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1 Languages and Structures

In mathematical logic, we use first-order languages to describe mathematical
structures. Intuitively, a structure is a set that we wish to study equipped
with a collection of distinguished functions, relations, and elements. We
then choose a language where we can talk about the distinguished func-
tions, relations, and elements and nothing more. For example, when we
study the ordered field of real numbers with the exponential function, we
study the structure (R, +, -, exp, <,0, 1), where the underlying set is the set
of real numbers, and we distinguish the binary functions addition and mul-
tiplication, the unary function x +— e, the binary order relation, and the
real numbers 0 and 1. To describe this structure, we would use a language
where we have symbols for +, -, exp, <,0, 1 and can write statements such as
VaVy exp(z) - exp(y) = exp(z + y) and Vo (z > 0 — Jy exp(y) = x). We
interpret these statements as the assertions “e“e? = ¢**¥ for all  and 3" and
“for all positive x, there is a y such that e¥ = z.”

For another example, we might consider the structure (N, +,0,1) of the
natural numbers with addition and distinguished elements 0 and 1. The
natural language for studying this structure is the language where we have
a binary function symbol for addition and constant symbols for 0 and 1. We
would write sentences such as VaJy (r =y+vy V z=y+y+ 1), which we
interpret as the assertion that “every number is either even or 1 plus an even
number.”

Definition 1.1 A language L is given by specifying the following data:
i) a set of function symbols F and positive integers ns for each f € F;
ii) a set of relation symbols R and positive integers ng for each R € R;



iii) a set of constant symbols C.

The numbers ny and ng tell us that f is a function of ny variables and
R is an ng-ary relation.

Any or all of the sets F, R, and C may be empty. Examples of languages
include:

i) the language of rings £, = {+,—,+,0,1}, where +, — and - are binary
function symbols and 0 and 1 are constants;

ii) the language of ordered rings £, = £, U {<}, where < is a binary
relation symbol;

iii) the language of pure sets £ = {J;

iv) the language of graphs is £ = { R} where R is a binary relation symbol.

Next, we describe the structures where £ is the appropriate language.

Definition 1.2 An L-structure M is given by the following data:
i) a nonempty set M called the universe, domain, or underlying set of M;
ii) a function f™: M" — M for each f € F;
iii) a set RM C M™% for each R € R;
iv) an element ¢c™ € M for each ¢ € C.

We refer to fM, RM, and ¢™ as the interpretations of the symbols f,
R, and c. We often write the structure as M = (M, fM, RM M . f €
F,R e R, and ¢ € C). We will use the notation A, B, M, N, ... to refer to
the underlying sets of the structures A, B, M, N, .. ..

For example, suppose that we are studying groups. We might use the
language £, = {-, e}, where - is a binary function symbol and e is a constant
symbol. An Lg-structure G = (G, 9,¢9) will be a set G equipped with a
binary relation -9 and a distinguished element ¢9. For example, G = (R, -, 1)
is an L,-structure where we interpret - as multiplication and e as 1; that is,
Y9 =.and e¢Y = 1. Also, N' = (N, +,0) is an Ly-structure where N =4 and
e9 = 0. Of course, A is not a group, but it is an L4-structure.

Usually, we will choose languages that closely correspond to the structure
that we wish to study. For example, if we want to study the real numbers
as an ordered field, we would use the language of ordered rings L., and give
each symbol its natural interpretation.

Formulas and Terms

We use the language L to create formulas describing properties of L-structures.
Formulas will be strings of symbols built using the symbols of £, variable



symbols vy, vq, . . ., the equality symbol =, the Boolean connectives A, V, and
-, which we read as “and,” “or,” and “not”, the quantifiers 4 and V, which
we read as “there exists” and “for all”, and parentheses ( , ).

Definition 1.3 The set of L-terms is the smallest set 7 such that
i) ¢ € T for each constant symbol ¢ € C,
ii) each variable symbol v; € 7 for i =1,2,..., and
i) if t,...,t,, €T and f € F, then f(ty,...,t,,) € T.

For example, -(vy, —(vs, 1)), -(4+(v1,v2), +(vs, 1)) and +(1,+(1,+(1,1)))
are L,-terms. For simplicity, we will usually write these terms in the more
standard notation vy (vs — 1), (vy +v2)(v3 + 1), and 1 + (1 4 (1 + 1)) when
no confusion arises. In the L .-structure (Z,+,-,0, 1), we think of the term
14+ (14 (1+1)) as a name for the element 4, while (v; + v2)(vs + 1) is a
name for the function (z,y,2) — (z + y)(z + 1). We will see below that we
can do something similar for any term in any L-structure.

We are now ready to define £-formulas.

Definition 1.4 We say that ¢ is an atomic L-formula if ¢ is either
i) t; = to, where t; and t, are terms, or
ii) R(t1,...,tn,), where R € R and t4,...,t,, are terms.

The set of L-formulas is the smallest set VW containing the atomic formu-
las such that

i) if ¢ is in W, then —¢ is in W,

ii) if ¢ and ¢ are in W | then (¢ A ¢) and (¢ V ¢) are in W, and

iii) if ¢ is in W, then Jv; ¢ and Vov; ¢ are in W.

Here are three examples of L.-formulas.

® UV — 0oV v > 0.

[ 31)2 Vg * Uy = V1.

o Vu; (v1 =0V vy vg-vy =1).

Intuitively, the first formula asserts that v; > 0, the second asserts that
v1 is a square, and the third asserts that every nonzero element has a multi-
plicative inverse.

We want to define when a formula is true in a structure. The first example
above already illustrates one problem we have to consider. Let R be the real
numbers. Is the formula v; > 0 true? Of course the answer is “it depends”.
If v; = 2 then it is true, while if v; = —7, then it is false. Similarly, in the
Lo-structure (Z+, —, -, <,0,1), the second formula would be true if v; = 9



but false if v; = 8. It should be clear that to decide if a formula is true or
false we need to consider how we interpret the variables.

Definition 1.5 Let V' = {vg, vy,...}. If M is an L- structure, an assignment
is a function o : V. — M.

We start by showing how to evaluate terms. Suppose M is an L- structure
and o0 : V — M is an assignment. We inductively define t™[o] € M as
follows:

i) if t = ¢ € C is a constant, then t"[o] = cM;

i) if t = v; is a variable, then t"[o] = o(v;);

iii) if t1, ..., ¢, are terms, f is an m-ary function symbol and t = f(t1,...,tn),
then

tMo] = o), - o))

For example, let £ = {f, g,c}, where f is a unary function symbol, g is a
binary function symbol, and c¢ is a constant symbol. We will consider the £-

terms ¢y = g(v1, ¢), t2 = f(g(c, f(v1))), and t5 = g(f(g(v1,v2)), g(v1, f(v2)))-
Let M be the L-structure (R,exp,+,1); that is, fM = exp, g™ = +, and
M=1.
Then
tMlo] = o(vy) +1,

t) o] = e 7" and

o] = 7T (g (vy) + ),
If 0 : V — M is an assignment, v € V and a € M we let o[%] be the
assignment
- [g] (07) = o(v) ifv; #wv .
vl a if v, =0
Satisfaction

Before defining truth for formulas, we need to illustrate one other important
concept.

Definition 1.6 We say that an occurence of a variable v in a formula ¢ is
free it is not inside a Jv or Vv quantifier; otherwise, we say that it is bound.



For example in the formula
VUQ (UQ >0 A 31)1 V1 - U = UQ)

v occurs freely while v; and v, are bound. A more complicated example is
the formula
v > 0V dvg v1 + vg = 0.

Clearly v, occurs freely, but vy has both free and bound occurences. The
first occurence is free, while the second is bound.

Definition 1.7 Let M be an L-structure. We inductively define M |=, ¢
for all £L-formulas ¢ and all assignments o.

i) If ¢ is t; = ty, then M =, ¢ if t}M[o] = t31[0].

i) If ¢ is R(ty, ... tny), then M =, ¢ if (t[o],. .., t3%[0]) € RM.

iii) If ¢ is =), then M &, ¢ if M £, ¢

iv) If ¢ is (¢ A B), then M =, ¢ ift M =, ¥ and M |=, 0

v) If ¢is (¢ VO), then M =, p if M =, ¢ or M =, 0

vi) If ¢ is Ju;1p, then M |=, ¢ if there is a € M such that M =, a1

vii) If ¢ is Vv;1), then M =, ¢ if M ):U o for all a € M.

If M =, ¢ we say that M with assignment o satisfies ¢ or ¢ is true in
M with assignment o.

