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1 Languages and Structures

In mathematical logic, we use first-order languages to describe mathematical
structures. Intuitively, a structure is a set that we wish to study equipped
with a collection of distinguished functions, relations, and elements. We
then choose a language where we can talk about the distinguished func-
tions, relations, and elements and nothing more. For example, when we
study the ordered field of real numbers with the exponential function, we
study the structure (R,+, ·, exp, <, 0, 1), where the underlying set is the set
of real numbers, and we distinguish the binary functions addition and mul-
tiplication, the unary function x 7→ ex, the binary order relation, and the
real numbers 0 and 1. To describe this structure, we would use a language
where we have symbols for +, ·, exp, <, 0, 1 and can write statements such as
∀x∀y exp(x) · exp(y) = exp(x + y) and ∀x (x > 0 → ∃y exp(y) = x). We
interpret these statements as the assertions “exey = ex+y for all x and y” and
“for all positive x, there is a y such that ey = x.”

For another example, we might consider the structure (N,+, 0, 1) of the
natural numbers with addition and distinguished elements 0 and 1. The
natural language for studying this structure is the language where we have
a binary function symbol for addition and constant symbols for 0 and 1. We
would write sentences such as ∀x∃y (x = y + y ∨ x = y + y + 1), which we
interpret as the assertion that “every number is either even or 1 plus an even
number.”

Definition 1.1 A language L is given by specifying the following data:
i) a set of function symbols F and positive integers nf for each f ∈ F ;
ii) a set of relation symbols R and positive integers nR for each R ∈ R;
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iii) a set of constant symbols C.

The numbers nf and nR tell us that f is a function of nf variables and
R is an nR-ary relation.

Any or all of the sets F , R, and C may be empty. Examples of languages
include:

i) the language of rings Lr = {+,−, ·, 0, 1}, where +,− and · are binary
function symbols and 0 and 1 are constants;

ii) the language of ordered rings Lor = Lr ∪ {<}, where < is a binary
relation symbol;

iii) the language of pure sets L = ∅;
iv) the language of graphs is L = {R} where R is a binary relation symbol.

Next, we describe the structures where L is the appropriate language.

Definition 1.2 An L-structure M is given by the following data:
i) a nonempty set M called the universe, domain, or underlying set ofM;
ii) a function fM :Mnf →M for each f ∈ F ;
iii) a set RM ⊆MnR for each R ∈ R;
iv) an element cM ∈M for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of the symbols f ,
R, and c. We often write the structure as M = (M, fM, RM, cM : f ∈
F , R ∈ R, and c ∈ C). We will use the notation A,B,M,N, . . . to refer to
the underlying sets of the structures A,B,M,N , . . ..

For example, suppose that we are studying groups. We might use the
language Lg = {·, e}, where · is a binary function symbol and e is a constant
symbol. An Lg-structure G = (G, ·G, eG) will be a set G equipped with a
binary relation ·G and a distinguished element eG. For example, G = (R, ·, 1)
is an Lg-structure where we interpret · as multiplication and e as 1; that is,
·G = · and eG = 1. Also, N = (N,+, 0) is an Lg-structure where ·N = + and
eG = 0. Of course, N is not a group, but it is an Lg-structure.

Usually, we will choose languages that closely correspond to the structure
that we wish to study. For example, if we want to study the real numbers
as an ordered field, we would use the language of ordered rings Lor and give
each symbol its natural interpretation.

Formulas and Terms

We use the language L to create formulas describing properties of L-structures.
Formulas will be strings of symbols built using the symbols of L, variable
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symbols v1, v2, . . ., the equality symbol =, the Boolean connectives ∧, ∨, and
¬, which we read as “and,” “or,” and “not”, the quantifiers ∃ and ∀, which
we read as “there exists” and “for all”, and parentheses ( , ).

Definition 1.3 The set of L-terms is the smallest set T such that
i) c ∈ T for each constant symbol c ∈ C,
ii) each variable symbol vi ∈ T for i = 1, 2, . . ., and
iii) if t1, . . . , tnf ∈ T and f ∈ F , then f(t1, . . . , tnf ) ∈ T .

For example, ·(v1,−(v3, 1)), ·(+(v1, v2),+(v3, 1)) and +(1,+(1,+(1, 1)))
are Lr-terms. For simplicity, we will usually write these terms in the more
standard notation v1(v3 − 1), (v1 + v2)(v3 + 1), and 1 + (1 + (1 + 1)) when
no confusion arises. In the Lr-structure (Z,+, ·, 0, 1), we think of the term
1 + (1 + (1 + 1)) as a name for the element 4, while (v1 + v2)(v3 + 1) is a
name for the function (x, y, z) 7→ (x + y)(z + 1). We will see below that we
can do something similar for any term in any L-structure.

We are now ready to define L-formulas.

Definition 1.4 We say that φ is an atomic L-formula if φ is either
i) t1 = t2, where t1 and t2 are terms, or
ii) R(t1, . . . , tnR), where R ∈ R and t1, . . . , tnR are terms.

The set of L-formulas is the smallest setW containing the atomic formu-
las such that

i) if φ is in W, then ¬φ is in W,
ii) if φ and ψ are in W , then (φ ∧ ψ) and (φ ∨ ψ) are in W, and
iii) if φ is in W, then ∃vi φ and ∀vi φ are in W.

Here are three examples of Lor-formulas.
• v1 = 0 ∨ v1 > 0.
• ∃v2 v2 · v2 = v1.
• ∀v1 (v1 = 0 ∨ ∃v2 v2 · v1 = 1).

Intuitively, the first formula asserts that v1 ≥ 0, the second asserts that
v1 is a square, and the third asserts that every nonzero element has a multi-
plicative inverse.

We want to define when a formula is true in a structure. The first example
above already illustrates one problem we have to consider. Let R be the real
numbers. Is the formula v1 ≥ 0 true? Of course the answer is “it depends”.
If v1 = 2 then it is true, while if v1 = −7, then it is false. Similarly, in the
Lor-structure (Z+,−, ·, <, 0, 1), the second formula would be true if v1 = 9
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but false if v1 = 8. It should be clear that to decide if a formula is true or
false we need to consider how we interpret the variables.

Definition 1.5 Let V = {v0, v1, . . .}. IfM is an L- structure, an assignment
is a function σ : V →M .

We start by showing how to evaluate terms. SupposeM is an L- structure
and σ : V → M is an assignment. We inductively define tM[σ] ∈ M as
follows:

i) if t = c ∈ C is a constant, then tM[σ] = cM;
ii) if t = vi is a variable, then tM[σ] = σ(vi);
iii) if t1, . . . , tm are terms, f is anm-ary function symbol and t = f(t1, . . . , tm),

then
tM[σ] = fM(tM1 [σ], . . . , tMm [σ]).

For example, let L = {f, g, c}, where f is a unary function symbol, g is a
binary function symbol, and c is a constant symbol. We will consider the L-
terms t1 = g(v1, c), t2 = f(g(c, f(v1))), and t3 = g(f(g(v1, v2)), g(v1, f(v2))).
Let M be the L-structure (R, exp,+, 1); that is, fM = exp, gM = +, and
cM = 1.

Then
tM1 [σ] = σ(v1) + 1,

tM2 [σ] = e1+e
σ(v1)

, and

tM3 [σ] = eσ(v1)+σ(v2) + (σ(v1) + eσ(v2)).

If σ : V → M is an assignment, v ∈ V and a ∈ M we let σ[a
v
] be the

assignment

σ
[a
v

]
(vi) =

{
σ(vi) if vi 6= v
a if vi = v

.

Satisfaction

Before defining truth for formulas, we need to illustrate one other important
concept.

Definition 1.6 We say that an occurence of a variable v in a formula φ is
free it is not inside a ∃v or ∀v quantifier; otherwise, we say that it is bound.
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For example in the formula

∀v2 (v0 > 0 ∧ ∃v1 v1 · v2 = v0)

v0 occurs freely while v1 and v2 are bound. A more complicated example is
the formula

v0 > 0 ∨ ∃v0 v1 + v0 = 0.

Clearly v1 occurs freely, but v0 has both free and bound occurences. The
first occurence is free, while the second is bound.

Definition 1.7 Let M be an L-structure. We inductively define M |=σ φ
for all L-formulas φ and all assignments σ.

i) If φ is t1 = t2, then M |=σ φ if tM1 [σ] = tM2 [σ].
ii) If φ is R(t1, . . . , tnR), then M |=σ φ if (tM1 [σ], . . . , tMnR[σ]) ∈ R

M.
iii) If φ is ¬ψ, then M |=σ φ if M 6|=σ ψ.
iv) If φ is (ψ ∧ θ), then M |=σ φ if M |=σ ψ and M |=σ θ.
v) If φ is (ψ ∨ θ), then M |=σ φ if M |=σ ψ or M |=σ θ.
vi) If φ is ∃vjψ, then M |=σ φ if there is a ∈M such that M |=σ[ a

vj
] ψ.

vii) If φ is ∀vjψ, then M |=σ φ if M |=σ[ a
vj
] ψ for all a ∈M .

If M |=σ φ we say that M with assignment σ satisfies φ or φ is true in
M with assignment σ.

Remarks 1.8 • There are a number of useful abbreviations that we will
use: φ→ ψ is an abbreviation for ¬φ ∨ ψ, and φ↔ ψ is an abbreviation for
(φ→ ψ)∧ (ψ → φ). In fact, we did not really need to include the symbols ∨
and ∀. We could have considered φ ∨ ψ as an abbreviation for ¬(¬φ ∧ ¬ψ)
and ∀vφ as an abbreviation for ¬(∃v¬φ). Viewing these as abbreviations
will be an advantage when we are proving theorems by induction on formulas
because it eliminates the ∨ and ∀ cases.

We also will use the abbreviations
n∧

i=1

ψi and
n∨

i=1

ψi for ψ1 ∧ . . . ∧ ψn and

ψ1 ∨ . . . ∨ ψn, respectively.

