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HAPPY BIRTHDAY CHRIS!
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PAC Learning

Let X be a set and µ a probability measure on X .

A concept class C is a subset of 2X , though we sometimes think of
C ⊆ P(X ).

We try to learn a concept c ∈ C in the following manner.
• Using the distribution µ we choose x1, . . . , xm a sequence of i.i.d.
samples from X . Our learning procedure gets input

((x1, c(x1)), . . . , (xm, c(xm)))

a sequence of test data.
• Our procedure then produces h ∈ C.

Our goal is to minimize the error given by

µ({x ∈ X : h(x) 6= c(x)}.
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PAC Learning

Definition

Let C be a concept class on X .
We say that a learning procedure P is probably approximately correct
(PAC) if for any ε > 0 and δ > 0 there is a natural number m = m(ε, δ)
such that for any probability distribution µ on X and any concept c ∈ C if
we take an i.i.d. sample x1, . . . , xm and test data

σ = ((x1, c(x1), . . . , (xm, c(xm))),

and P outputs h, then

Pr(µ({x ∈ X : h(x) 6= c(x)}) < ε) > 1− δ.

In other words, given ε and δ there is m such that for any probability
distribution µ, with high probability the error set is small. It is important
to note that the procedure and the choice of m are independent of the
probability measure.
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Example Learning Rectangles

Let X = R2 and let C = {[a, b]× [c , d ] : a ≤ b, c ≤ d}. Try to learn
R̂ ∈ C.

Procedure: • test date: random sample S of m points, S0 = S \ R̂,
S1 = S ∩ R̂.
• output R the smallest rectangle with S1 ⊆ R.
Let µ be a continuous probability distribution on R2. Let ε, δ > 0.
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Learning Rectangles

Let µ be a continuous probability distribution on R2. Let ε, δ > 0.
Let B1 be the smallest rectangle with the same top edge as R̂ with
µ(B1) = ε/4.
Similarly, define B2,B3,B4 on the bottom, right and left.
If µ(R̂ \ R) > ε, then some S ∩ Bi = ∅.

Pr(S ∩ Bi = ∅) = (1− ε

4
)m.

Pr(µ(R̂ \ R) ≥ ε) ≤ 4(1− ε

4
)m ≤ 4e−

εm
4

If

m ≥ 4

ε
ln

(
4

δ

)
then Pr(µ(R̂ \ R) ≥ ε) < δ.

Note that m does not depend on µ and can be chosen linear in 1/ε and in
ln(1/δ).
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VC dimension

We say that C shatters A ⊆ X if

{C ∩ A : C ∈ C} = P(A).

Definition

If there is a largest integer d such that C shatters some set of size d , then
we say d = VCdim(C) is the VC-dimension of C.
If C shatters arbitrarily large finite sets, then we say VCdim(C) =∞.
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Examples

1) Let X = R. For a ∈ R let Ca = {x : x ≥ a} and C = {Ca : a ∈ R}, then
VCdim(C) = 1. Suppose x < y , then we can not shatter {x , y}.

2) Let X = R2 and let C be the collection of axis-parallel rectangles. Then
VCdim(C) = 4.
It is easy to shatter {(0, 2), (1, 0), (2, 3), (3, 1)}. But no set of size 5 can
be shattered. Suppose we have 5 points. Choose 4 points contain ones
with maximal and minimal first and second coordinates. Then any
axis-parallel rectangle contain those four points contains all five.

3) Let X be the vertices of a random graph. For a ∈ X let
Ca = {x : (x , a) ∈ E} and C = {Ca : a ∈ X}. Then C shatters any finite
A ⊂ X so VCdim(A) =∞.
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VC-dimension and PAC Learning

Lemma

If VCdim(C) =∞, then there is no PAC learning procedure for C.

Remarkably, finite VC-dimension is the only constraint on PAC-learnability.

Theorem (Fundamental Theorem of PAC Learning–Valliant)

Let C be a set system on X with VCdim(C) = d . Then there is a PAC
learning procedure for C.
Indeed, there is a constant k such that for all ε > 0 and δ > 0 there is

m(ε, δ) ≤ k
d log(1/ε) + log(1/δ)

ε
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Model Theoretic Concept Classes

Definable Families of Definable Sets
Let M be an L-structure and φ(x1, . . . , xn, y1, . . . , ym) be a L-formula.
For b ∈ Mm let Cb = {a ∈ Mn :M |= φ(a, b)} and let
Cφ = {Cb : b ∈ Mm}.

Recall φ(x , y) has the independence property if and only if there are
a0, a1, . . . and (bA : A ⊆ ω) such that

φ(ai , bA)⇔ i ∈ A.

Observation [Laskowski] Cφ has infinite VC-dimension if and only if φ has
the independence property.

For example, any definable family in an o-minimal structure has finite
VC-dimension and hence is PAC learnable. The same is true for stable
structures, Presburger Arithmetic, the p-adics, algebraically closed valued
fields...
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On-line Learning

The remaining work I’m talking about today is due to Hunter Chase and
James Freitag.
We will look at a second model of machine learning, called on-line
learning. Once again we have a set X and a concept class C ⊂ 2X .
We try to learn c ∈ C in the following manner.