Remarks 1.8 e There are a number of useful abbreviations that we will
use: ¢ — 1 is an abbreviation for —¢ V v, and ¢ < 1 is an abbreviation for
(¢ — )N (Y — ¢). In fact, we did not really need to include the symbols V
and V. We could have considered ¢ V ¢ as an abbreviation for =(=¢ A —))
and Yv¢ as an abbreviation for ~(3Jv—¢). Viewing these as abbreviations
will be an advantage when we are proving theorems by induction on formulas
because it eliminates the V and V cases.

We also will use the abbreviations /\ v; and \/ Y; for 1 A ... A, and
i=1 =1
Y1 V...V, respectively.
e In addition to vy, vy, ..., we will use w, z,y, z, ... as variable symbols.

e It is important to note that the quantifiers 9 and V range only over ele-
ments of the model. For example the statement that an ordering is complete
(i.e., every bounded subset has a least upper bound) cannot be expressed
as a formula because we cannot quantify over subsets. The fact that we



are limited to quantification over elements of the structure is what makes it
“first-order” logic.

When proving results about satisfaction in models, we often must do an
induction on the construction of formulas. As a first example of this method
we show that M =, ¢ only depends on the restriction of o to the variables
occuring freely in ¢.

Lemma 1.9 (Coincedence Lemma) Suppose M is an L-structure.

i) Suppose t is an L-term and o,7 : V — M are assignments that agree
on all variables occuring in t. Then t*™[o] = tM[r].

i1) Suppose ¢ is an L-formula and o,7 : V. — M are assignments that
agree on all variables occuring freely in ¢. Then M =, ¢ if and only if

ME, .

Proof i) We prove this by induction on terms.
If t = c € C is a constant, then

tMlo] = M = tM[7].
If t = v; is a variable, then

tM o] =o(v;) =7(v;) = tM [7].

Suppose the lemma is true for ¢,...,t,, f is an m-ary function symbol
and t = f(t1,...,tm). Then
tMo] = o), ttol) = P, ) = £

ii) We prove this by induction on formulas.
Suppose ¢ is t; =ty where t; and t, are L-terms. Then

ME; ¢ & t'o] =8"[0]
& 0[] =1"7]
& Mo

Suppose R is an m-ary relation symbol, tq,...,t,, are L- terms, and ¢ is
R(tl, ce ,tm) Then

M, ¢ & (tMo],... tMo]) € RM

s (M), .. tM[r]) € RM
& ME; 9.

6



Suppose the claim is true for ¢» and ¢ is ). Then

M):O'QS < Ml?éa,lvb
& MY
& M, ¢

Suppose the claim is true for ¢ and 6 and ¢ is ¥» A . Then

ME, ¢ & MPE,pand M E, 0
& M Yand M =, 0
& M, 0.

Suppose the claim is true for ¢, ¢ is Jv;xb and M |=, ¢. Then there
is @ € M such that M |=52) ¢. The assignments o[;}] and 7[;}] agree
on all variables, free in 1. Tﬁus, by induction, M [=r(ay ¢ and M =, ¢.
Symmetricly if M |=; ¢, then M =, ¢. l

Thus, by induction, M =, ¢ if and only if M =, ¢.

Definition 1.10 We say that an L-formula ¢ is a sentence if ¢ has no freely
occuring variables.

Corollary 1.11 Suppose ¢ is an L-sentence and M is an L — structure.
The following are equivalent:

i) M =, ¢ for some assignment o;

ii) M =, ¢ for all assignments o.

Definition 1.12 If ¢ is a sentence, we write M | ¢ if M =, ¢ for all
assignments o : V. — M.

Suppose ¢ is a formula with free variables from vy, ..., v,. If ay,...,a, €
M we write M = ¢(aq, ..., a,) if M =, ¢ whenever o is an assignment with
o(v;) = a; for i =1,...,n. By the Coincedence Lemma, this is well defined.

L-embeddings and Substructures

We will also study maps that preserve the interpretation of L.

Definition 1.13 Suppose that M and N are L-structures with universes
M and N, respectively. An L-embedding n : M — N is a one-to-one map



n: M — N that preserves the interpretation of all of the symbols of £. More
precisely:

Dn(fMa, ... an,)) = fN(nlar),...,n(a,,)) forall f € Fanday,...,a, €
M;

i) (a1,...,am,) € RM if and only if (n(a1),...,n(am,)) € RV for all
R e€R and ay,...,an; € M;

iii) n(cM) = N for c € C.

A bijective L-embedding is called an L-isomorphism. If M C N and the
inclusion map is an L-embedding, we say either that M is a substructure of
N or that AV is an extension of M.

For example:

i) (Z,+,0) is a substructure of (R, +,0).

ii) If n : Z — R is the function n(z) = €*, then n is an L,-embedding of
(Z,+,0) into (R, -, 1).

The next proposition asserts that if a formula without quantifiers is true
in some structure, then it is true in every extension. It is proved by induction
on quantifier-free formulas.

Proposition 1.14 Suppose that M is a substructure of N', @ € M, and ¢(v)
is a quantifier-free formula. Then, M |= ¢(@) if and only if N = ¢(a).

Proof
Claim If ¢(7) is a term and b € M, then t"(b) = tV(b). This is proved by
induction on terms.

If ¢ is the constant symbol ¢, then ¢M = V.

If ¢ is the variable v;, then tM(b) = b; = tV(b).

Suppose that ¢t = f(t1,...,t,), where f is an n-ary function symbol,
t1,...,t, are terms, and tM(b) = tV(b) for i = 1,...,n. Because M C N,
fM = fN|M™. Thus,

M) = ). 010)

We now prove the proposition by induction on formulas.



If ¢ is t; = tq, then
M b 6(@) & 14(a) = 91(a) & £(@) = (@) < N = 6(a).
If ¢ is R(tq,...,t,), where R is an n-ary relation symbol, then

M= 9@ <

Thus, the proposition is true for all atomic formulas.
Suppose that the proposition is true for 1) and that ¢ is —¢. Then,

M —¢(@) & ME Y@ < N ¢@) < N o).

Finally, suppose that the proposition is true for 1y and 1, and that ¢ is
Yo A 1. Then,

M= ¢(a) < M yo(a) and M = 1 (a)
& N (@) and M = ¢ (@)
& N E9(a).
We have shown that the proposition holds for all atomic formulas and
that if it holds for ¢ and ¢, then it also holds for —¢ and ¢ A . Because the
set of quantifier-free formulas is the smallest set of formulas containing the

atomic formulas and closed under negation and conjunction, the proposition
is true for all quantifier-free formulas.

Elementary Equivalence and Isomorphism

We next consider structures that satisfy the same sentences.

Definition 1.15 We say that two L-structures M and N are elementarily
equivalent and write M = N if

M = ¢ if and only if N = ¢

for all L-sentences ¢.



We let Th(M), the full theory of M, be the set of L-sentences ¢ such
that M = ¢. It is easy to see that M = N if and only if Th(M)= Th(N).

The cardinality of M is |M]|, the cardinality of the universe of M. If
n: M — N is an embedding then the cardinality of A is at least the
cardinality of M.

Our next result shows that Th(M) is an isomorphism invariant of M.
The proof uses the important technique of “induction on formulas.”

Theorem 1.16 Suppose that j : M — N is an isomorphism. Then, M =
N.

Proof We show by induction on formulas that M = ¢(aq,...,a,) if and
only if N = ¢(j(aq), ..., j(a,)) for all formulas ¢.
We first must show that terms behave well.

Claim Suppose that ¢ is a term and the free variables in ¢ are from v =
(v1,...,0,). Fora = (ay,...,a,) € M, we let j(@) denote (j(a1),...,Jj(a,)).
Then j(t" (@) = tV(j(@)).

We prove this by induction on terms.

i) If t = ¢, then j(tM(a)) = j(cM) = & = tN(j(@)).

i) If t = v;, then j(tM(@)) = j(a;) = tV(j(as)).

iii) If t = f(t1,...,tn), then

JM@) = JNEN@), - 6 (@)
= AU @)..... i @)
= AHG@). ...t (@)
= tY(j(@)).

We proceed by induction on formulas.
1) If qb(@) is tl = tg, then

ii) If ¢(v) is R(t1,...,t,), then
ME¢@ < (tM),... tM @) e RM

10



iii) If ¢ is =), then by induction
M = ¢(a) & M [Ep@) < N FE9(j(@) < N = oi(a).
iv) If ¢ is ¥ A 0, then

ME 6@ & ME (@ and M & 0()
& NEY({@) and N = 60(j(a) & N = ¢(j(@)).
v) If ¢(v) is Jw ¥ (v, w), then
M o@) < M@

b
& N E¥(i@),
& N Eo(j(@).