• In addition to v1, v2, . . . , we will use w, x, y, z, ... as variable symbols.

• It is important to note that the quantifiers ∃ and ∀ range only over ele-
ments of the model. For example the statement that an ordering is complete
(i.e., every bounded subset has a least upper bound) cannot be expressed
as a formula because we cannot quantify over subsets. The fact that we
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are limited to quantification over elements of the structure is what makes it
“first-order” logic.

When proving results about satisfaction in models, we often must do an
induction on the construction of formulas. As a first example of this method
we show that M |=σ φ only depends on the restriction of σ to the variables
occuring freely in φ.

Lemma 1.9 (Coincedence Lemma) Suppose M is an L-structure.
i) Suppose t is an L-term and σ, τ : V → M are assignments that agree

on all variables occuring in t. Then tM[σ] = tM[τ ].
ii) Suppose φ is an L-formula and σ, τ : V → M are assignments that

agree on all variables occuring freely in φ. Then M |=σ φ if and only if
M |=τ φ.

Proof i) We prove this by induction on terms.
If t = c ∈ C is a constant, then

tM[σ] = cM = tM[τ ].

If t = vi is a variable, then

tM[σ] = σ(vi) = τ(vi) = tM[τ ].

Suppose the lemma is true for t1, . . . , tm, f is an m-ary function symbol
and t = f(t1, . . . , tm). Then

tM[σ] = fM(tM1 [σ], . . . , tMm [σ]) = fM(tM1 [τ ], . . . , tMm [τ ]) = tM [τ ].

ii) We prove this by induction on formulas.
Suppose φ is t1 = t2 where t1 and t2 are L-terms. Then

M |=σ φ ⇔ tM1 [σ] = tM2 [σ]

⇔ tM1 [τ ] = tM2 [τ ]

⇔ M |=τ σ.

Suppose R is an m-ary relation symbol, t1, . . . , tm are L- terms, and φ is
R(t1, . . . , tm). Then

M |=σ φ ⇔ (tM1 [σ], . . . , tMm [σ]) ∈ RM

⇔ (tM1 [τ ], . . . , tMm [τ ]) ∈ RM

⇔ M |=τ φ.
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Suppose the claim is true for ψ and φ is ¬ψ. Then

M |=σ φ ⇔ M 6|=σ ψ

⇔ M 6|=τ ψ

⇔ M |=τ φ.

Suppose the claim is true for ψ and θ and φ is ψ ∧ θ. Then

M |=σ φ ⇔ M 6|=σ ψ and M |=σ θ

⇔ M 6|=τ ψ and M |=τ θ

⇔ M |=τ φ.

Suppose the claim is true for ψ, φ is ∃viψ and M |=σ φ. Then there
is a ∈ M such that M |=σ[ a

vi
] ψ. The assignments σ[ a

vi
] and τ [ a

vi
] agree

on all variables, free in ψ. Thus, by induction, M |=τ [ a
vi
] ψ and M |=τ φ.

Symmetricly if M |=τ φ, then M |=σ φ.
Thus, by induction, M |=σ φ if and only if M |=τ φ.

Definition 1.10 We say that an L-formula φ is a sentence if φ has no freely
occuring variables.

Corollary 1.11 Suppose φ is an L-sentence and M is an L − structure.
The following are equivalent:

i) M |=σ φ for some assignment σ;
ii) M |=σ φ for all assignments σ.

Definition 1.12 If φ is a sentence, we write M |= φ if M |=σ φ for all
assignments σ : V →M .

Suppose φ is a formula with free variables from v1, . . . , vn. If a1, . . . , an ∈
M we writeM |= φ(a1, . . . , an) ifM |=σ φ whenever σ is an assignment with
σ(vi) = ai for i = 1, . . . , n. By the Coincedence Lemma, this is well defined.

L-embeddings and Substructures

We will also study maps that preserve the interpretation of L.

Definition 1.13 Suppose that M and N are L-structures with universes
M and N , respectively. An L-embedding η : M → N is a one-to-one map
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η : M → N that preserves the interpretation of all of the symbols of L. More
precisely:

i) η(fM(a1, . . . , anf )) = fN (η(a1), . . . , η(anf )) for all f ∈ F and a1, . . . , an ∈
M ;

ii) (a1, . . . , amR
) ∈ RM if and only if (η(a1), . . . , η(amR

)) ∈ RN for all
R ∈ R and a1, . . . , amj

∈M ;
iii) η(cM) = cN for c ∈ C.
A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the

inclusion map is an L-embedding, we say either that M is a substructure of
N or that N is an extension of M.

For example:
i) (Z,+, 0) is a substructure of (R,+, 0).
ii) If η : Z → R is the function η(x) = ex, then η is an Lg-embedding of

(Z,+, 0) into (R, ·, 1).
The next proposition asserts that if a formula without quantifiers is true

in some structure, then it is true in every extension. It is proved by induction
on quantifier-free formulas.

Proposition 1.14 Suppose thatM is a substructure of N , a ∈ M , and φ(v)
is a quantifier-free formula. Then, M |= φ(a) if and only if N |= φ(a).

Proof

Claim If t(v) is a term and b ∈ M , then tM(b) = tN (b). This is proved by
induction on terms.

If t is the constant symbol c, then cM = cN .
If t is the variable vi, then t

M(b) = bi = tN (b).
Suppose that t = f(t1, . . . , tn), where f is an n-ary function symbol,

t1, . . . , tn are terms, and tMi (b) = tNi (b) for i = 1, . . . , n. Because M ⊆ N ,
fM = fN |Mn. Thus,

tM(b) = fM(tM1 (b), . . . , tMn (b))

= fN (tM1 (b), . . . , tMn (b))

= fN (tN1 (b), . . . , t
N
n (b))

= tN (b).

We now prove the proposition by induction on formulas.
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If φ is t1 = t2, then

M |= φ(a)⇔ tM1 (a) = tM2 (a)⇔ tN1 (a) = tN2 (a)⇔N |= φ(a).

If φ is R(t1, . . . , tn), where R is an n-ary relation symbol, then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (tM1 (a), . . . , tMn (a)) ∈ RN

⇔ (tN1 (a), . . . , t
N
n (a)) ∈ R

N

⇔ N |= φ(a).

Thus, the proposition is true for all atomic formulas.
Suppose that the proposition is true for ψ and that φ is ¬ψ. Then,

M |= ¬φ(a)⇔M 6|= ψ(a)⇔N 6|= ψ(a)⇔N |= φ(a).

Finally, suppose that the proposition is true for ψ0 and ψ1 and that φ is
ψ0 ∧ ψ1. Then,

M |= φ(a) ⇔ M |= ψ0(a) and M |= ψ1(a)

⇔ N |= ψ0(a) and M |= ψ1(a)

⇔ N |= φ(a).

We have shown that the proposition holds for all atomic formulas and
that if it holds for φ and ψ, then it also holds for ¬φ and φ∧ψ. Because the
set of quantifier-free formulas is the smallest set of formulas containing the
atomic formulas and closed under negation and conjunction, the proposition
is true for all quantifier-free formulas.

Elementary Equivalence and Isomorphism

We next consider structures that satisfy the same sentences.

Definition 1.15 We say that two L-structures M and N are elementarily
equivalent and write M≡ N if

M |= φ if and only if N |= φ

for all L-sentences φ.
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We let Th(M), the full theory of M, be the set of L-sentences φ such
that M |= φ. It is easy to see that M≡ N if and only if Th(M)= Th(N ).

The cardinality of M is |M |, the cardinality of the universe of M. If
η : M → N is an embedding then the cardinality of N is at least the
cardinality of M.

Our next result shows that Th(M) is an isomorphism invariant of M.
The proof uses the important technique of “induction on formulas.”

Theorem 1.16 Suppose that j : M→ N is an isomorphism. Then, M ≡
N .

Proof We show by induction on formulas that M |= φ(a1, . . . , an) if and
only if N |= φ(j(a1), . . . , j(an)) for all formulas φ.

We first must show that terms behave well.

Claim Suppose that t is a term and the free variables in t are from v =
(v1, . . . , vn). For a = (a1, . . . , an) ∈M , we let j(a) denote (j(a1), . . . , j(an)).
Then j(tM(a)) = tN (j(a)).

We prove this by induction on terms.
i) If t = c, then j(tM(a)) = j(cM) = cN = tN (j(a)).
ii) If t = vi, then j(t

M(a)) = j(ai) = tN (j(ai)).
iii) If t = f(t1, . . . , tm), then

j(tM(a)) = j(fM(tM1 (a), . . . , tMm (a)))

= fN (j(tM1 (a)), . . . , j(tMm (a)))

= fN (tN1 (j(a)), . . . , t
N
m(j(a)))

= tN (j(a)).

We proceed by induction on formulas.
i) If φ(v) is t1 = t2, then

M |= φ(a) ⇔ tM1 (a) = tM2 (a)

⇔ j(tM1 (a)) = j(tM2 (a)) because j is injective

⇔ tN1 (j(a)) = tN2 (j(a))

⇔ N |= φ(j(a)).

ii) If φ(v) is R(t1, . . . , tn), then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM
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⇔ (j(tM1 (a)), . . . , j(tMn (a))) ∈ RN

⇔ (tN1 (j(a)), . . . , t
N
n (j(a))) ∈ RN

⇔ N |= φ(j(a)).

iii) If φ is ¬ψ, then by induction

M |= φ(a)⇔M 6|= ψ(a)⇔N 6|= ψ(j(a))⇔ N |= φ(j(a)).

iv) If φ is ψ ∧ θ, then

M |= φ(a) ⇔ M |= ψ(a) and M |= θ(a)

⇔ N |= ψ(j(a)) and N |= θ(j(a))⇔N |= φ(j(a)).

v) If φ(v) is ∃w ψ(v, w), then

M |= φ(a) ⇔ M |= ψ(a, b) for some b ∈M

⇔ N |= ψ(j(a), c) for some c ∈ Nbecause j is onto

⇔ N |= φ(j(a)).

