it is not minimal, there is and Lω1,ω-sentence
ψ (with no constants from C) such that sτ,0 = s′τ ∪ {ψ} and sτ1,/

This completes the construction and the proof.

We will need a refinement of this result. Let σ be a minimal counterexample.
Suppose φ(v) is an Lω1,ω-formula, we say that φ is σ-large if there are uncount-
ably many countable models of σ∧∃v φ(v). We say that a σ-large formula φ(v)
is minimal σ-large if for all Lω1,ω-formulas ψ(v) exactly one of φ∧ψ and φ∧¬ψ
is σ-large.

Corollary 5.5 If φ(v) is σ-large, then there is a minimal σ-large formula θ(v)
with θ(v) |= φ(v).

Proof If φ(v) has free variables v1, . . . , vn, add constants d1, . . . , dn to L and
apply the theorem to σ ∧ φ(d). There is ψ(d) a minimal counterexample with
ψ(d) |= σ ∧ φ(d). Then ψ(v) is a minimal σ-large formula with ψ(v) |= φ(v).

Digression: prime models

We quickly review some material on atomic and prime models from [6]. Fix F
a countable fragment of Lω1,ω and T be an F -complete theory.

Definition 5.6 We say φ(v) is complete if it is satisfiable and for all formulas
ψ(v) in F either

T |= φ(v) → ψ(v) or T |= φ(v) → ¬ψ(v).

We say that T is F-atomic if every satisfiable F formula is a T -consequence
of a complete formula.

We say that M |= T is F -atomic if every a ∈ Mn satisfies a complete
formula.

We say that M |= T is F -prime if there is an F -elementary embeding of F
into any N |= T .

Theorem 5.7 If T has only countably many F-types, then there is M |= T

that is F-atomic and F-prime.
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Proof Use the Omitting Types Theorem to build M |= T omitting all types not
containing a complete formula. Clearly M is F -atomic. The usual proof that
countable atomic models of first order theories are prime, adapts immediately
to prove that M is F -prime.

Uncountable models of counterexamples

We now fix σ a minimal counterexample.
Our proof will need fragments with extra closure properties. We say that

F is rich if and for all φ(v) is σ-large, there is a σ-minimal ψ(v) ∈ F with
σ |= ψ(v) → φ(v). By Corollary 5.5, if F is a countable fragment we can find
F ′ ⊇ F that is countable and rich. If F is a countable rich fragment of Lω1,ω,
let

TF = {ψ ∈ F : ψ a sentence such that σ∧ψ has uncountably many countable
models}. First note that TF is a complete F -theory. Moreover, is φ ∈ F \ TF ,
then σ ∧ φ has only countably many countable models. Thus TF is satisfiable,
indeed it has uncountably many countable models.

If φ(v) is a σ-minimal formula, then for any formula ψ(v),

TF |= φ(v) → ψ(v) or TF |= φ(v) → ¬ψ(v).

Thus every σ-minimal formula is F -complete, and every F -formula is applied
by an σ-minimal formula. Thus TF is F -atomic.

We now describe our basic construction. For each α < ω1 we build

F0 ⊆ F1 ⊆ . . . ⊆ Fα ⊆ . . . .

Let F0 be a countable rich fragment containing σ.
Let M0 be the prime model of TF0

.
Given Mα and Fα, let Fα+1 be a countable rich fragment containing Fα

and the Scott sentence of Mα. Then let Mα+1 be the prime model of TFα+1
.

Note that Mα ≺Fα
Mα+1.

For β a limit ordinal, let Fβ =
⋃

α<β Fβ and let Mβ =
⋃

α<βMα. For all
a ∈ Mβ there is a σ-large φ(v) such that φ(a). But then φ(v) is Fβ-complete.
Thus Mβ is the prime model of TFβ

.
Since the Scott sentence of Mα is in Fβ for β > α and this sentence is not

σ-large, Mα 6∼= Mβ for α 6= β.
Let N =

⋃

α<ω1
Mα. Then N |= σ. Suppose φ is an L-sentence such that

N |= φ. Then {α < ω1 : Mα |= φ} is closed unbounded. (prove this???)
Since the Mα are not isomorphic, φ is σ-large. In particular, φ is not the Scott
sentence of any model of σ. We have proved the following theorem

Theorem 5.8 If σ is a counterexample to Vaught’s Conjecture, then σ has a
model of cardinality ℵ1 that is not Lω1,ω-equivalent to a countable model.
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Further Results

The model of size ℵ1 that we constructed above is not li-equivalent to a count-
able model.

Theorem 5.9 (Harnik-Makkai) If σ is a counterexample, then there are mod-
els of size ℵ1 that are L∞,ω-equivalent to countable models.

The original proof used admissible model theory, Baldwin gave a proof avoid-
ing admissibility. The arguments given in Baldwin’s lecutres show that indeed
there are ℵ1 models of size ℵ1 that are L∞,ω-equivalent to countable models but
pairwise L∞,ω-inequivalent.

Theorem 5.10 (Harrington) For all α < ω2 there is a model of size ℵ1 with
Scott rank at least α.

I have never seen Harrington’s proof.

Baldwin noted that using two deep theorems of Shelah’s every first order
counterexample T has 2ℵ1 models of size ℵ1. A first order counterexample T
must be non-ω-stable and every non-ω-stable theory has 2ℵ1 -models of cardi-
nality ℵ1.

Questions 1) Does Harrington’s results follow from Sacks’ recent paper?
2) Give a proof of Harrington’s result without admissibility.
3) Can we prove that I(σ,ℵ1) = 2ℵ1 for all counterexamples σ?
4) Can we find 2ℵ1 models that are L∞,ω-equivalent to a countable models?

Theorem 5.11 (Hjorth) There is a counterexample σ with no models of size
ℵ2.

Hjorth’s surprising proof used descriptive set theory of the dynamics of Polish
group actions.

Question 5 Give a model theoretic proof of Hjorth’s theorem.
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