) for some b e M

c) for some ¢ € Nbecause j is onto

2 Theories

Let £ be a language. An L-theory T is simply a set of L-sentences. We say
that M is a model of T" and write M =T if M |= ¢ for all sentences ¢ € T'.

The set T'= {Vx x = 0,3z = # 0} is a theory. Because the two sentences
in T" are contradictory, there are no models of T. We say that a theory is
satisfiable if it has a model.

We say that a class of L-structures K is an elementary class if there is an
L-theory T such that K = {M : M ET}.

One way to get a theory is to take Th(M), the full theory of an L-
structure M. In this case, the elementary class of models of Th(M) is exactly
the class of L-structures elementarily equivalent to M. More typically, we
have a class of structures in mind and try to write a set of properties T
describing these structures. We call these sentences axioms for the elementary
class.

We give a few basic examples of theories and elementary classes that we
will return to frequently.
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Example 2.1 Infinite Sets

Let £ = (.
Consider the L£-theory where we have, for each n, the sentence ¢,, given
by
31’13.]72 Ce E'.len /\ xX; §£ Zj.
i<j<n
The sentence ¢,, asserts that there are at least n distinct elements, and an
L-structure M with universe M is a model of T" if and only if M is infinite.

Example 2.2 Linear Orders

Let £ = {<}, where < is a binary relation symbol. The class of linear orders
is axiomatized by the L-sentences

Vo —(x < x),

VaVyVz ((z <yANy < z) = x < z),

VaVy (r <yVz=yVy<zx).

There are a number of interesting extensions of the theory of linear orders.
For example, we could add the sentence

VaVy (x <y — 3z (x < 2Nz <y))
to get the theory of dense linear orders, or we could instead add the sentence
Vedy (x <yAVz(z <z—(z=yVy<z)))

to get the theory of linear orders where every element has a unique successor.
We could also add sentences that either assert or deny the existence of top
or bottom elements.

Example 2.3 Fquivalence Relations

Let £ = {E}, where FE is a binary relation symbol. The theory of equivalence
relations is given by the sentences

Vo E(z, ),

Vavy(E(z,y) — E(y, ©)),

VaVyVz((E(z,y) A Ey, z)) — E(x, z)).

If we added the sentence

Vedy(z £y AN E(x,y) AVz (BE(z,2) = (z=2Vz=y)))

12



we would have the theory of equivalence relations where every equivalence
class has exactly two elements. If instead we added the sentence

Jz3y(—E(z,y) AVz(E(z,2) V E(y, 2)))
and the infinitely many sentences
Va3dr,3z, ... 3z, ( /\ T # i N\ /\ E(x, x,))
i<j<n i=1

we would axiomatize the class of equivalence relations with exactly two
classes, both of which are infinite.

13



Example 2.4 Graphs

Let £ = {R} where R is a binary relation. We restrict our attention to
irreflexive graphs. These are axiomatized by the two sentences

Vo —R(x,x),

Vavy (R(z,y) — Ry, z)).

Example 2.5 Groups

Let £ = {-, e}, where - is a binary function symbol and e is a constant symbol.
We will write x - y rather than -(z,y). The class of groups is axiomatized by
Vee-x=x-e=ux,
VaVyVz - (y-2) = (x - y) - 2,
Vedy x-y=y-x =e.
We could also axiomatize the class of Abelian groups by adding

VaVy x-y=vy-x.
Let ¢, (z) be the L-formula

T XX =¢€
n—times
which asserts that nx = e.
We could axiomatize the class of torsion-free groups by adding {Vx (x =
eV =¢,(z)) : n > 2} to the axioms for groups. Alternatively, we could
axiomatize the class of groups where every element has order at most N by

adding to the axioms for groups the sentence

Va \/ On ().
n<N
Note that the same idea will not work to axiomatize the class of torsion
groups because the corresponding sentence would be infinitely long. In the
next chapter, we will see that the class of torsion groups is not elementary.
Let 1, (x,y) be the formula
1’ . a’: PR :L‘ g y7
e
n—times
which asserts that ™ = y. We can axiomatize the class of divisible groups
by adding the axioms {Vy3z ¢, (z,y) : n > 2}.
It will often be useful to deal with additive groups instead of multiplica-
tive groups. The class of additive groups is the collection structures in the
language £ = {+, 0}, axiomatized as above replacing - by + and e by 0.

14



Example 2.6 Ordered Abelian Groups

Let £ = {+, <, 0}, where + is a binary function symbol, < is a binary relation
symbol, and 0 is a constant symbol. The axioms for ordered groups are

the axioms for additive groups,

the axioms for linear orders, and

VaVyVz(x <y —z+ 2z <y + 2).

Example 2.7 Left R-modules

Let R be a ring with multiplicative identity 1. Let £L = {+,0}U{r :r € R}
where + is a binary function symbol, 0 is a constant, and r is a unary function
symbol for r € R. In an R-module, we will interpret r as scalar multiplication
by R. The axioms for left R-modules are

the axioms for additive commutative groups,

Vo r(x+y)=r(x)+r(y) foreachr € R,

Vo (r+s)(x) =r(z) + s(z) foreachr s e R,

Vo r(s(z)) =rs(x) forr,s € R,

Vo 1(z) = .

Example 2.8 Rings and Fields

Let £, be the language of rings {+, —,+,0,1}, where +, —, and - are binary
function symbols and 0 and 1 are constants. The axioms for rings are given
by

the axioms for additive commutative groups,

VaVyVz (z —y=z < x=y+ 2),

Ve x-0=0,

VaVyVz (z - (y - 2) = (z-y) - 2),

Vex-1=1-x=ux,

VaVyVz o - (y+2) = (z-y) + (x - 2),

VaVyVz (x +y) - 2= (- 2) + (y - 2).

The second axiom is only necessary because we include — in the language
(this will be useful later). We axiomatize the class of fields by adding the
axioms

VaVy -y =y -z,

Ve (r#0—3Jyx-y=1).

15



We axiomatize the class of algebraically closed fields by adding to the
field axioms the sentences

n—1

Vag ...Va,_;3x 2™ + Z a;xt =0

1=0

forn=1,2,.... Let ACF be the axioms for algebraically closed fields.
Let 9, be the L,-sentence Vxz + ...+ x = 0, which asserts that a field
m
has characteristic p. For p > 0 a prime, let ACF, = ACF U{¢,} and ACF, =
ACF U{—, : p > 0}, be the theories of algebraically closed fields of charac-
teristic p and characteristic zero, respectively.

Example 2.9 Ordered Fields

Let Lo = L, U{<}. The class of ordered fields is axiomatized by the axioms
for fields,

the axioms for linear orders,

VaVyVz (s <y —x+z2<y+2),

VaVyVz (e <yANz>0) —z-z2<y-z).

Example 2.10 Differential Fields

Let £ = £,U{¢}, where § is a unary function symbol. The class of differential
fields is axiomatized by

the axioms of fields,

Vavy o(z +y) = 6(x) + 0(y),

VaVy o(z-y) =x-0(y) +y - o(z).

Example 2.11 Peano Arithmetic

Let £ = {+,-, 5,0}, where + and - are binary functions, s is a unary function,
and 0 is a constant. We think of s as the successor function z — z + 1. The
Peano axioms for arithmetic are the sentences

Vo s(x) # 0,

Vo (z# 0 — 3y s(y) = z),
Ve x40 ==z,

Va Vy x4 (s(y)) = s(z +y),
Ve x-0=0,

16



VaVy z - s(y) = (z - y) + =,
and the axioms Ind(¢) for each formula ¢(v,w), where Ind(¢) is the sentence

vw [(¢(0,w) AV (¢(v, W) — ¢(s(v),W))) — Ve ¢(x, W)].

The axiom Ind(¢) formalizes an instance of induction. It asserts that if
aeM, X={meM: ME ¢(ma}, 0ec X, and s(m) € X whenever
m € X, then X = M.

Logical Consequence

Definition 2.12 Let 7" be an L-theory and ¢ an L-sentence. We say that ¢
is a logical consequence of T and write T' |= ¢ if M = ¢ whenever M = T.

We give two examples.

Proposition 2.13 a) Let £ = {4, <,0} and let T' be the theory of ordered
Abelian groups. Then, Vz(x #0 — x4+ x # 0) is a logical consequence of T.

b) Let T be the theory of groups where every element has order 2. Then,
T b’é E|$1E|l’25|1’3(l'1 7é i) N i) 7é T3 N T 7’é 1'3).

Proof

a) Suppose that M = (M,+,<,0) is an ordered Abelian group. Let
a € M\ {0}. We must show that a+a # 0. Because (M, <) is a linear order
a<0or0<a Ifa<0,thena+a <0+a=a < 0. Because (0 < 0),
a+a#0.If0<a,then0<a=0+a<a+aand again a + a # 0.

b) Clearly, Z/2Z ): TN _|E|$1§|LUQE|LU3(LU1 % To N\ Zo % XT3 N X1 §£ 373).