2 Theories

Let L be a language. An L-theory T is simply a set of L-sentences. We say
thatM is a model of T and write M |= T ifM |= φ for all sentences φ ∈ T .

The set T = {∀x x = 0, ∃x x 6= 0} is a theory. Because the two sentences
in T are contradictory, there are no models of T . We say that a theory is
satisfiable if it has a model.

We say that a class of L-structures K is an elementary class if there is an
L-theory T such that K = {M :M |= T}.

One way to get a theory is to take Th(M), the full theory of an L-
structureM. In this case, the elementary class of models of Th(M) is exactly
the class of L-structures elementarily equivalent to M. More typically, we
have a class of structures in mind and try to write a set of properties T
describing these structures. We call these sentences axioms for the elementary
class.

We give a few basic examples of theories and elementary classes that we
will return to frequently.

11



Example 2.1 Infinite Sets

Let L = ∅.
Consider the L-theory where we have, for each n, the sentence φn given

by

∃x1∃x2 . . .∃xn
∧

i<j≤n

xi 6= xj.

The sentence φn asserts that there are at least n distinct elements, and an
L-structure M with universe M is a model of T if and only if M is infinite.

Example 2.2 Linear Orders

Let L = {<}, where < is a binary relation symbol. The class of linear orders
is axiomatized by the L-sentences
∀x ¬(x < x),
∀x∀y∀z ((x < y ∧ y < z)→ x < z),
∀x∀y (x < y ∨ x = y ∨ y < x).

There are a number of interesting extensions of the theory of linear orders.
For example, we could add the sentence

∀x∀y (x < y → ∃z (x < z ∧ z < y))

to get the theory of dense linear orders, or we could instead add the sentence

∀x∃y (x < y ∧ ∀z(x < z → (z = y ∨ y < z)))

to get the theory of linear orders where every element has a unique successor.
We could also add sentences that either assert or deny the existence of top
or bottom elements.

Example 2.3 Equivalence Relations

Let L = {E}, where E is a binary relation symbol. The theory of equivalence
relations is given by the sentences
∀x E(x, x),
∀x∀y(E(x, y)→ E(y, x)),
∀x∀y∀z((E(x, y) ∧ E(y, z))→ E(x, z)).

If we added the sentence

∀x∃y(x 6= y ∧ E(x, y) ∧ ∀z (E(x, z)→ (z = x ∨ z = y)))
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we would have the theory of equivalence relations where every equivalence
class has exactly two elements. If instead we added the sentence

∃x∃y(¬E(x, y) ∧ ∀z(E(x, z) ∨ E(y, z)))

and the infinitely many sentences

∀x∃x1∃x2 . . .∃xn

(
∧

i<j≤n

xi 6= xj ∧
n∧

i=1

E(x, xi)

)

we would axiomatize the class of equivalence relations with exactly two
classes, both of which are infinite.
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Example 2.4 Graphs

Let L = {R} where R is a binary relation. We restrict our attention to
irreflexive graphs. These are axiomatized by the two sentences
∀x ¬R(x, x),
∀x∀y (R(x, y)→ R(y, x)).

Example 2.5 Groups

Let L = {·, e}, where · is a binary function symbol and e is a constant symbol.
We will write x · y rather than ·(x, y). The class of groups is axiomatized by
∀x e · x = x · e = x,
∀x∀y∀z x · (y · z) = (x · y) · z,
∀x∃y x · y = y · x = e.

We could also axiomatize the class of Abelian groups by adding

∀x∀y x · y = y · x.

Let φn(x) be the L-formula

x · x · · ·x︸ ︷︷ ︸
n−times

= e;

which asserts that nx = e.
We could axiomatize the class of torsion-free groups by adding {∀x (x =

e ∨ ¬φn(x)) : n ≥ 2} to the axioms for groups. Alternatively, we could
axiomatize the class of groups where every element has order at most N by
adding to the axioms for groups the sentence

∀x
∨

n≤N

φn(x).

Note that the same idea will not work to axiomatize the class of torsion
groups because the corresponding sentence would be infinitely long. In the
next chapter, we will see that the class of torsion groups is not elementary.

Let ψn(x, y) be the formula

x · x · · ·x︸ ︷︷ ︸
n−times

= y;

which asserts that xn = y. We can axiomatize the class of divisible groups
by adding the axioms {∀y∃x ψn(x, y) : n ≥ 2}.

It will often be useful to deal with additive groups instead of multiplica-
tive groups. The class of additive groups is the collection structures in the
language L = {+, 0}, axiomatized as above replacing · by + and e by 0.

14



Example 2.6 Ordered Abelian Groups

Let L = {+, <, 0}, where + is a binary function symbol, < is a binary relation
symbol, and 0 is a constant symbol. The axioms for ordered groups are

the axioms for additive groups,
the axioms for linear orders, and
∀x∀y∀z(x < y → x + z < y + z).

Example 2.7 Left R-modules

Let R be a ring with multiplicative identity 1. Let L = {+, 0} ∪ {r : r ∈ R}
where + is a binary function symbol, 0 is a constant, and r is a unary function
symbol for r ∈ R. In an R-module, we will interpret r as scalar multiplication
by R. The axioms for left R-modules are

the axioms for additive commutative groups,
∀x r(x + y) = r(x) + r(y) for each r ∈ R,
∀x (r + s)(x) = r(x) + s(x) for each r, s ∈ R,
∀x r(s(x)) = rs(x) for r, s ∈ R,
∀x 1(x) = x.

Example 2.8 Rings and Fields

Let Lr be the language of rings {+,−, ·, 0, 1}, where +, −, and · are binary
function symbols and 0 and 1 are constants. The axioms for rings are given
by

the axioms for additive commutative groups,
∀x∀y∀z (x− y = z ↔ x = y + z),
∀x x · 0 = 0,
∀x∀y∀z (x · (y · z) = (x · y) · z),
∀x x · 1 = 1 · x = x,
∀x∀y∀z x · (y + z) = (x · y) + (x · z),
∀x∀y∀z (x + y) · z = (x · z) + (y · z).

The second axiom is only necessary because we include − in the language
(this will be useful later). We axiomatize the class of fields by adding the
axioms
∀x∀y x · y = y · x,
∀x (x 6= 0→ ∃y x · y = 1).
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We axiomatize the class of algebraically closed fields by adding to the
field axioms the sentences

∀a0 . . .∀an−1∃x x
n +

n−1∑

i=0

aix
i = 0

for n = 1, 2, . . .. Let ACF be the axioms for algebraically closed fields.
Let ψp be the Lr-sentence ∀x x + . . .+ x︸ ︷︷ ︸

p−times

= 0, which asserts that a field

has characteristic p. For p > 0 a prime, let ACFp = ACF ∪{ψp} and ACF0 =
ACF ∪{¬ψp : p > 0}, be the theories of algebraically closed fields of charac-
teristic p and characteristic zero, respectively.

Example 2.9 Ordered Fields

Let Lor = Lr∪{<}. The class of ordered fields is axiomatized by the axioms
for fields,

the axioms for linear orders,
∀x∀y∀z (x < y → x+ z < y + z),
∀x∀y∀z ((x < y ∧ z > 0)→ x · z < y · z).

Example 2.10 Differential Fields

Let L = Lr∪{δ}, where δ is a unary function symbol. The class of differential
fields is axiomatized by

the axioms of fields,
∀x∀y δ(x+ y) = δ(x) + δ(y),
∀x∀y δ(x · y) = x · δ(y) + y · δ(x).

Example 2.11 Peano Arithmetic

Let L = {+, ·, s, 0}, where + and · are binary functions, s is a unary function,
and 0 is a constant. We think of s as the successor function x 7→ x+ 1. The
Peano axioms for arithmetic are the sentences
∀x s(x) 6= 0,
∀x (x 6= 0→ ∃y s(y) = x),
∀x x + 0 = x,
∀x ∀y x + (s(y)) = s(x + y),
∀x x · 0 = 0,
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∀x∀y x · s(y) = (x · y) + x,
and the axioms Ind(φ) for each formula φ(v, w), where Ind(φ) is the sentence
∀w [(φ(0, w) ∧ ∀v (φ(v, w)→ φ(s(v), w)))→ ∀x φ(x, w)].
The axiom Ind(φ) formalizes an instance of induction. It asserts that if

a ∈ M , X = {m ∈ M : M |= φ(m, a)}, 0 ∈ X, and s(m) ∈ X whenever
m ∈ X, then X =M .

Logical Consequence

Definition 2.12 Let T be an L-theory and φ an L-sentence. We say that φ
is a logical consequence of T and write T |= φ if M |= φ whenever M |= T .

We give two examples.

Proposition 2.13 a) Let L = {+, <, 0} and let T be the theory of ordered
Abelian groups. Then, ∀x(x 6= 0→ x+ x 6= 0) is a logical consequence of T .

b) Let T be the theory of groups where every element has order 2. Then,
T 6|= ∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).

Proof
a) Suppose that M = (M,+, <, 0) is an ordered Abelian group. Let

a ∈M \ {0}. We must show that a+a 6= 0. Because (M,<) is a linear order
a < 0 or 0 < a. If a < 0, then a + a < 0 + a = a < 0. Because ¬(0 < 0),
a+ a 6= 0. If 0 < a, then 0 < a = 0 + a < a+ a and again a+ a 6= 0.

b) Clearly, Z/2Z |= T ∧ ¬∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).
In general, to show that T |= φ, we give an informal mathematical proof

as above that M |= φ whenever M |= T . To show that T 6|= φ, we usually
construct a counterexample.

In the next sections we will also need a notion of logical consequence for
formulas.