For i = 0, . . . ,M
We are given xi;
We choose pi our guess about c(xi );
We are told c(xi );
Go to the next i.
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On-line Learning

An on-line learning procedure takes (x1, c(x1)), . . . (xm, c(xm)) and xm+1

as input, outputs pm+1 our guess about c(xm+1)

The number of mistakes made is |{i : pi 6= c(xi )}|. Our goal is to
minimize the number of mistakes.

It’s sometimes useful to think of this as a game played against an
adversary who gives us the x0, . . . , xM and at the end must be able to
show there is c ∈ C consistent with the answers given.

Definition

We say that C is on-line learnable if there is a learning procedure and an
absolute bound B such that for any concept c ∈ C, any M and any
x0, . . . , xM , the procedure will make at most B errors.
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Examples

1) Let E be an equivalence relation and let C be the collection of
equivalence classes.
E is on-line learnable. Given x1 guess no. As long as you are correct keep
guessing no. If we are ever wrong we now know x in the equivalence class.
In all future rounds we will answer correctly.
This procedure makes at most one mistake.

2) Let X = R and let C be the collection of all intervals (−∞, a).
We claim that for any learning procedure the adversary can choose a
sequence where we make a mistake in each round.

Let x0 = 1. If the learner guesses yes at stage yes, let xn+1 = xn − 1
2n ,

while if the learner guesses no, let xn+1 = xn + 1
2n . At the end of T stages,

the adversary can produce x̂ such that the learner has been wrong at every
stage.
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labeled trees

Consider a tree T ⊆ 2≤n such that every node is either terminal or has two
successors. We label T such that every non-terminal node σ is labeled
with Cσ ∈ C and every non-terminal node τ is labeled with xτ ∈ X .

x∅

x0

x00

C000 C001

x01

C010 C011

x1

x10

C100 C101

x11

C110 C111
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well-labeled trees
We say T is well-labeled if for all terminal nodes σ and all l < |σ|

xσ|i ∈ Cσ ↔ σ(i) = 1

x∅

x0

x00

C000 C001

x01

C010 C011

x1

x10

C100 C101

x11

C110 C111

For example x∅, x10 ∈ C101, x1 6∈ C101.
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Littlestone Dimension

Definition

The Littlestone Dimension of C, Ldim(C) is the largest n such that the full
binary tree 2≤n can be well labeled. If there is no largest n, then
Ldim(C) =∞.

Example 1) If E is an equivalence relation on X and C is the set of
equivalence relations then Ldim(C) = 1. Let ¬E (a, b).

a

{x : E (x , b)} {x : E (x , a)}
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Littlestone Dimension

Example 2 For a ∈ Q let Ca = {x : x > a} and C = {Ca : a ∈ Q}. Let
Ldim(C) =∞. For example

1

1/2

1/4

C000 C001

3/4

C010 C011

3/2

5/4

C100 C101

7/4

C110 C111

For example we could take C101 = {x : x > 11/8}.
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On-Line learning and Littlestone Dimension

Theorem (Littlestone)

There is an on-line learning procedure for C if and only if Ldim(C) <∞.
Moreover, if Ldim(C) = k , there is an on-line procedure learning C making
at most k errors.

(⇒) If Ldim(C) =∞, given M choose a well-labeled full binary tree of
height M. An adversary can consistently tell you that you are wrong in
each move and force M errors.
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Standard Optimization Algorithm

Let C0 = C;
For i = 0, . . . ,M;

Given Ci and xi, let Cji = {c ∈ Ci : c(xi ) = j}.;
Choose j such that Ldim(Cji ) is maximal and let pi = j;

Let Ci+1 = C
c(xi )
i ;

Next i.

Lemma

Suppose Ldim(C) = d and a ∈ X . Let C i = {c ∈ C : c(a) = i} for
i = 0, 1. Then at most one of C0 and C 1 has Littlestone dimension d .

Each time the algorithm makes an error the Littlestone dimension goes
down. Thus we can make at most Ldim(C)-errors.

Dave Marker (UIC) Model Theory and Machine Learning June 22, 2019 19 / 31



Model Theory and On-line Learning

Let M be an L-structure, φ(x , y) an L-formula and
Cφ = {{a : φ(a, b)} : b ∈ Mm}.

Observation There is an on-line learning procedure for Cφ if and only if φ
is stable.

Ldim(Cφ) =∞⇔ φopp has the binary tree property ⇔ φ is unstable.

Littlestone dimension = Shelah’s 2-rank.

Thus there are on-line learning procedures for definable families in
algebraically closed fields, differentially closed fields, separably closed
fields, modules, non-abelian free groups....
Few examples of infinite on-line learnable classes were previously known.