In general, to show that 7' = ¢, we give an informal mathematical proof
as above that M = ¢ whenever M |= T. To show that T' £ ¢, we usually

construct a counterexample.

In the next sections we will also need a notion of logical consequence for
formulas.

Definition 2.14 If I" is a set of L-formulas and ¢ is an L-formula, we say
that ¢ is a logical consequnce of I and write I' = ¢ if M =, ¢, whenever M
is an L-structure, o : V' — M is an assignment and M =, ¢ for all ¢ € T.
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3 Formal Proofs

A priori to show I' = ¢ we must examine all structures M and all assignments
o:V — M where M =, I and show that M |=, ¢. This is in general an
impossible task. In mathematics we show that I' = ¢ by giving a proof. In
this section we will give one example of a formal proof system. We will write
I' F ¢ if there is a formal proof of ¢ from I'. We will demand two properties
of our proof system.

e SOUNDNESS: If I' - ¢, then I" = ¢.
Thus anything that is provable is a logical consequence.

e COMPLETENESS: If " = ¢, then I" - ¢.
Thus every logical consequence is provable.

Soundness of our system will be routine. Goédel’s Completeness theorem
will be proved in the next section.

In addition we will demand that proof are finite. Any proof will be a finite
collection of symbols. Moreover it should be easy to check that a proported
proof is correct.

Our proof system is a variant of the sequent calculus.

Definition 3.1 A proof will be a finite sequence of assertions of the form

1. Ty ko
2. Tyk ¢y
n. T, F o,

where each T'; is a finite set of formulas (possibly empty), ¢; is a for-
mula and each assertion I'; F ¢; can be derived from the assertions I'y F
¢1,...,_1 F ¢;_1 by one of the inference rules that we will shortly de-
scribe.

We think of “I' - ¢” as the assertion that ¢ is derivable from I". We will
write I', 1) = ¢ to abbreviate ' U {¢)} I ¢.

Our inference rules will have the form

Tibér ... Tuk oy
AF .

This means that if have already established I'y F ¢1,..., ', F ¢,,, the we can
conlclude that A 1.

We begin to give the rules of our calculus.
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Structural Rules:
S1. (Assumption) If ¢ € ', then

'ko¢

S2. (Monotonicity) If I' C A, then

'k
l_

-

>
-

S3. (Proof by cases)
LyplFo Tk
TFo

Connective Rules
C1. (Contradiction Rule)

UooFy TiooF 9
I't¢

C2. (Left V-rule)
Lo T,y 0

L (pVy) o

C3. (Right V-rules)
't+o 'to
' (V) L'y V o)
Before giving the inference rules for quantifiers and equality we give some

sample derivations and prove some useful inference rules which are conse-
quences of the rules above.

Example: F (¢ V —¢)

1. ¢k o S1
2. G+ (¢pV o) C3
3. —pk ¢ S1
4. -k (pV—-¢) C3
5. F (¢ Vo) S3

Example: =——¢ F ¢
1. —=¢,m¢F ¢ S1
2. ==, ¢ o S1
3. k¢ C1
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Lemma 3.2 (Second Contradiction Rule)

ey I'kE—w
I'ko
Proof
1. THY Premise
2. I',=¢pF S2
3. 'k =9y Premise
4. T,—oF =0 S2
5. T'k o C1
Lemma 3.3 (Chain Rule)
'ty T,pF
I'Ey
Proof
1. T'kFo¢ Premise
2. T',—¢oF o S2
3. I',-¢ptF ¢ S1
4. T',-¢oF Apply 3.2 to 2,3
5. I'oF Premise
6. ' apply S3 to 4,5

Having proved the Second Contradiction Rule, we are now free to use it
as if it was an inference rules.

Lemma 3.4 (Contraposition)

LokFd
L= =¢
Proof
1. IoHvy Premise
2. I, 0t S2
3. I',=, 9ot 1 S1
4. T, =, 0t ¢ apply 3.2 to 2,3
5. T, =, o ¢ S1

6. I',-F ¢ apply S3 to 4,5

Exercise 3.5 We can similarly prove the following versions of the contrapo-
sition law.
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A S A Y
Lo L=gpkoé Lk -g

Lemma 3.6 (Modus ponens)

I'E(p— ) I'-¢

'Ey
Proof
Recall that (¢ — 1) is an abbreviation for (¢ V ).

1. T'Fo Premise

2. T',=¢pko S2

3. T,=¢F ¢ S1

4. T,—o o 3.2 applied to 2,3
5. T,k S1

6. I'(mpV)F C2

7. TE(=pV) Premise

8. I'Hv 3.3 applied to 6,7

Equality Rules:
E1l.(Reflexivity) Let ¢ be any term.

Ft=t

E2. (Substitution) Le
to, t1 be terms and let ¢(
(

t ¢(v) be a formula in which v occurs freely Let
t;) be the formula obtained by substituting ¢; for all

free occurences ofv in ¢(v

I'F ¢(to)
F, t(] — tl }_ ¢(t1)

We give two sample derivations.
Example: tg =t Ft; = to.
Let ¢(v) be “v =t,".

L Fto=t, El
9 ty=t Fto =t 32
3. to=t,to=toFti =1 E2 applied to ¢(v)
4. to=t1Ht; =1 3.3
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Example: to = tl, tl = tg H t() = tg

Substitute to for t; in tg = t;.

We conclude our list of inference rules with rules for manipulating quan-
tifiers.
Quantifier Rules

Q1. (right 3-introduction) Let ¢(v) be a formula in which v is a free variable
(there may be others). Suppose t is a term and ¢(t) is the formula obtained
by replacing all free occurences of v by t.

I'Fo(t)
' Jve(v)

Q2. (left F-introduction) Let ¢(v) be a formula in which v is a free variable.
Let y be either i) a constant symbol not occuring in I' or ) or ii) a variable
not occuring freely in I or .

L, o(y) o
[, 3v o(v) F oy

Q2. expresses the usual way that we prove 1 from Jvp(v). We assume
that ¢(v) holds for some v and show that ¢(v) - ¥. We then conclude 1)
follows from Jv ¢(v).

This completes our list of inference rules. We give one more useful lemma
and two sample derivations.

Example: Fdz x ==z
Let t be a term. Let ¢(v) be v = v.

1. Ft=t E1l
2. Fdrx==x Q1

Lemma 3.7 (Right V-introduction) Suppose v does not occur freely in I’

then
I'¢(v)
['FYv ¢(v).

Proof
Let ¢ be any sentence. Recall that Vv ¢(v) is an abbreviation for =3v =¢(v).

22



1. TFov) Premise

2. T, =¢(v) - ¢(v) S2

3. T',=¢(v) F —(v) S1

4. T, =¢(v) apply 3.2 to 2,3

5. ', Jv—¢(v) Q2

6. I',—¢F —-Fv-0(v) apply 3.4 to 5

7. T,=¢(v) - apply 3.2 to 2,3

8. T, Jv—¢(v) - - Q2

9. Ik —Fv-0(v) apply 3.5 to 8
10. T'F =3v—¢(v) by S2 from 6,9

Example: 32Vy ¢(z,y) F VyIz ¢(z,y).

L =o(z,y) b —d(z,y) S1
2. _'(b<$7 y) - Ely _'(b('ra y) Ql
3. 3y —o(z,y) F oz, y) apply 3.5 to 2.
4. _Ely _‘QS(:Ba y) - 3$¢($, y) Ql
5. =3y —o(x,y) F VyIzo(z,y) 3.7
6. Jx—Jy —é(zr,y) - YyIro(z,y) Q2

Theorem 3.8 (Soundness Theorem) Suppose that the assertion I' = ¢
can be derived using the inference rules given above. Then T’ = ¢.

Proof

Recall that I" | ¢ if for any L-structure M and any assignment o : V' —
M, if M |, T, then M =, ¢.

We prove the Soundness Theorem by induction on proofs.
Base cases:

S1. Clearly if ¢ € I, then I' = ¢.

El. Clearly M =, t =t for any assignment o.

Inference rules: If we have an inference rule

NiEoy oo Tk o
AF

then we must show that if I'; = ¢; for all 4, then A = 4.
This is obvious for S2, C2, C3, E2, and Q1.

S3. Suppose I'¢ = ¢ and T',—¢ = . If M =T, then M | ¢ or
M = —¢. In either case M |= 1.
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C1. Suppose I',;=¢ = ¢ and ', ¢ = ). Let M = T'. Since we can’t
have M = ¢ and M = - we must have M = ¢.