Definition 2.14 If Γ is a set of L-formulas and φ is an L-formula, we say
that φ is a logical consequnce of Γ and write Γ |= φ ifM |=σ φ, whenever M
is an L-structure, σ : V →M is an assignment and M |=σ ψ for all ψ ∈ Γ.
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3 Formal Proofs

A priori to show Γ |= φ we must examine all structuresM and all assignments
σ : V → M where M |=σ Γ and show that M |=σ φ. This is in general an
impossible task. In mathematics we show that Γ |= φ by giving a proof. In
this section we will give one example of a formal proof system. We will write
Γ ` φ if there is a formal proof of φ from Γ. We will demand two properties
of our proof system.

• SOUNDNESS: If Γ ` φ, then Γ |= φ.
Thus anything that is provable is a logical consequence.

• COMPLETENESS: If Γ |= φ, then Γ ` φ.
Thus every logical consequence is provable.

Soundness of our system will be routine. Gödel’s Completeness theorem
will be proved in the next section.

In addition we will demand that proof are finite. Any proof will be a finite
collection of symbols. Moreover it should be easy to check that a proported
proof is correct.

Our proof system is a variant of the sequent calculus.

Definition 3.1 A proof will be a finite sequence of assertions of the form

1. Γ1 ` φ1
2. Γ2 ` φ2
...

...
n. Γn ` φn

where each Γi is a finite set of formulas (possibly empty), φi is a for-
mula and each assertion Γi ` φi can be derived from the assertions Γ1 `
φ1, . . . ,Γi−1 ` φi−1 by one of the inference rules that we will shortly de-
scribe.

We think of “Γ ` φ” as the assertion that φ is derivable from Γ. We will
write Γ, ψ ` φ to abbreviate Γ ∪ {ψ} ` φ.

Our inference rules will have the form

Γ1 ` φ1 . . . Γn ` φn
∆ ` ψ.

This means that if have already established Γ1 ` φ1, . . . ,Γn ` φn, the we can
conlclude that ∆ ` ψ.

We begin to give the rules of our calculus.
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Structural Rules:

S1. (Assumption) If φ ∈ Γ, then

Γ ` φ

S2. (Monotonicity) If Γ ⊆ ∆, then

Γ ` φ

∆ ` φ

S3. (Proof by cases)
Γ, ψ ` φ Γ,¬ψ ` φ

Γ ` φ

Connective Rules
C1. (Contradiction Rule)

Γ,¬φ ` ψ Γ,¬φ ` ¬ψ

Γ ` φ

C2. (Left ∨-rule)
Γ, φ ` θ Γ, ψ ` θ

Γ, (φ ∨ ψ) ` θ

C3. (Right ∨-rules)

Γ ` φ

Γ ` (φ ∨ ψ)

Γ ` φ

Γ ` (ψ ∨ φ)

Before giving the inference rules for quantifiers and equality we give some
sample derivations and prove some useful inference rules which are conse-
quences of the rules above.

Example: ` (φ ∨ ¬φ)
1. φ ` φ S1
2. φ ` (φ ∨ ¬φ) C3
3. ¬φ ` ¬φ S1
4. ¬φ ` (φ ∨ ¬φ) C3
5. ` (φ ∨ ¬φ) S3

Example: ¬¬φ ` φ
1. ¬¬φ,¬φ ` ¬¬φ S1
2. ¬¬φ,¬φ ` ¬φ S1
3. ¬¬φ ` φ C1
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Lemma 3.2 (Second Contradiction Rule)

Γ ` ψ Γ ` ¬ψ

Γ ` φ

Proof
1. Γ ` ψ Premise
2. Γ,¬φ ` ψ S2
3. Γ ` ¬ψ Premise
4. Γ,¬φ ` ¬ψ S2
5. Γ ` φ C1

Lemma 3.3 (Chain Rule)

Γ ` φ Γ, φ ` ψ

Γ ` ψ

Proof
1. Γ ` φ Premise
2. Γ,¬φ ` φ S2
3. Γ,¬φ ` ¬φ S1
4. Γ,¬φ ` ψ Apply 3.2 to 2,3
5. Γ, φ ` ψ Premise
6. Γ ` ψ apply S3 to 4,5

Having proved the Second Contradiction Rule, we are now free to use it
as if it was an inference rules.

Lemma 3.4 (Contraposition)

Γ, φ ` ψ

Γ,¬ψ ` ¬φ

Proof
1. Γ, φ ` ψ Premise
2. Γ,¬ψ, φ ` ψ S2
3. Γ,¬ψ, φ ` ¬ψ S1
4. Γ,¬ψ, φ ` ¬φ apply 3.2 to 2,3
5. Γ,¬ψ,¬φ ` ¬φ S1
6. Γ,¬ψ ` ¬φ apply S3 to 4,5

Exercise 3.5 We can similarly prove the following versions of the contrapo-
sition law.

20



Γ,¬φ ` ¬ψ

Γ, ψ ` φ

Γ,¬φ ` ψ

Γ,¬ψ ` φ

Γ, φ ` ¬ψ

Γ, ψ ` ¬φ

Lemma 3.6 (Modus ponens)

Γ ` (φ→ ψ) Γ ` φ

Γ ` ψ

Proof
Recall that (φ→ ψ) is an abbreviation for (¬φ ∨ ψ).

1. Γ ` φ Premise
2. Γ,¬φ ` φ S2
3. Γ,¬φ ` ¬φ S1
4. Γ,¬φ ` ψ 3.2 applied to 2,3
5. Γ, ψ ` ψ S1
6. Γ, (¬φ ∨ ψ) ` ψ C2
7. Γ ` (¬φ ∨ ψ) Premise
8. Γ ` ψ 3.3 applied to 6,7

Equality Rules:

E1.(Reflexivity) Let t be any term.

` t = t

E2. (Substitution) Let φ(v) be a formula in which v occurs freely Let
t0, t1 be terms and let φ(ti) be the formula obtained by substituting ti for all
free occurences ofv in φ(v).

Γ ` φ(t0)

Γ, t0 = t1 ` φ(t1)

We give two sample derivations.

Example: t0 = t1 ` t1 = t0.
Let φ(v) be “v = t0”.

1. ` t0 = t0 E1
2. t0 = t1 ` t0 = t0 S2
3. t0 = t1, t0 = t0 ` t1 = t0 E2 applied to φ(v)
4. t0 = t1 ` t1 = t0 3.3
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Example: t0 = t1, t1 = t2 ` t0 = t2
Substitute t2 for t1 in t0 = t1.

We conclude our list of inference rules with rules for manipulating quan-
tifiers.

Quantifier Rules

Q1. (right ∃-introduction) Let φ(v) be a formula in which v is a free variable
(there may be others). Suppose t is a term and φ(t) is the formula obtained
by replacing all free occurences of v by t.

Γ ` φ(t)

Γ ` ∃vφ(v)

Q2. (left ∃-introduction) Let φ(v) be a formula in which v is a free variable.
Let y be either i) a constant symbol not occuring in Γ or ψ or ii) a variable
not occuring freely in Γ or ψ.

Γ, φ(y) ` ψ

Γ, ∃v φ(v) ` ψ

Q2. expresses the usual way that we prove ψ from ∃vφ(v). We assume
that φ(v) holds for some v and show that φ(v) ` ψ. We then conclude ψ
follows from ∃v φ(v).

This completes our list of inference rules. We give one more useful lemma
and two sample derivations.

Example: ` ∃x x = x
Let t be a term. Let φ(v) be v = v.

1. ` t = t E1
2. ` ∃x x = x Q1

Lemma 3.7 (Right ∀-introduction) Suppose v does not occur freely in Γ
then

Γ ` φ(v)

Γ ` ∀v φ(v).

Proof
Let ψ be any sentence. Recall that ∀v φ(v) is an abbreviation for ¬∃v ¬φ(v).
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1. Γ ` φ(v) Premise
2. Γ,¬φ(v) ` φ(v) S2
3. Γ,¬φ(v) ` ¬φ(v) S1
4. Γ,¬φ(v) ` ψ apply 3.2 to 2,3
5. Γ, ∃v¬φ(v) ` ψ Q2
6. Γ,¬ψ ` ¬∃v¬φ(v) apply 3.4 to 5
7. Γ,¬φ(v) ` ¬ψ apply 3.2 to 2,3
8. Γ, ∃v¬φ(v) ` ¬ψ Q2
9. Γ, ψ ` ¬∃v¬φ(v) apply 3.5 to 8

10. Γ ` ¬∃v¬φ(v) by S2 from 6,9

Example: ∃x∀y φ(x, y) ` ∀y∃x φ(x, y).
1. ¬φ(x, y) ` ¬φ(x, y) S1
2. ¬φ(x, y) ` ∃y ¬φ(x, y) Q1
3. ¬∃y ¬φ(x, y) ` φ(x, y) apply 3.5 to 2.
4. ¬∃y ¬φ(x, y) ` ∃xφ(x, y) Q1
5. ¬∃y ¬φ(x, y) ` ∀y∃xφ(x, y) 3.7
6. ∃x¬∃y ¬φ(x, y) ` ∀y∃xφ(x, y) Q2

Theorem 3.8 (Soundness Theorem) Suppose that the assertion Γ ` φ
can be derived using the inference rules given above. Then Γ |= φ.

Proof
Recall that Γ |= φ if for any L-structureM and any assignment σ : V →

M , if M |=σ Γ, then M |=σ φ.
We prove the Soundness Theorem by induction on proofs.

Base cases:
S1. Clearly if φ ∈ Γ, then Γ |= φ.

E1. Clearly M |=σ t = t for any assignment σ.

Inference rules: If we have an inference rule

Γ1 ` φ1 . . . Γn ` φn
∆ ` ψ

then we must show that if Γi |= φi for all i, then ∆ |= ψ.

This is obvious for S2, C2, C3, E2, and Q1.

S3. Suppose Γ, φ |= ψ and Γ,¬φ |= ψ. If M |= Γ, then M |= φ or
M |= ¬φ. In either case M |= ψ.
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C1. Suppose Γ,¬φ |= ψ and Γ,¬φ |= ¬ψ. Let M |= Γ. Since we can’t
have M |= ψ and M |= ¬ψ we must have M |= φ.