Dave Marker (UIC) Model Theory and Machine Learning June 22, 2019 20 / 31



Query Learning
We look at a third model of learning introduced by Angluin.
In this model we have a set X a concept class C and a hypothesis class H
with C ⊆ H ⊆ P(X ).
We are trying to learn c ∈ C. At each stage s:
• we make an equivalence query guessing hs ∈ H;
• either we succeed if hs = c or else we are given xs where hs(xs) 6= c(xs).

We say that C is learnable with equivalence queries from H, if there is a
number n and a procedure that will always succeed in at most n-steps.
The least such n is LCEQ(C,H). Otherwise LCEQ(C) =∞.
LCEQ(C,H) is the learning complexity of C from H.

Taking C = H makes learning very difficult. Let X be an infinite set and
C = {{x} : x ∈ X}. If we only allowed to make equivalence queries from C
an adversary could keep us from learning C by always returning x as a
counterexample when we guess {x}.
On the other hand if C ⊂ H and ∅ ∈ H. We can learn {x} in one step by
submitting ∅ as a query.
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LCEQ and Littlestone dimension

Lemma

If Ldim(C) ≥ d , then LCEQ(C,H) ≥ d + 1.

Proof.

We can use a well labeled tree on 2≤d to force d + 1 rounds.

Corollary

If C is learnable with equivalence queries from H, then Ldim(C) is finite.
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LCEQ and Littlestone dimension when H = P(C)

Lemma

If Ldim(C) = d , then LCEQ(C,P(C)) ≤ d + 1.

Let C0 = C.
Let C(x ,j)i = {c ∈ Ci : c(x) = j} for x ∈ X , j = 0, 1.

Let Bi = {x : Ldim(Cx ,1i ) > Ldim(C(x ,0i )}).
Submit Bi as a hypothesis. If we receive a counterexample x , let
Ci+1 = {c ∈ Ci : c(x) 6= χBi

(x)}. Then Ldim(Ci1) < Ldim(Ci ).
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Consistency Dimension

We say that f : X → 2 is n-consistent with C if for every A ⊆ X with
|A| = n, there is c ∈ C such that f |A ⊆ c .

We say C has consistency dimension n with respect to H if n is least such
that whenever f ∈ 2X is n-consistent with C, then f ∈ H and we let
C (C,H) = n.
If no such n exists, then C (C,H) =∞.

Lemma

If C (C,H) > n, then LCEQ(C,H) > n

Suppose f is n-consistent, but f 6∈ H. Suppose we make queries
h1, h2, . . . , hn. Our adversary could return x1, . . . , xn with hi (xi ) 6= f (xi )
but f |{x1, . . . , xn} has an extension in C.
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Consistency Dimension and Query Learning

Theorem (Chase–Freitag)

C is learnable with queries from H if and only if Ldim(C) <∞ and
CD(C,H) <∞.
If Ldim(C) = d and C (C,H) = n, then LCEQ(C,H) ≤ nd .

Theorem (Chase–Freitag)

If Ldim(C) <∞, there is H with Ldim(C) = Ldim(H) and
C (C,H) ≤ Ldim(C) + 1.
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Finite Cover Property

Definition

ψ(x , y) has the finite cover property (FCP) if for every n there is a
p ⊆ {ψ(x , a),¬ψ(x , a) : a ∈ M} such that every n element subset of p is
consistent but p is inconsistent.
Otherwise ψ is NFCP.

Example Let M be a structure where there is a unique equivalence class
of each finite size.
Let ψ(x , y) be xEy ∧ x 6= y .

Let a1, . . . , an list an equivalence class of size n and let p be
{ψ(x , a1), . . . , ψ(x , an)}.
Then p is n − 1 consistent but not consistent. Thus ψ is FCP.
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Externally Definable Sets

Let φ(x1, . . . , xm, y1, . . . , yn) be an L-formula and let Cφ be the collection
of {φ(M, b) : b ∈ Mn}.
Let N be a |M|+-saturated elementary extension of M and let

Hφ = {φ(N , b) ∩Mm : b ∈ Nn}.
We call Hφ the subsets of Mm externally definable by φ.

Littlestone dimension is an elementary property thus
Ldim(Hφ) = Ldim(Cφ).

CD(Cφ,Hφ) <∞⇔ φopp has NFCP

Thus Cφ is learnable with queries from Hφ if and only if φ is stable and
φopp is NFCP.
For example, in ACF or DCF we can learn definable families using the
corresponding family of externally definable sets.
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Membership Queries

We can expand the query learning model by allowing the learner to also
make membership queries, i.e., at any stage the learner can ask x ∈ C? for
any x ∈ X .

Theorem (Chase–Freitag)

LCEQ+MQ(C,H) <∞ if and only if Ldim(C) <∞ and C (C,H) <∞.

In this case we can bound LCEQ+MQ(C,H) by Ldim(C) · C (C,H)
(roughly).
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UDTFS

In a completely different direction,

Theorem (Eshel–Kaplan)

The following are equivalent:
• φ is NIP in any completion of T .
• φ has Uniform Definability of Types over Finite sets in T .

While this is a purely model theoretic result, the proof relies on two results
from machine learning theory.
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HAPPY BIRTHDAY CHRIS!

Thank You!
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