Q2. This is immediate from lemma 1.2.

Since all of the inference rules preserve truth the soundness theorem
holds.

Definition 3.9 Suppose I' is a (possibly infinite) set of sentences. We say
that ¢ is provable from I' if for some finite A C I' the assertion A F ¢ is
derivable in our calculus. If ¢ is provable from I' we write I' - ¢.

Corollary 3.10 If'F ¢, then ' = ¢.

Proof Let A be a finite subset of I such that A F ¢ is derivable. Then
A [= ¢. Since any model of I' is a model of A, I" = ¢.

Definition 3.11 : We say that I' is consistent if there is no sentence ¢ such
that I' - ¢ and I" - —¢.

Proposition 3.12 i) I is inconsistent if and only if I' = 9 for every formula
1.
ii) If T' is satisfiable, then I is consistent.

iii) If T is consistent, then for any formula ¢ either T' U{¢} is consistent
or 'U{—¢} is consistent (or both).

) If Tt/ ¢, then T'U {—=¢} is consistent.

Proof i) If '+ ¢ and I' F —¢, then I' - ¢ by Lemma 3.2. Certainly if every
sentence is derivable from I', then I' is inconsistent.

ii ) If A =T either A [~ ¢ or A = =¢. Thus by the Soundness Theorem,
L't/ ¢or 't/ —¢.

iii) Suppose not. Let 1) be any sentence. By i) I';¢ F ¢ and ', =¢ I 1.
By S3, I' F 9. Thus I is inconsistent.

iv) Suppose I'U{—¢} is inconsistent. Then I'U{—¢} - ¢. Since TU{¢p}
¢, by S3T F 6.

In §4 we will prove the converse of 3.12 ii). We will see that this is just
a restatement of Godel’s Completeness Theorem.
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4  Godel’s Completeness Theorem

In this section we will prove one of the central theorems of mathematical
logic

Theorem 4.1 (Go6del’s Completeness Theorem) Let I' be a set of L-
sentences. If ' |= ¢ then T' F ¢.

To prove the Completeness Theorem we will infact prove the following
converse to 3.12 ii).

(*) If I is consistent, then I' is satisfiable.

Proof (*) = Completeness
Suppose I' I/ ¢, then, by 3.12, I' U {—¢} is consistent. By (*) I' U {—¢}
has a model M. But then I' £ ¢.

To prove (*) we must actually construct a model of I'. The method of
proof we give here is due to Leon Henkin.

Definition 4.2 We say that a consistent set of L-sentences ¥ is maximal
consistent if for all L-sentences ¢ either ¢ € ¥ or =¢ € ¥ (as ¥ is consistent
exactly one of ¢ and —¢ is in X).

Lemma 4.3 i) If ¥ is mazimal consistent and ¥ & ¢, then ¢ € X.
it) If 3 is maziaml consistent and ¢ V ¢ € 3, then ¢ € 3 or ¢p € 3.

Proof
i) If not —¢ € ¥ and ¥ is inconsistent.

ii) Otherwise —¢ and —¢) are both in ¥ and hence =(¢ V ¢) € X.

Definition 4.4 We say that > has the witness property if for any L-formula
¢(v), there is a constant ¢ such that

L E (Fup(v) — ¢(c)).
Theories with this property are sometimes called Henkinized.

The proof of (*) comes in two steps:

STEP 1. Show that if I' is consistent, there is > O I which is maximal
consistent and Henkinized. (Note: In general we will have to expand the
language to get a theory with the witness property.)
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STEP 2. Show that if > is maximal consistent and has the witness prop-
erty, then there is a model of X.

We will examine STEP 2 first. Let £ denote the language of ¥. Let C
be the constants of £. The universe of our model will be equivalence classes
of elements of C. If ¢; and ¢y are constants we say that ¢y Ecy iff and only if
c1 = Cy € .

Lemma 4.5 E is an equivalence relation.

Proof
Let ¢q,co,c3 € C. By El1, E2, and the examples following them

Zl—clzcl

2,01262}_02261

and
E,Cl = C9,C9 = C3 }_Cl = C3.

Thus, by 4.3, F is an equivalence relation.
For ¢ € C let [c] denote the equivalence class of c. We now begin to build

a structure A which we call the canonical structure for 3. The underlying
set of A will be

A=A{[c]:ceC}.
The next lemma will allow us to interpret the relation and function symbols

of L.

Lemma 4.6 i) If R is an n-ary relation symbol of L, c1, ..., ¢p,dy, ..., d, €
C and c;Ed; for all v, then

R(Cl,...,Cn) EZ@R(dl,...,dn) €.

i1) Let f be an n-ary function symbol of L and let ¢y, ..., c, € C, there is
d € C such that f(ci,...,c,) =d € X.

i11) Let f be an n-ary function symbol of L and let cq, ..., cp,do, ..., d, €
C' such that ¢;Ed; fori >0, f(e1,...,¢,) =co € X and f(dy,...,d,) =dy €
Y. Then cy=dy € 2.
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Proof
i) By repeated applications of E2,

cp=di,....,cpn =dpt R(cy,...,c) < R(dy,...,d,)

ii) By E1
Ffler, ..., en) = fler, .. cn).

Thus by Q1
3 fle,...,c) =v.

Thus Fv f(eq,...,¢,) = v isin X. Since ¥ has the witness proterty, there is
a constant symbol d such that f(ci,...,¢,) =d € %.

iii) By repeated application of E2,
&1 :dla"'>cn:dnaf(cla"'>cn) :CO}_f(dlw"adn) = Co

Thus ¥ F f(dy,...,d,) =coand X F f(dy,...,d,) = dy. By the examples in
§3, Y Coy = d().
We can now give the interpretation of £ in A.

e The universe of A is A.
e For each constant symbol c of £, let ¢ = [c].
o If R is an n-ary relation symbol let R4 C A" be defined by

RA={(Jer],. .. [ea]) € A" : R(cn,. .., c0) € 5}

By 4.6 i) R4 is well defined.
o If f is an n-ary function symbol define f4: A" — A by

FAUel, - ) =d < fle, ... co) =d e .

By 4.6 ii) and iii) f* is well defined and f4: A" — A.

Lemma 4.7 Suppose t(vy,...,v,) is a term (some of the variables may not
occur) and cg,...,c, € C such that t(ci,...,c,) = co € X. If 0 is an
assignment where o(v;) = [¢;], then t4[o] = [co]. Moreover if d, . ..,d, € C,

t(dl, RN dn) = do € and d; Fc; fOT’ 1> O, then C()Edo.

27



Proof The moreover is clear since
t(Cl,...,Cn) :Co,t(dl,...,dn) :dQ,Cl = dl,...,Cn :dn I_CO :do

S0 ¢g = dg € 2.
The main assertion is proved by induction on the complexity of ¢.
If ¢ is a constant symbol ¢, then t*[c] = [c]. Since ¢ = ¢y € %, [¢] = [co].
If ¢ is the variable v;, then t4[o] = [¢;] and ¢; = ¢o € 2, thus [¢y] = t4[0].
Suppose t is f(t1,...,t,) and the claim holds for ¢y, ..., t,,. For each i,
Jw ti(er, ... ) =w € X.

Thus since ¥ has the witness property, for each i there is b; € C such that
ti(cr,...,c,) = b; € . By our inductive assumption t[o] = [b;]. Clearly
t(cry . .y¢n) = f(b1,...,by) € X, thus f(by,...,bn) = ¢y € X. But then

t4o] = f([ba,- .- [bm]) = lco]

as desired.
Thus the claim holds for all terms.

Theorem 4.8 IfY is a mazimal, consistent theory with the witness property
and A is the canonical structure for ¥, then A = 3.

Proof
We will prove that for all formulas ¢(vy, . ..,v,) and constants ¢y, ..., ¢,

AE o([c1], ..., [cn]) if and only if  @(cq,...,c,) € 2.

This will be proved by induction on the complexity of ¢.

1) ¢ is tl(’Ul, Ce ,Un) = tQ(Ul, Ce ,’Un)
Since ¥ has the witness property there are dy, dy € C' such that t;(¢; ..., ¢,) =
d; € ¥. By Lemma 4.7 t;([c1], ..., [cn]) = [di]. Thus

AEt(al. el =t(al. . lal) < ld]=[d
= tl(E) == tQ(E) € Z

2) ¢ is R(ty,...,t,) where R is an m-ary relation symbol.
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Since ¥ has the witness property there are dy,...,d,, € C such that
ti(Cl, ceey Cn) =d; € ¥. By 4.7, ti([cl], Ceey [Cn]) = [dz]

AEo(al,.. . le]) & (d,....[d)) € R
e

3) ¢ is
Then
AE6() & AR ()
< Y(¢) % (by induction)
& ¢(c) € X since X is maximal.
4) ¢pisp Vo

AEo(a]) & AEd(a]) vAE ()
& (¢) € X or 0(¢) € X by induction
o ¢(@) € ¥ by 4.3i).