Q2. This is immediate from lemma 1.2.

Since all of the inference rules preserve truth the soundness theorem
holds.

Definition 3.9 Suppose Γ is a (possibly infinite) set of sentences. We say
that φ is provable from Γ if for some finite ∆ ⊆ Γ the assertion ∆ ` φ is
derivable in our calculus. If φ is provable from Γ we write Γ ` φ.

Corollary 3.10 If Γ ` φ, then Γ |= φ.

Proof Let ∆ be a finite subset of Γ such that ∆ ` φ is derivable. Then
∆ |= φ. Since any model of Γ is a model of ∆, Γ |= φ.

Definition 3.11 : We say that Γ is consistent if there is no sentence φ such
that Γ ` φ and Γ ` ¬φ.

Proposition 3.12 i) Γ is inconsistent if and only if Γ ` ψ for every formula
ψ.

ii) If Γ is satisfiable, then Γ is consistent.

iii) If Γ is consistent, then for any formula φ either Γ∪ {φ} is consistent
or Γ ∪ {¬φ} is consistent (or both).

iv) If Γ 6` φ, then Γ ∪ {¬φ} is consistent.

Proof i) If Γ ` φ and Γ ` ¬φ, then Γ ` ψ by Lemma 3.2. Certainly if every
sentence is derivable from Γ, then Γ is inconsistent.

ii ) If A |= Γ either A 6|= φ or A 6|= ¬φ. Thus by the Soundness Theorem,
Γ 6` φ or Γ 6` ¬φ.

iii) Suppose not. Let ψ be any sentence. By i) Γ, φ ` ψ and Γ,¬φ ` ψ.
By S3, Γ ` ψ. Thus Γ is inconsistent.

iv) Suppose Γ∪{¬φ} is inconsistent. Then Γ∪{¬φ} ` φ. Since Γ∪{φ} `
φ, by S3 Γ ` φ.

In §4 we will prove the converse of 3.12 ii). We will see that this is just
a restatement of Gödel’s Completeness Theorem.
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4 Gödel’s Completeness Theorem

In this section we will prove one of the central theorems of mathematical
logic

Theorem 4.1 (Gödel’s Completeness Theorem) Let Γ be a set of L-
sentences. If Γ |= φ then Γ ` φ.

To prove the Completeness Theorem we will infact prove the following
converse to 3.12 ii).

(*) If Γ is consistent, then Γ is satisfiable.

Proof (*) ⇒ Completeness
Suppose Γ 6` φ, then, by 3.12, Γ ∪ {¬φ} is consistent. By (*) Γ ∪ {¬φ}

has a model M. But then Γ 6|= φ.

To prove (*) we must actually construct a model of Γ. The method of
proof we give here is due to Leon Henkin.

Definition 4.2 We say that a consistent set of L-sentences Σ is maximal
consistent if for all L-sentences φ either φ ∈ Σ or ¬φ ∈ Σ (as Σ is consistent
exactly one of φ and ¬φ is in Σ).

Lemma 4.3 i) If Σ is maximal consistent and Σ ` φ, then φ ∈ Σ.
ii) If Σ is maxiaml consistent and φ ∨ ψ ∈ Σ, then φ ∈ Σ or ψ ∈ Σ.

Proof
i) If not ¬φ ∈ Σ and Σ is inconsistent.

ii) Otherwise ¬φ and ¬ψ are both in Σ and hence ¬(φ ∨ ψ) ∈ Σ.

Definition 4.4 We say that Σ has the witness property if for any L-formula
φ(v), there is a constant c such that

Σ ` (∃vφ(v) → φ(c)).

Theories with this property are sometimes called Henkinized.

The proof of (*) comes in two steps:

STEP 1. Show that if Γ is consistent, there is Σ ⊇ Γ which is maximal
consistent and Henkinized. (Note: In general we will have to expand the
language to get a theory with the witness property.)
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STEP 2. Show that if Σ is maximal consistent and has the witness prop-
erty, then there is a model of Σ.

We will examine STEP 2 first. Let L denote the language of Σ. Let C
be the constants of L. The universe of our model will be equivalence classes
of elements of C. If c1 and c2 are constants we say that c1Ec2 iff and only if
c1 = c2 ∈ Σ.

Lemma 4.5 E is an equivalence relation.

Proof
Let c1, c2, c3 ∈ C. By E1, E2, and the examples following them

Σ ` c1 = c1

Σ, c1 = c2 ` c2 = c1

and
Σ, c1 = c2, c2 = c3 ` c1 = c3.

Thus, by 4.3, E is an equivalence relation.
For c ∈ C let [c] denote the equivalence class of c. We now begin to build

a structure A which we call the canonical structure for Σ. The underlying
set of A will be

A = {[c] : c ∈ C}.

The next lemma will allow us to interpret the relation and function symbols
of L.

Lemma 4.6 i) If R is an n-ary relation symbol of L, c1, . . . , cn, d1, . . . , dn ∈
C and ciEdi for all i, then

R(c1, . . . , cn) ∈ Σ⇔ R(d1, . . . , dn) ∈ Σ.

ii) Let f be an n-ary function symbol of L and let c1, . . . , cn ∈ C, there is
d ∈ C such that f(c1, . . . , cn) = d ∈ Σ.

iii) Let f be an n-ary function symbol of L and let c0, . . . , cn, d0, . . . , dn ∈
C such that ciEdi for i ≥ 0, f(c1, . . . , cn) = c0 ∈ Σ and f(d1, . . . , dn) = d0 ∈
Σ. Then c0 = d0 ∈ Σ.
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Proof
i) By repeated applications of E2,

c1 = d1, . . . , cn = dn ` R(c1, . . . , cn)↔ R(d1, . . . , dn)

ii) By E1
` f(c1, . . . , cn) = f(c1, . . . , cn).

Thus by Q1
` ∃v f(c1, . . . , cn) = v.

Thus ∃v f(c1, . . . , cn) = v is in Σ. Since Σ has the witness proterty, there is
a constant symbol d such that f(c1, . . . , cn) = d ∈ Σ.

iii) By repeated application of E2,

c1 = d1, . . . , cn = dn, f(c1, . . . , cn) = c0 ` f(d1, . . . , dn) = c0

Thus Σ ` f(d1, . . . , dn) = c0 and Σ ` f(d1, . . . , dn) = d0. By the examples in
§3, Σ ` c0 = d0.

We can now give the interpretation of L in A.

• The universe of A is A.

• For each constant symbol c of L, let cA = [c].

• If R is an n-ary relation symbol let RA ⊆ An be defined by

RA = {([c1], . . . , [cn]) ∈ A
n : R(c1, . . . , cn) ∈ Σ}.

By 4.6 i) RA is well defined.

• If f is an n-ary function symbol define fA : An → A by

fA([c1], . . . , [cn]) = d⇔ f(c1, . . . , cn) = d ∈ Σ.

By 4.6 ii) and iii) fA is well defined and fA : An → A.

Lemma 4.7 Suppose t(v1, . . . , vn) is a term (some of the variables may not
occur) and c0, . . . , cn ∈ C such that t(c1, . . . , cn) = c0 ∈ Σ. If σ is an
assignment where σ(vi) = [ci], then t

A[σ] = [c0]. Moreover if d0, . . . , dn ∈ C,
t(d1, . . . , dn) = d0 ∈ Σ and diEci for i > 0, then c0Ed0.

27



Proof The moreover is clear since

t(c1, . . . , cn) = c0, t(d1, . . . , dn) = d0, c1 = d1, . . . , cn = dn ` c0 = d0

so c0 = d0 ∈ Σ.
The main assertion is proved by induction on the complexity of t.

If t is a constant symbol c, then tA[σ] = [c]. Since c = c0 ∈ Σ, [c] = [c0].

If t is the variable vi, then t
A[σ] = [ci] and ci = c0 ∈ Σ, thus [c0] = tA[σ].

Suppose t is f(t1, . . . , tm) and the claim holds for t1, . . . , tm. For each i,

∃w ti(c1, . . . , cn) = w ∈ Σ.

Thus since Σ has the witness property, for each i there is bi ∈ C such that
ti(c1, . . . , cn) = bi ∈ Σ. By our inductive assumption tAi [σ] = [bi]. Clearly
t(c1, . . . , cn) = f(b1, . . . , bm) ∈ Σ, thus f(b1, . . . , bm) = c0 ∈ Σ. But then

tA[σ] = f([b1], . . . , [bm]) = [c0]

as desired.
Thus the claim holds for all terms.

Theorem 4.8 If Σ is a maximal, consistent theory with the witness property
and A is the canonical structure for Σ, then A |= Σ.

Proof
We will prove that for all formulas φ(v1, . . . , vn) and constants c1, . . . , cn,

A |= φ([c1], . . . , [cn]) if and only if φ(c1, . . . , cn) ∈ Σ.

This will be proved by induction on the complexity of φ.

1) φ is t1(v1, . . . , vn) = t2(v1, . . . , vn)
Since Σ has the witness property there are d1, d2 ∈ C such that ti(c1 . . . , cn) =

di ∈ Σ. By Lemma 4.7 ti([c1], . . . , [cn]) = [di]. Thus

A |= t1([c1], . . . , [cn]) = t2([c1], . . . , [cn]) ⇔ [d1] = [d2]

⇔ t1(c) = t2(c) ∈ Σ.

2) φ is R(t1, . . . , tm) where R is an m-ary relation symbol.
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Since Σ has the witness property there are d1, . . . , dm ∈ C such that
ti(c1, . . . , cn) = di ∈ Σ. By 4.7, ti([c1], . . . , [cn]) = [di].

A |= φ([c1], . . . , [cn]) ⇔ ([d1], . . . , [dm]) ∈ R̂

⇔ R(d1, . . . , dm) ∈ Σ

⇔ R(t1(c), . . . , tm(c)) ∈ Σ.