5) ¢(v) is Jw P(w,v) o

If AE 3w ¥(w,][c]), then there is d € C such that A = v¥([d], [c]). By
induction ¥(d,¢) € ¥, and by maximality Jw ¢ (w,¢) € X.

On the other hand if Jw ¢ (w,¢) € 3, then, since 3 has the witness

property, there is d € C, such that 1(d,¢) € 3. By induction A = ¥ ([d], [c])

and A E o([d).
We have now completed STEP 2. That is, we have shown that if ¥ is

maximal, consistent theory with the witness property, then there is A = X.
The completeness theorem will now follow from the following result.

Theorem 4.9 Let I' be a consistent L-theory. There is L* D L and > D T
a maximal consistent L*-theory with the witness property.

Let Lo=L, let Cy be the constants of £, and let I'y = I". In general let
F,, be the set of all £,-formulas in one free variable v.
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Let L,11 = £, U {cy : ¢(v) € F,}, where each ¢, is a new constant
symbol. For ¢(v) € F,, let 64 be the formula

(Fup(v) — d(cp))-

Let
Lo =T,U{0,: 0 € F,}.
Let
I = U T,
n>0
and
=]z
n>0

Lemma 4.10 i) If ¥ O I' is an L*-theory, then ¥ has the witness property.
ii) Each T, is consistent.
iii) T is consistent.

Proof
i) For any £* formula ¢(v) in one free variable v, there is an n, such that
¢(v) € F,. Then (3vp(v) — ¢(cy)) € T'nyr € X. Thus ¥ has the witness

property.
ii) We prove this by induction on n. Since I'y = I it is conistent. Suppose
I',, is consistent, but ', is inconsistent. Since the proofs of contradictions

are finite, there are ¢1,...,¢, € F, such that I',,0,,,...,0,4, is inconsis-
tent. By choosing m-minimal we may assume that A =1T',,04,,...,0,, , is
consistent. Let ¢(v) be ¢,,. In particular there is an L-sentence 1 such that
Aty
and
A b, .

Consider the following proof
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1. A —=Jvep(v) F =Fve(v) S1
2. A, =Fvue(v) 0y C3 since 0, is (—Jvp(v) V ¢(cy))
3. A0y Premise
4. A =Fup(v),0s - S2
5. A, —Jvp(v) E apply Lemma 3.3 to 2,4
6. A, d(co) - 0(cs) 1
7. A p(cy) 0y C3 since 0, is (—Jvp(v) V ¢(cy))
8. A, ¢(cy),0F & S2 to 2,4
9. A ¢p(cy) F by Lemmad3.3
10. A, Jvgp(v) Q2 (as ¢, does not occur in 1)
11. Ak S3 applied to 5,10

Thus A F 1, a contradiction.
iii) In general suppose we have consistent theories

S CY C..

and ¥ = J, X,. If ¥ is inconsistent, there is ¢ such that ¥ F ¢ A —¢. Since
the proof of ¢ A —¢ uses only finitely many premises from >, there is an n
such that ¥, = ¢ A —¢, a contradiction.

We have one lemma remaining.

Lemma 4.11 If A is a consistent L-theory, there is a maximal consistent
L-theory ¥ O A.

If we apply Lemma 4.11 to I'* from Lemma 4.10 we obtain a maximal
consistent > D I' with the witness property.

We first prove Lemma 4.11 in the special case that the language L is
countable. We let ¢g, ¢1,... list all L-sentences. We build a sequence of
consistent L-theories

A:A02A12A22

as follows: We assume that A, is consistent. If A, U {¢,} is consistent, let
Apyr = A, U{on}. If not, let A,y U {=¢,}. By Lemma 3.12 iii), A, is
consistent.

Let ¥ = J, A,. As in Lemma 4.10 iii), ¥ is a consistent L-theory. For
any ¢, either ¢ or —¢ is in 3. Thus X is maximal consistent.

In the general case when L is uncountable we need to use Zorn’s lemma.
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Definition 4.12 Let P be a set and let < be a partial order of P. We say
that X C Pis a chainifforall z,y € X x =yorx <yorz >y (ie. <
linearly orders X). We say that z is an upper bound for X if for all z € X,
xr < z. We say that z € P is mazimal for < if there is no z* € P, with
z <z

Lemma 4.13 (Zorn’s Lemma) Let (P, <) be a partial order such that ev-
ery chain has an upper bound. Then there is z € P maximal for <.

Zorn’s Lemma is equivalent to the Axiom of Choice.

Proof of Lemma 4.11
Let P ={I'" D A:I'is a consistent L-theory}. We order P by I'g < I'y if
and only if 'y C T'y.

Claim If X C P is a chain, then X has an upper bound.

Let
r=[Jr.
rex

Clearly for all I' € X, I' C I'* thus ['* is an upper bound. We need only show
that I'* € P (ie. I'™* is consistent).

Suppose I'* is inconsistent. Since proofs are finite, there are 64,...,6,, €
['* such that {6y,...,0,,} is inconsistent. For each i, there is n;, such that
0; € I'y,,. Since X is a chain, there is & < m such that for all ¢, I';,, C T, .
Thus all 6; € I',,, and I, is inconsistent, a contradiction. Hence I'* € P.

Thus we may apply Zorn’s Lemma to obtain ¥ € P which is maximal for
<. Since ¥ € P, ¥ O A and X is consistent. Let ¢ be any L-sentence, By
3.12 iii) one of X U {¢} or XU {—¢} is consistent. Say X U {¢} is consistent.
Then ¢ € ¥ for otherwise ¥ U {¢} would contradict the maximality of X.
Thus ¥ is maximal.

We can now summarize the proof of the Completeness Theorem. Suppose
I' is a consistent L-theory. By Lemma 4.10 there is £* D L and I D T" a
consistent L*-theory such that every L*-theory extending I' has the witness
property. By Lemma 4.11 there is a maximal consistent L£*-theory ¥ D T
By construction I" has the witness property. By Theorem 4.8 there is A = 3.
Clearly A =T.

Our proof gives some information about the size of the model obtained.
For £ any language, |£| is the cardinality of the set of constant, function and
relation symbols of L.
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Corollary 4.14 Suppose I' is a consistent L-theory. Then I' has a model
A= (A, ...) with |A| < |L|+ No.

Proof The model of I" that we build above as cardinality at most |C/|, where
C' is the set of constant symbols of £*. We argue inductively that £,, has at
most |L£| + Ny constant symbols. This is because £, 1 has at most one new
constant symbol for each £,-formula. In general if a language has x symbols,
there are k + Ny possible formulas (formulas are finite strings of symbols).
[Note: Unless & is finite k + Ry = k.|

5 Basic Model Theory

Our first result is deceptively simple but suprisingly powerful consequence of
the Completeness Theorem.

If £ is any language let ||£|| denote the cardinality of the set of L-
sentences. We know that ||£|| = max(|L], Ro).

Theorem 5.1 (Compactness Theorem) Suppose I' is a set of sentences
and every finite subset of I' is satisfiable. Then I' is satisfiable. Indeed I' has
a model of cardinality at most ||L]].

Proof If I' is not satisfiable, then, by the Completeness Theorem, I is
inconsistent. Thus for some ¢, I' - ¢ and I' = —¢. But then there is a finite
A C T such that A F ¢ and A F —¢. By the Soundness Theorem, A is not
satisfiable.

Corollary 5.2 Suppose I' has arbitrarily large finite models, then I' has an
infinite model.

Proof Let ¢, be the sentence:
duy ... v, /\ v; # ;.
1<j<n

Let I'* =T'U{¢, :n=1,2,...}. Clearly any model of ['* is an infinite model
of I'. If A C I'* is finite, then for some N, A C T'U{¢1,...,on}. There is
A =T with |A] > N, thus A = A. By the Compactness Theorem, I'* has a
model.
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Corollary 5.3 Let L = {+,-,0,1,<} and let Th(N), be the complete theory
of the natural numbers. There is A = Th(N) with a € A infinite.

Proof Let £* = L U {c}, where ¢ is a new constant symbol. Let I' =
Th(N)U{c>0,c>1,e>1+1,c>1+1+1,...}. If A CT is finite, then

ACTh(N)U{c>0,...,c>1+...+1}
—_—
N —times
for some N. But then we can find a model of A by taking the natural
numbers and interpreting ¢ as N + 1. Thus by the Compactness Theorem

['* has a model. In this model the interpretation of ¢ is greater that every
natural number.