3) φ is ¬ψ
Then

A |= φ([c]) ⇔ A 6|= ψ([c])

⇔ ψ(c) 6∈ Σ (by induction)

⇔ φ(c) ∈ Σ since Σ is maximal.

4) φ is ψ ∨ θ

A |= φ([ci]) ⇔ A |= ψ([ci]) ∨ A |= θ([ci])

⇔ ψ(c) ∈ Σ or θ(c) ∈ Σ by induction
⇔ φ(c) ∈ Σ by 4.3ii).

5) φ(v) is ∃w ψ(w, v)
If A |= ∃w ψ(w, [c]), then there is d ∈ C such that A |= ψ([d], [c]). By

induction ψ(d, c) ∈ Σ, and by maximality ∃w ψ(w, c) ∈ Σ.
On the other hand if ∃w ψ(w, c) ∈ Σ, then, since Σ has the witness

property, there is d ∈ C, such that ψ(d, c) ∈ Σ. By induction A |= ψ([d], [c])
and A |= φ([c]).

We have now completed STEP 2. That is, we have shown that if Σ is
maximal, consistent theory with the witness property, then there is A |= Σ.
The completeness theorem will now follow from the following result.

Theorem 4.9 Let Γ be a consistent L-theory. There is L∗ ⊇ L and Σ ⊇ Γ
a maximal consistent L∗-theory with the witness property.

Let L0=L, let C0 be the constants of L, and let Γ0 = Γ. In general let
Fn be the set of all Ln-formulas in one free variable v.
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Let Ln+1 = Ln ∪ {cφ : φ(v) ∈ Fn}, where each cφ is a new constant
symbol. For φ(v) ∈ Fn let θφ be the formula

(∃vφ(v) → φ(cφ)).

Let
Γn+1 = Γn ∪ {θφ : φ ∈ Fn}.

Let
Γ∗ =

⋃

n≥0

Γn

and
L∗ =

⋃

n≥0

Ln.

Lemma 4.10 i) If Σ ⊇ Γ∗ is an L∗-theory, then Σ has the witness property.
ii) Each Γn is consistent.
iii) Γ∗ is consistent.

Proof
i) For any L∗ formula φ(v) in one free variable v, there is an n, such that

φ(v) ∈ Fn. Then (∃vφ(v) → φ(cφ)) ∈ Γn+1 ⊆ Σ. Thus Σ has the witness
property.

ii) We prove this by induction on n. Since Γ0 = Γ it is conistent. Suppose
Γn is consistent, but Γn+1 is inconsistent. Since the proofs of contradictions
are finite, there are φ1, . . . , φm ∈ Fn such that Γn, θφ1 , . . . , θφm is inconsis-
tent. By choosing m-minimal we may assume that ∆ = Γn, θφ1 , . . . , θφm−1 is
consistent. Let φ(v) be φm. In particular there is an L-sentence ψ such that

∆ 6` ψ

and
∆, θφ ` ψ.

Consider the following proof
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1. ∆,¬∃vφ(v) ` ¬∃vφ(v) S1
2. ∆,¬∃vφ(v) ` θφ C3 since θφ is (¬∃vφ(v) ∨ φ(cφ))
3. ∆, θφ ` ψ Premise
4. ∆,¬∃vφ(v), θφ ` ψ S2
5. ∆,¬∃vφ(v) ` ψ apply Lemma 3.3 to 2,4
6. ∆, φ(cφ) ` φ(cφ)) S1
7. ∆, φ(cφ) ` θφ C3 since θφ is (¬∃vφ(v) ∨ φ(cφ))
8. ∆, φ(cφ), θ ` φ S2 to 2,4
9. ∆, φ(cφ) ` ψ by Lemma3.3

10. ∆, ∃vφ(v) ` ψ Q2 (as cφ does not occur in ψ)
11. ∆ ` ψ S3 applied to 5,10

Thus ∆ ` ψ, a contradiction.
iii) In general suppose we have consistent theories

Σ0 ⊆ Σ1 ⊆ . . .

and Σ =
⋃
nΣn. If Σ is inconsistent, there is φ such that Σ ` φ ∧ ¬φ. Since

the proof of φ ∧ ¬φ uses only finitely many premises from Σ, there is an n
such that Σn ` φ ∧ ¬φ, a contradiction.

We have one lemma remaining.

Lemma 4.11 If ∆ is a consistent L-theory, there is a maximal consistent
L-theory Σ ⊇ ∆.

If we apply Lemma 4.11 to Γ∗ from Lemma 4.10 we obtain a maximal
consistent Σ ⊇ Γ with the witness property.

We first prove Lemma 4.11 in the special case that the language L is
countable. We let φ0, φ1, . . . list all L-sentences. We build a sequence of
consistent L-theories

∆ = ∆0 ⊇ ∆1 ⊇ ∆2 ⊇ . . .

as follows: We assume that ∆n is consistent. If ∆n ∪ {φn} is consistent, let
∆n+1 = ∆n ∪ {φn}. If not, let ∆n+1 ∪ {¬φn}. By Lemma 3.12 iii), ∆n is
consistent.

Let Σ =
⋃
n∆n. As in Lemma 4.10 iii), Σ is a consistent L-theory. For

any φ, either φ or ¬φ is in Σ. Thus Σ is maximal consistent.

In the general case when L is uncountable we need to use Zorn’s lemma.
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Definition 4.12 Let P be a set and let < be a partial order of P . We say
that X ⊆ P is a chain if for all x, y ∈ X x = y or x < y or x > y (ie. <
linearly orders X). We say that z is an upper bound for X if for all x ∈ X,
x ≤ z. We say that z ∈ P is maximal for < if there is no z∗ ∈ P , with
z < z∗.

Lemma 4.13 (Zorn’s Lemma) Let (P,<) be a partial order such that ev-
ery chain has an upper bound. Then there is z ∈ P maximal for <.

Zorn’s Lemma is equivalent to the Axiom of Choice.

Proof of Lemma 4.11
Let P = {Γ ⊇ ∆ : Γ is a consistent L-theory}. We order P by Γ0 < Γ1 if

and only if Γ0 ⊂ Γ1.

Claim If X ⊂ P is a chain, then X has an upper bound.
Let

Γ∗ =
⋃

Γ∈X

Γ.

Clearly for all Γ ∈ X, Γ ⊆ Γ∗ thus Γ∗ is an upper bound. We need only show
that Γ∗ ∈ P (ie. Γ∗ is consistent).

Suppose Γ∗ is inconsistent. Since proofs are finite, there are θ1, . . . , θm ∈
Γ∗ such that {θ1, . . . , θm} is inconsistent. For each i, there is ni, such that
θi ∈ Γni. Since X is a chain, there is k ≤ m such that for all i, Γni ⊆ Γnk .
Thus all θi ∈ Γnk and Γnk is inconsistent, a contradiction. Hence Γ∗ ∈ P .

Thus we may apply Zorn’s Lemma to obtain Σ ∈ P which is maximal for
<. Since Σ ∈ P , Σ ⊇ ∆ and Σ is consistent. Let φ be any L-sentence, By
3.12 iii) one of Σ ∪ {φ} or Σ ∪ {¬φ} is consistent. Say Σ ∪ {φ} is consistent.
Then φ ∈ Σ for otherwise Σ ∪ {φ} would contradict the maximality of Σ.
Thus Σ is maximal.

We can now summarize the proof of the Completeness Theorem. Suppose
Γ is a consistent L-theory. By Lemma 4.10 there is L∗ ⊇ L and Γ∗ ⊇ Γ a
consistent L∗-theory such that every L∗-theory extending Γ has the witness
property. By Lemma 4.11 there is a maximal consistent L∗-theory Σ ⊇ Γ.
By construction Γ has the witness property. By Theorem 4.8 there is A |= Σ.
Clearly A |= Γ.

Our proof gives some information about the size of the model obtained.
For L any language, |L| is the cardinality of the set of constant, function and
relation symbols of L.
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Corollary 4.14 Suppose Γ is a consistent L-theory. Then Γ has a model
A = (A, . . .) with |A| ≤ |L|+ ℵ0.

Proof The model of Γ that we build above as cardinality at most |C|, where
C is the set of constant symbols of L∗. We argue inductively that Ln has at
most |L|+ ℵ0 constant symbols. This is because Ln+1 has at most one new
constant symbol for each Ln-formula. In general if a language has κ symbols,
there are κ + ℵ0 possible formulas (formulas are finite strings of symbols).
[Note: Unless κ is finite κ+ ℵ0 = κ.]

5 Basic Model Theory

Our first result is deceptively simple but suprisingly powerful consequence of
the Completeness Theorem.

If L is any language let ||L|| denote the cardinality of the set of L-
sentences. We know that ||L|| = max(|L|,ℵ0).

Theorem 5.1 (Compactness Theorem) Suppose Γ is a set of sentences
and every finite subset of Γ is satisfiable. Then Γ is satisfiable. Indeed Γ has
a model of cardinality at most ||L||.

Proof If Γ is not satisfiable, then, by the Completeness Theorem, Γ is
inconsistent. Thus for some φ, Γ ` φ and Γ ` ¬φ. But then there is a finite
∆ ⊆ Γ such that ∆ ` φ and ∆ ` ¬φ. By the Soundness Theorem, ∆ is not
satisfiable.

Corollary 5.2 Suppose Γ has arbitrarily large finite models, then Γ has an
infinite model.

Proof Let φn be the sentence:

∃v1 . . .∃vn
∧

i<j≤n

vi 6= vj.

Let Γ∗ = Γ∪{φn : n = 1, 2, . . .}. Clearly any model of Γ∗ is an infinite model
of Γ. If ∆ ⊂ Γ∗ is finite, then for some N , ∆ ⊂ Γ ∪ {φ1, . . . , φN}. There is
A |= Γ with |A| ≥ N , thus A |= ∆. By the Compactness Theorem, Γ∗ has a
model.
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Corollary 5.3 Let L = {+, ·, 0, 1, <} and let Th(N), be the complete theory
of the natural numbers. There is A |= Th(N) with a ∈ A infinite.