Example: Let G = (V, E) be a graph such that every finite subgraph can
be four colored (for example suppose G is a planar graph). We claim that
G can be four colored. Let £L = {R,B,Y,G} U{c, : v € V}. Let I" be the
L-theory with axioms:

i) Vo [(R(z) A\=B(x) A=Y () A=G(2)) V...V (=R(x) AN =B(z) A=Y (z) A
G(x))]

ii) if (v,w) € E add the axiom: =(R(c,) AR(cy))A.. . A=(G(cy) NG(Cy)).-

If A is a finite subset of I', let Vo be the verticies such that ¢, is used in
A. Since the restriction of G to Vj is four colorable, A is consistent. Thus

[ is consistent. Let A E=T.
Color G by coloring v as A colors c¢,,.

Theorem 5.4 (Lowenheim—Skolem Theorem) Suppose D is an L-theory.
If T has an infinite model, then it has a model of cardinality k for every
k2> |IL]].

Proof Let I be a set of cardinality x. Let £* = LU {c, : a € I'}. Let
I"=TU{cy #cz:a<p}

If A is a finite subset of ['*, then in any infinit model A of I we can interpret
the constants such that A = A. Thus ' has a model of size at most x. But
certainly any model of I'* has size at least k (the map « — ¢, is one to one).

Definition 5.5 A consistent theory I' is complete if I' = ¢ or I' = —¢ for
all L-sentences ¢.
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It is easy to see that I" is complete if and only if M < N for any M, N
[. If M is an L-structure, then Th(M) is a complete theory, but it may be
difficult to figure out if ¢ € Th(M). We will give one useful test to decide if
a theory is complete.

Definition 5.6 I is k-categorical if and only if any two models of I" of
cardinality x are isomorphic.

Let £ = {+,0} be the language of additive groups and let 7" be the
L-theory of torsion-free divisible Abelian groups. The axioms of T are the
axioms for Abelian groups together with the axioms

Ve(r #0—x+...+x #0)

n—times
and
Vyde x+ ...tz =y
~—_——
n—times
formn=1,2,....

Proposition 5.7 The theory of torsion-free divisible Abelian groups is k-
categorical for all k > Ng.

Proof We first argue that models of T" are essentially vector spaces over the
field of rational numbers Q. Clearly, if V' is any vector space over Q, then
the underlying additive group of V' is a model of T. On the other hand, if
GET,ge G, and n € N with n > 0, we can find h € G such that nh = g.
If nk = g, then n(h — k) = 0. Because G is torsion-free there is a unique
h € G such that nh = g. We call this element g/n. We can view G as a
Q-vector space under the action g = m(g/n).

Two Q-vector spaces are isomorphic if and only if they have the same
dimension. Thus, models of T" are determined up to isomorphism by their
dimension. If G has dimension A, then |G| = A + Xy, If k£ is uncountable
and G has cardinality x, then G has dimension . Thus, for x > Ry any two
models of T" of cardinality s are isomorphic.

Note that T' is not Ny-categorical. Indeed, there are Ny nonisomorphic
models corresponding to vector spaces of dimension 1,2,3,... and Ng.

A similar argument applies to the theory of algebraically closed fields. Let
ACF, be the theory of algebraically closed fields of characteristic p, where p
is either 0 or a prime number.
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Proposition 5.8 ACF, is k-categorical for all uncountable cardinals k.

Proof Two algebraically closed fields are isomorphic if and only if they have

the same characteristic and transcendence degree (see, for example Lang’s

Algebra X §1). An algebraically closed field of transcendence degree A has

cardinality A + RNg. If K > N, an algebraically closed field of cardinality &

also has transcendence degree k. Thus, any two algebraically closed fields of

the same characteristic and same uncountable cardinality are isomorphic.
We give two simpler examples.

e Let £ be the empty language. Then the theory of an infinite set is
r-categorical for all cardinals k.

e Let £ = {E}, where E is a binary relation, and let 7" be the theory of
an equivalence relation with exactly two classes, both of which are infinite.
It is easy to see that any two countable models of T" are isomorphic. On
the other hand, T is not k-categorical for k > Ny. To see this, let Mg be a
model where both classes have cardinality x, and let M; be a model where
one class has cardinality x and the other has cardinality Ny. Clearly, M,
and M are not isomorphic.

Theorem 5.9 (Vaught’s Test) Suppose every model of T is infinite, x >
||L|| and T is k-categorical. Then I is complete.

Proof Suppose not. Let ¢ be an L-sentence such that I' i~ ¢ and I = —¢.
Let 'y = TU{¢} and I'; = ' U {—¢}. Each I'; has a model, thus since I
has only infinite models, each I'; has an infinite model. By the Lowenheim-
Skolem theorem there is A; = T'; where A; has cardinality . Since I' is
k-categorical, Ay = A; and hence by 1.16, 4y < A;. But Ay | ¢ and
A; E —¢, a contradiction.

The assumption that T" has no finite models is necessary. Suppose that T’
is the {4+, 0}-theory of Abelian groups, where every element has order 2. In
the exercises, we will show that T is k-categorical for all kK > Ry. However,
T is not complete. The sentence IxIyIz (x #y Ay # 2z A z # x) is false in
the two-element group but true in every other model of T

Vaught’s test implies that all of the categorical theories discussed above
are complete. In particular, algebraically closed fields are complete. This
result of Tarski has several immediate interesting consequences.

The next definition is, for the moment, imprecise. In later chapters we
will make the concepts precise.
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Definition 5.10 We say that an L-theory T is decidable if there is an
algorithm that when given an L-sentence ¢ as input decides whether T' = ¢.

Lemma 5.11 Let T be a recursive complete satisfiable theory in a recursive
language L. Then T is decidable.

Proof Start enumerating all finite sequence of strings of L£-symbols. For
each one, check to see if it is a derivation in the sequent calculus of A - ¢ or
A F —¢. If it is then check to see if all of the sentences in A and in I'. If so
output yes if A - ¢ and no if A F —¢. If not, for on to the next string. Since
I is complete, the completeness theorem implies there is a finite A C I' such
that A F ¢ or A —=¢. Thus our search will halt at some stage.

Informally, to decide whether ¢ is a logical consequence of a complete
satisfiable recursive theory T, we begin searching through possible proofs
from T until we find either a proof of ¢ or a proof of —¢. Because T is
satisfiable, we will not find proofs of both. Because T' is complete, we will
eventually find a proof of one or the other.

Corollary 5.12 For p = 0 or p prime, ACF, is decidable. In particular,
Th(C), the first-order theory of the field of complex numbers, is decidable.

The completeness of ACF, can also be thought of as a first-order version
of the Lefschetz Principle from algebraic geometry.

Corollary 5.13 Let ¢ be a sentence in the language of rings. The following
are equivalent.

i) ¢ is true in the complex numbers.

i1) ¢ 1is true in every algebraically closed field of characteristic zero.

i11) ¢ is true in some algebraically closed field of characteristic zero.

iv) There are arbitrarily large primes p such that ¢ is true in some alge-
braically closed field of characteristic p.

v) There is an m such that for all p > m, ¢ is true in all algebraically
closed fields of characteristic p.

Proof The equivalence of i)-iii) is just the completeness of ACF, and v)=
iv) is obvious.

For ii) = v) suppose that ACFy = ¢. There is a finite A C ACF, such
that A F ¢. Thus, if we choose p large enough, then ACF, = A. Thus,
ACF, = ¢ for all sufficiently large primes p.
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For iv) = ii) suppose ACF [~ ¢. Because ACF is complete, ACFy = —¢.
By the argument above, ACF, = —¢ for sufficiently large p; thus, iv) fails.
Ax found the following striking application of Corollary 5.13.

Theorem 5.14 FEvery injective polynomial map from C™ to C™ is surjective.

Proof Remarkably, the key to the proof is the simple observation that if &
is a finite field, then every injective function f : k™ — k" is surjective. From
this observation it is easy to show that the same is true for F;lg, the algebraic
closure of the p-element field.

Claim Every injective polynomial map f : (F2'¢)" — (F2')" is surjective.

Suppose not. Let @ € F2'¢ be the coefficients of f and let be (F2&)™ such
that b is not in the range of f. Let k be the subfield of IF;ﬂg generated by
@,b. Then f|k™ is an injective but not surjective polynomial map from k"
into itself. But F;lg = U 2, Fpn is a locally finite field. Thus & is finite, a
contradiction.