Proof Let L∗ = L ∪ {c}, where c is a new constant symbol. Let Γ =
Th(N) ∪ {c > 0, c > 1, c > 1 + 1, c > 1 + 1 + 1, . . .}. If ∆ ⊂ Γ is finite, then

∆ ⊆ Th(N) ∪ {c > 0, . . . , c > 1 + . . .+ 1︸ ︷︷ ︸
N−times

}

for some N . But then we can find a model of ∆ by taking the natural
numbers and interpreting c as N + 1. Thus by the Compactness Theorem
Γ∗ has a model. In this model the interpretation of c is greater that every
natural number.

Example: Let G = (V,E) be a graph such that every finite subgraph can
be four colored (for example suppose G is a planar graph). We claim that
G can be four colored. Let L = {R,B, Y,G} ∪ {cv : v ∈ V }. Let Γ be the
L-theory with axioms:

i) ∀x [(R(x)∧¬B(x)∧¬Y (x)∧¬G(x))∨ . . .∨ (¬R(x)∧¬B(x)∧¬Y (x)∧
G(x))]

ii) if (v, w) ∈ E add the axiom: ¬(R(cv)∧R(cw))∧ . . .∧¬(G(cv)∧G(cw)).

If ∆ is a finite subset of Γ, let V∆ be the verticies such that cv is used in
∆. Since the restriction of G to V∆ is four colorable, ∆ is consistent. Thus
Γ is consistent. Let A |= Γ.

Color G by coloring v as A colors cv.

Theorem 5.4 (Löwenheim–Skolem Theorem) Suppose Γ is an L-theory.
If Γ has an infinite model, then it has a model of cardinality κ for every
κ ≥ ||L||.

Proof Let I be a set of cardinality κ. Let L∗ = L ∪ {cα : α ∈ I}. Let

Γ∗ = Γ ∪ {cα 6= cβ : α < β}.

If ∆ is a finite subset of Γ∗, then in any infinit model A of Γ we can interpret
the constants such that A |= ∆. Thus Γ has a model of size at most κ. But
certainly any model of Γ∗ has size at least κ (the map α 7→ ĉα is one to one).

Definition 5.5 A consistent theory Γ is complete if Γ |= φ or Γ |= ¬φ for
all L-sentences φ.
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It is easy to see that Γ is complete if and only ifM≺ N for anyM,N |=
Γ. If M is an L-structure, then Th(M) is a complete theory, but it may be
difficult to figure out if φ ∈ Th(M). We will give one useful test to decide if
a theory is complete.

Definition 5.6 Γ is κ-categorical if and only if any two models of Γ of
cardinality κ are isomorphic.

Let L = {+, 0} be the language of additive groups and let T be the
L-theory of torsion-free divisible Abelian groups. The axioms of T are the
axioms for Abelian groups together with the axioms

∀x(x 6= 0→ x + . . .+ x︸ ︷︷ ︸
n−times

6= 0)

and
∀y∃x x+ . . .+ x︸ ︷︷ ︸

n−times

= y

for n = 1, 2, . . ..

Proposition 5.7 The theory of torsion-free divisible Abelian groups is κ-
categorical for all κ > ℵ0.

Proof We first argue that models of T are essentially vector spaces over the
field of rational numbers Q. Clearly, if V is any vector space over Q, then
the underlying additive group of V is a model of T . On the other hand, if
G |= T , g ∈ G, and n ∈ N with n > 0, we can find h ∈ G such that nh = g.
If nk = g, then n(h − k) = 0. Because G is torsion-free there is a unique
h ∈ G such that nh = g. We call this element g/n. We can view G as a
Q-vector space under the action m

n
g = m(g/n).

Two Q-vector spaces are isomorphic if and only if they have the same
dimension. Thus, models of T are determined up to isomorphism by their
dimension. If G has dimension λ, then |G| = λ + ℵ0. If κ is uncountable
and G has cardinality κ, then G has dimension κ. Thus, for κ > ℵ0 any two
models of T of cardinality κ are isomorphic.

Note that T is not ℵ0-categorical. Indeed, there are ℵ0 nonisomorphic
models corresponding to vector spaces of dimension 1, 2, 3, . . . and ℵ0.

A similar argument applies to the theory of algebraically closed fields. Let
ACFp be the theory of algebraically closed fields of characteristic p, where p
is either 0 or a prime number.
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Proposition 5.8 ACFp is κ-categorical for all uncountable cardinals κ.

Proof Two algebraically closed fields are isomorphic if and only if they have
the same characteristic and transcendence degree (see, for example Lang’s
Algebra X §1). An algebraically closed field of transcendence degree λ has
cardinality λ + ℵ0. If κ > ℵ0, an algebraically closed field of cardinality κ
also has transcendence degree κ. Thus, any two algebraically closed fields of
the same characteristic and same uncountable cardinality are isomorphic.

We give two simpler examples.

• Let L be the empty language. Then the theory of an infinite set is
κ-categorical for all cardinals κ.
• Let L = {E}, where E is a binary relation, and let T be the theory of

an equivalence relation with exactly two classes, both of which are infinite.
It is easy to see that any two countable models of T are isomorphic. On
the other hand, T is not κ-categorical for κ > ℵ0. To see this, let M0 be a
model where both classes have cardinality κ, and let M1 be a model where
one class has cardinality κ and the other has cardinality ℵ0. Clearly, M0

and M1 are not isomorphic.

Theorem 5.9 (Vaught’s Test) Suppose every model of Γ is infinite, κ ≥
||L|| and Γ is κ-categorical. Then Γ is complete.

Proof Suppose not. Let φ be an L-sentence such that Γ 6|= φ and Γ 6|= ¬φ.
Let Γ0 = Γ ∪ {φ} and Γ1 = Γ ∪ {¬φ}. Each Γi has a model, thus since Γ
has only infinite models, each Γi has an infinite model. By the Löwenheim-
Skolem theorem there is Ai |= Γi where Ai has cardinality κ. Since Γ is
κ-categorical, A0 ∼= A1 and hence by 1.16, A0 ≺ A1. But A0 |= φ and
A1 |= ¬φ, a contradiction.

The assumption that T has no finite models is necessary. Suppose that T
is the {+, 0}-theory of Abelian groups, where every element has order 2. In
the exercises, we will show that T is κ-categorical for all κ ≥ ℵ0. However,
T is not complete. The sentence ∃x∃y∃z (x 6= y ∧ y 6= z ∧ z 6= x) is false in
the two-element group but true in every other model of T .

Vaught’s test implies that all of the categorical theories discussed above
are complete. In particular, algebraically closed fields are complete. This
result of Tarski has several immediate interesting consequences.

The next definition is, for the moment, imprecise. In later chapters we
will make the concepts precise.
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Definition 5.10 We say that an L-theory T is decidable if there is an
algorithm that when given an L-sentence φ as input decides whether T |= φ.

Lemma 5.11 Let T be a recursive complete satisfiable theory in a recursive
language L. Then T is decidable.

Proof Start enumerating all finite sequence of strings of L-symbols. For
each one, check to see if it is a derivation in the sequent calculus of ∆ ` φ or
∆ ` ¬φ. If it is then check to see if all of the sentences in ∆ and in Γ. If so
output yes if ∆ ` φ and no if ∆ ` ¬φ. If not, for on to the next string. Since
Γ is complete, the completeness theorem implies there is a finite ∆ ⊆ Γ such
that ∆ ` φ or ∆ ` ¬φ. Thus our search will halt at some stage.

Informally, to decide whether φ is a logical consequence of a complete
satisfiable recursive theory T , we begin searching through possible proofs
from T until we find either a proof of φ or a proof of ¬φ. Because T is
satisfiable, we will not find proofs of both. Because T is complete, we will
eventually find a proof of one or the other.

Corollary 5.12 For p = 0 or p prime, ACFp is decidable. In particular,
Th(C), the first-order theory of the field of complex numbers, is decidable.

The completeness of ACFp can also be thought of as a first-order version
of the Lefschetz Principle from algebraic geometry.

Corollary 5.13 Let φ be a sentence in the language of rings. The following
are equivalent.

i) φ is true in the complex numbers.
ii) φ is true in every algebraically closed field of characteristic zero.
iii) φ is true in some algebraically closed field of characteristic zero.
iv) There are arbitrarily large primes p such that φ is true in some alge-

braically closed field of characteristic p.
v) There is an m such that for all p > m, φ is true in all algebraically

closed fields of characteristic p.

Proof The equivalence of i)–iii) is just the completeness of ACF0 and v)⇒
iv) is obvious.

For ii) ⇒ v) suppose that ACF0 |= φ. There is a finite ∆ ⊂ ACF0 such
that ∆ ` φ. Thus, if we choose p large enough, then ACFp |= ∆. Thus,
ACFp |= φ for all sufficiently large primes p.
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For iv)⇒ ii) suppose ACF0 6|= φ. Because ACF0 is complete, ACF0 |= ¬φ.
By the argument above, ACFp |= ¬φ for sufficiently large p; thus, iv) fails.

Ax found the following striking application of Corollary 5.13.

Theorem 5.14 Every injective polynomial map from Cn to Cn is surjective.

Proof Remarkably, the key to the proof is the simple observation that if k
is a finite field, then every injective function f : kn → kn is surjective. From
this observation it is easy to show that the same is true for F algp , the algebraic
closure of the p-element field.

Claim Every injective polynomial map f : (F algp )n → (F algp )n is surjective.

Suppose not. Let a ∈ F algp be the coefficients of f and let b ∈ (F algp )n such

that b is not in the range of f . Let k be the subfield of F algp generated by

a, b. Then f |kn is an injective but not surjective polynomial map from kn

into itself. But F algp =
⋃∞
n=1 Fpn is a locally finite field. Thus k is finite, a

contradiction.