Suppose that the theorem is false. Let X = (Xi,...,X,). Let f(X) =
(f1(X),..., fu(X)) be a counterexample where each f; € C[X] has degree at
most d. There is an L-sentence ®,, 4 such that for K a field, K = @, 4 if and
only if every injective polynomial map from K" to K™ where each coordinate
function has degree at most d is surjective. We can quantify over polynomials
of degree at most d by quantifying over the coefficients. For example, ®4 5 is

the sentence
‘v’aO,oVaQ1‘v’a0y2‘v’a1,OVaL1‘v’a2y0Vbovo‘v’bOy1V6072V6170‘v’b1y1V6270

[(V$1Vy1VI2Vy2((Z ai gyl = Y ai eyl A Y bigaiyl = 30 by jabyl) —
(r1 =22 ANy = 32)))— YuVoIaTy > a; j2'y? = uw A D b ja'y? = vl.

By the claim leg = @, 4 for all primes p. By Corollary 5.13, C = @, 4,
a contradiction.

Back-and-Forth

We give two examples of Ny-categorical theories. The proofs use the “back-
and-forth” method, a style of argument that has many interesting applica-
tions. We start with Cantor’s proof that any two countable dense linear
orders are isomorphic.

Let £ = {<} and let DLO be the theory of dense linear orders without
endpoints. DLO is axiomatized by the axioms for linear orders plus the
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axioms
VaVy (z <y — Jzx <z <y)

and
Vedydz y < x < z.

Theorem 5.15 The theory DLO is Rg-categorical and complete.

Proof Let (A, <) and (B, <) be two countable models of DLO. Let ag, a1, as, . . .
and bg, by, ba, ... be one-to-one enumerations of A and B. We will build a se-
quence of partial bijections f; : A; — B; where A; C A and B; C B are finite
such that fo C f1 C ... and if z,y € A; and = < y, then f;(x) < fi(y). We
call f; a partial embedding. We will build these sequences such that A = (J A;
and B = |J B;. In this case, f = | f; is the desired isomorphism from (A, <)
to (B, <).

At odd stages of the construction we will ensure that | JA; = A, and at
even stages we will ensure that | J B; = B.
stage 0: Let Ay = By = fo = 0.
stage n + 1 = 2m + 1: We will ensure that a,, € A, 1.

If a,, € A,, then let A,.1 = A,, B,41 = B, and f,,11 = f,. Suppose that

am € A,. To add a,, to the domain of our partial embedding, we must find
b€ B\ B, such that

a <y < fula)<b

for all & € A,. In other words, we must find b € B, which is in the image
under f,, of the cut of a,, in A,. Exactly one of the following holds:

i) a,, is greater than every element of A,,, or

ii) a,, is less than every element of A, or

iii) there are a and § € A, such that a < 3, v < a or v >  for all
ve A, and a < a,, < [.

In case i) because B, is finite and B = DLO, we can find b € B greater
than every element of B,. Similarly in case ii) we can find b € B less
than every element of B,. In case iii), because f, is a partial embedding,
fula) < fo(B) and we can choose b € B\ B,, such that f,(a) < b < f.(0).
Note that

a <y e fola)<b

for all o € A,,.
In any case, we let A,.1 = A, U{an}, Bpr1 = B, U {b}, and extend f,
to fni1: Apt1 — Bny1 by sending a,, to b. This concludes stage n.
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stage n + 1 = 2m + 2: We will ensure that b,, € B, 1.

Again, if b, is already in B,,, then we make no changes and let A, =
A,, B,i1 = B, and f,;1 = f,. Otherwise, we must find a € A such that the
image of the cut of a in A, is the cut of b, in B,,. This is done as in the odd
case.

Clearly, at odd stages we have ensured that | J A, = A and at even stages
we have ensured that |J B, = B. Because each f, is a partial embedding,
f = fn is an isomorphism from A onto B.

Because there are no finite dense linear orders, Vaught’s test implies that
DLO is complete.

The proof of Theorem 5.15 is an example of a back-and-forth construction.
At odd stages, we go forth trying to extend the domain, whereas at even
stages we go back trying to extend the range. We give another example of
this method.

The Random Graph

Let £ = {R}, where R is a binary relation symbol. We will consider an £-
theory containing the graph axioms Vx —~R(x, z) and VaVy R(x,y) — R(y, x).
Let v, be the “extension axiom”

V... Ve, ,Vy ... Yy, </\ /\ T #Fy; — 32 /\(R(xi, 2) N = R(y;, z))) )

i=1j=1 i=1

We let T' be the theory of graphs where we add {3z3y = # y} U{¢, : n =
1,2,...} to the graph axioms. A model of T is a graph where for any finite
disjoint sets X and Y we can find a vertex with edges going to every vertex
in X and no vertex in Y.

Theorem 5.16 T is satisfiable and Ry-categorical. In particular, T is com-
plete and decidable.

Proof We first build a countable model of T. Let Gy be any countable
graph.
Claim There is a graph G; D Gy such that Gy is countable and if X and
Y are disjoint finite subsets of G then there is z € G such that R(z, z) for
rx € X and -~R(y,z) fory € Y.

Let the vertices of GG; be the vertices of Gy plus new vertices zx for each
finite X C Gj. The edges of GG; are the edges of GG together with new edges
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between x and zx whenever X C (G is finite and x € X. Clearly, Gy is
countable and has the desired property.

We iterate this construction to build a sequence of countable graphs Gy C
GGy C ... such that if X and Y are disjoint finite subsets of G;, then there
is z € Gi;1 such that R(x,z) for x € X and —R(y,z2) for y € Y. Then,
G =|J G, is a countable model of T'.

Next we show that T is Ng-categorical. Let G; and G, be countable
models of T'. Let ag,aq, ... list G, and let by, by, ... list Go. We will build a

sequence of finite partial one-to-one maps fy C f; C fo C ... such that for
all x,y in the domain of f,
Gl ): R(l‘,y) if and Only if G2 ): R(fs($)7 fs(y)) (*)
Let f() = @
stage s +1 = 2i + 1: We make sure that a; is in the domain.
If a; is in the domain of f,, let f,. 1 = fs. If not, let ay,...,a,, list

the domain of f, and let X = {j < m : R(aj,a;)} and let ¥ = {j <
m : ~R(a;,a;)}. Because Gy = T, we can find b € G, such that Gy =
R(fs(a;),b) for j € X and G2 = —R(fs(a;),b) for j € Y. Let foq =
fs U{(a;,b)}. By choice of b and induction, fs,1 satisfies ().

stage s + 1 = 2i 4+ 2: By a similar argument, we can ensure that f,,; satisfies
(x) and b; is in the image of fs 1.

Let f = J fs. We have ensured that f maps G; onto Gs. By (x), f is a
graph isomorphism. Thus, G; = G5 and T is Ny-categorical.

Because all models of T" are infinite, 71" is complete. Because T is recur-
sively axiomatized, T is decidable.

The theory T is very interesting because it gives us insights into random
finite graphs. Let Gy be the set of all graphs with vertices {1,2,..., N}. We
consider a probability measure on G where we make all graphs equally likely.
This is the same as constructing a random graph where we independently
decide whether there is an edge between ¢ and j with probability % For any

L-sentence ¢,
pa(e) = HEEG G O
[9%

is the probability that a random element of Gy satisfies ¢.
We argue that large graphs are likely to satisfy the extension axioms.

Lemma 5.17 A}im pn(Un) =1 forn=1,2,....
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Proof Fix n. Let G be a random graph in Gy where N > 2n. Fix
T1, .y Ty Y1, - - -, Yn, 2 € G distinct. Let ¢ be the probability that

B </\(R($u z) N R(y;, Z))) :

1=1

Then ¢ = 1 — 272", Because these probabilities are independent, the proba-
bility that

G 3 < N (R (i, 2) A =Ry, z)))

i=1

is ¢72". Let M be the number of pairs of disjoint subsets of G of size n.

Thus

py(—tn) < MgV 72 < N2 T2,
Because ¢ < 1,

i (i) = lim N =0

as desired.
We can now use the fact that T" is complete to get a good understanding
of the asymptotic properties of random graphs.

Theorem 5.18 (Zero-One Law for Graphs) For any L-sentence ¢ ei-
ther A}im pn(p) = 0 or Nlim pn(¢) = 1. Moreover, T aziomatizes {¢ :

]\}im pn(¢) = 1}, the almost sure theory of graphs. The almost sure the-
ory of graphs is decidable and complete.

Proof If T | ¢, then there is n such that if G is a graph and G | 1,
then G = ¢. Thus, pn(¢) > pn (1) and by Lemma 5.17, Nlim pn(0) = 1.

On the other hand, if T' [~ ¢, then, because T' is complete, T" = —¢ and
Jim pn(m¢) =10 Jim pn(9) = 0.
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