Suppose that the theorem is false. Let X = (X1, . . . , Xn). Let f(X) =
(f1(X), . . . , fn(X)) be a counterexample where each fi ∈ C[X] has degree at
most d. There is an L-sentence Φn,d such that for K a field, K |= Φn,d if and
only if every injective polynomial map from Kn to Kn where each coordinate
function has degree at most d is surjective. We can quantify over polynomials
of degree at most d by quantifying over the coefficients. For example, Φ2,2 is
the sentence
∀a0,0∀a0,1∀a0,2∀a1,0∀a1,1∀a2,0∀b0,0∀b0,1∀b0,2∀b1,0∀b1,1∀b2,0[
(∀x1∀y1∀x2∀y2((

∑
ai,jx

i
1y

j
1 =

∑
ai,jx

i
2y

j
2 ∧
∑
bi,jx

i
1y

j
1 =

∑
bi,jx

i
2y

j
2)→

(x1 = x2 ∧ y1 = y2)))→ ∀u∀v∃x∃y
∑
ai,jx

iyj = u ∧
∑
bi,jx

iyj = v
]
.

By the claim Falgp |= Φn,d for all primes p. By Corollary 5.13, C |= Φn,d,
a contradiction.

Back-and-Forth

We give two examples of ℵ0-categorical theories. The proofs use the “back-
and-forth” method, a style of argument that has many interesting applica-
tions. We start with Cantor’s proof that any two countable dense linear
orders are isomorphic.

Let L = {<} and let DLO be the theory of dense linear orders without
endpoints. DLO is axiomatized by the axioms for linear orders plus the

38



axioms
∀x∀y (x < y → ∃z x < z < y)

and
∀x∃y∃z y < x < z.

Theorem 5.15 The theory DLO is ℵ0-categorical and complete.

Proof Let (A,<) and (B,<) be two countable models of DLO. Let a0, a1, a2, . . .
and b0, b1, b2, . . . be one-to-one enumerations of A and B. We will build a se-
quence of partial bijections fi : Ai → Bi where Ai ⊂ A and Bi ⊂ B are finite
such that f0 ⊆ f1 ⊆ . . . and if x, y ∈ Ai and x < y, then fi(x) < fi(y). We
call fi a partial embedding. We will build these sequences such that A =

⋃
Ai

and B =
⋃
Bi. In this case, f =

⋃
fi is the desired isomorphism from (A,<)

to (B,<).
At odd stages of the construction we will ensure that

⋃
Ai = A, and at

even stages we will ensure that
⋃
Bi = B.

stage 0: Let A0 = B0 = f0 = ∅.

stage n+ 1 = 2m+ 1: We will ensure that am ∈ An+1.
If am ∈ An, then let An+1 = An, Bn+1 = Bn and fn+1 = fn. Suppose that

am 6∈ An. To add am to the domain of our partial embedding, we must find
b ∈ B \Bn such that

α < am ⇔ fn(α) < b

for all α ∈ An. In other words, we must find b ∈ B, which is in the image
under fn of the cut of am in An. Exactly one of the following holds:

i) am is greater than every element of An, or
ii) am is less than every element of An, or
iii) there are α and β ∈ An such that α < β, γ ≤ α or γ ≥ β for all

γ ∈ An and α < am < β.
In case i) because Bn is finite and B |= DLO, we can find b ∈ B greater

than every element of Bn. Similarly in case ii) we can find b ∈ B less
than every element of Bn. In case iii), because fn is a partial embedding,
fn(α) < fn(β) and we can choose b ∈ B \ Bn such that fn(α) < b < fn(β).
Note that

α < am ⇔ fn(α) < b

for all α ∈ An.
In any case, we let An+1 = An ∪ {am}, Bn+1 = Bn ∪ {b}, and extend fn

to fn+1 : An+1 → Bn+1 by sending am to b. This concludes stage n.
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stage n+ 1 = 2m+ 2: We will ensure that bm ∈ Bn+1.
Again, if bm is already in Bn, then we make no changes and let An+1 =

An, Bn+1 = Bn and fn+1 = fn. Otherwise, we must find a ∈ A such that the
image of the cut of a in An is the cut of bm in Bn. This is done as in the odd
case.

Clearly, at odd stages we have ensured that
⋃
An = A and at even stages

we have ensured that
⋃
Bn = B. Because each fn is a partial embedding,

f =
⋃
fn is an isomorphism from A onto B.

Because there are no finite dense linear orders, Vaught’s test implies that
DLO is complete.

The proof of Theorem 5.15 is an example of a back-and-forth construction.
At odd stages, we go forth trying to extend the domain, whereas at even
stages we go back trying to extend the range. We give another example of
this method.

The Random Graph

Let L = {R}, where R is a binary relation symbol. We will consider an L-
theory containing the graph axioms ∀x ¬R(x, x) and ∀x∀y R(x, y)→ R(y, x).
Let ψn be the “extension axiom”

∀x1 . . .∀xn∀y1 . . .∀yn

(
n∧

i=1

n∧

j=1

xi 6= yj → ∃z
n∧

i=1

(R(xi, z) ∧ ¬R(yi, z))

)
.

We let T be the theory of graphs where we add {∃x∃y x 6= y}∪{ψn : n =
1, 2, . . .} to the graph axioms. A model of T is a graph where for any finite
disjoint sets X and Y we can find a vertex with edges going to every vertex
in X and no vertex in Y .

Theorem 5.16 T is satisfiable and ℵ0-categorical. In particular, T is com-
plete and decidable.

Proof We first build a countable model of T . Let G0 be any countable
graph.

Claim There is a graph G1 ⊃ G0 such that G1 is countable and if X and
Y are disjoint finite subsets of G0 then there is z ∈ G1 such that R(x, z) for
x ∈ X and ¬R(y, z) for y ∈ Y .

Let the vertices of G1 be the vertices of G0 plus new vertices zX for each
finite X ⊆ G0. The edges of G1 are the edges of G together with new edges
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between x and zX whenever X ⊆ G0 is finite and x ∈ X. Clearly, G1 is
countable and has the desired property.

We iterate this construction to build a sequence of countable graphs G0 ⊂
G1 ⊂ . . . such that if X and Y are disjoint finite subsets of Gi, then there
is z ∈ Gi+1 such that R(x, z) for x ∈ X and ¬R(y, z) for y ∈ Y . Then,
G =

⋃
Gn is a countable model of T .

Next we show that T is ℵ0-categorical. Let G1 and G2 be countable
models of T . Let a0, a1, . . . list G1, and let b0, b1, . . . list G2. We will build a
sequence of finite partial one-to-one maps f0 ⊆ f1 ⊆ f2 ⊆ . . . such that for
all x, y in the domain of fs,

G1 |= R(x, y) if and only if G2 |= R(fs(x), fs(y)). (∗)

Let f0 = ∅.

stage s+ 1 = 2i+ 1: We make sure that ai is in the domain.
If ai is in the domain of fs, let fs+1 = fs. If not, let α1, . . . , αm list

the domain of fs and let X = {j ≤ m : R(αj, ai)} and let Y = {j ≤
m : ¬R(αj, ai)}. Because G2 |= T , we can find b ∈ G2 such that G2 |=
R(fs(αj), b) for j ∈ X and G2 |= ¬R(fs(αj), b) for j ∈ Y . Let fs+1 =
fs ∪ {(ai, b)}. By choice of b and induction, fs+1 satisfies (∗).

stage s+ 1 = 2i+ 2: By a similar argument, we can ensure that fs+1 satisfies
(∗) and bi is in the image of fs+1.

Let f =
⋃
fs. We have ensured that f maps G1 onto G2. By (∗), f is a

graph isomorphism. Thus, G1 ∼= G2 and T is ℵ0-categorical.
Because all models of T are infinite, T is complete. Because T is recur-

sively axiomatized, T is decidable.
The theory T is very interesting because it gives us insights into random

finite graphs. Let GN be the set of all graphs with vertices {1, 2, . . . , N}. We
consider a probability measure on GN where we make all graphs equally likely.
This is the same as constructing a random graph where we independently
decide whether there is an edge between i and j with probability 1

2
. For any

L-sentence φ,

pN (φ) =
|{G ∈ GN : G |= φ}|

|GN |

is the probability that a random element of GN satisfies φ.
We argue that large graphs are likely to satisfy the extension axioms.

Lemma 5.17 lim
N→∞

pN(ψn) = 1 for n = 1, 2, . . ..
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Proof Fix n. Let G be a random graph in GN where N > 2n. Fix
x1, . . . , xn, y1, . . . , yn, z ∈ G distinct. Let q be the probability that

¬

(
n∧

i=1

(R(xi, z) ∧ ¬R(yi, z))

)
.

Then q = 1− 2−2n. Because these probabilities are independent, the proba-
bility that

G |= ¬∃z¬

(
n∧

i=1

(R(xi, z) ∧ ¬R(yi, z))

)

is qN−2n. Let M be the number of pairs of disjoint subsets of G of size n.
Thus

pN(¬ψn) ≤ MqN−2n < N2nqN−2n.

Because q < 1,
lim
N→∞

pN(¬ψn) = lim
N→∞

N2nqN = 0,

as desired.
We can now use the fact that T is complete to get a good understanding

of the asymptotic properties of random graphs.

Theorem 5.18 (Zero-One Law for Graphs) For any L-sentence φ ei-
ther lim

N→∞
pN(φ) = 0 or lim

N→∞
pN(φ) = 1. Moreover, T axiomatizes {φ :

lim
N→∞

pN(φ) = 1}, the almost sure theory of graphs. The almost sure the-

ory of graphs is decidable and complete.

Proof If T |= φ, then there is n such that if G is a graph and G |= ψn,
then G |= φ. Thus, pN(φ) ≥ pN(ψn) and by Lemma 5.17, lim

N→∞
pN(φ) = 1.

On the other hand, if T 6|= φ, then, because T is complete, T |= ¬φ and
lim
N→∞

pN(¬φ) = 1 so lim
N→∞

pN(φ) = 0.
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