
Metamathematics

David Marker

Fall 2009

Part I

Truth and Proof

1 Languages and Structures

In mathematical logic, we use first-order languages to describe mathematical
structures. Intuitively, a structure is a set that we wish to study equipped
with a collection of distinguished functions, relations, and elements. We then
choose a language where we can talk about the distinguished functions, relations,
and elements and nothing more. For example, when we study the ordered
field of real numbers with the exponential function, we study the structure
(R,+, ·, exp, <, 0, 1), where the underlying set is the set of real numbers, and we
distinguish the binary functions addition and multiplication, the unary function
x 7→ ex, the binary order relation, and the real numbers 0 and 1. To describe
this structure, we would use a language where we have symbols for +, ·, exp, <
, 0, 1 and can write statements such as ∀x∀y exp(x) · exp(y) = exp(x + y) and
∀x (x > 0 → ∃y exp(y) = x). We interpret these statements as the assertions
“exey = ex+y for all x and y” and “for all positive x, there is a y such that
ey = x.”

For another example, we might consider the structure (N,+, 0, 1) of the
natural numbers with addition and distinguished elements 0 and 1. The natural
language for studying this structure is the language where we have a binary
function symbol for addition and constant symbols for 0 and 1. We would write
sentences such as ∀x∃y (x = y + y ∨ x = y + y + 1), which we interpret as the
assertion that “every number is either even or 1 plus an even number.”

Definition 1.1 A language L is given by specifying the following data:
i) a set of function symbols F and positive integers nf for each f ∈ F ;
ii) a set of relation symbols R and positive integers nR for each R ∈ R;
iii) a set of constant symbols C.

The numbers nf and nR tell us that f is a function of nf variables and R is
an nR-ary relation.

1

Any or all of the sets F , R, and C may be empty. Examples of languages
include:

i) the language of rings Lr = {+,−, ·, 0, 1}, where +,− and · are binary
function symbols and 0 and 1 are constants;

ii) the language of ordered rings Lor = Lr∪{<}, where < is a binary relation
symbol;

iii) the language of pure sets L = ∅;
iv) the language of graphs is L = {R} where R is a binary relation symbol.
Next, we describe the structures where L is the appropriate language.

Definition 1.2 An L-structure M is given by the following data:
i) a nonempty set M called the universe, domain, or underlying set of M;
ii) a function fM : Mnf →M for each f ∈ F ;
iii) a set RM ⊆MnR for each R ∈ R;
iv) an element cM ∈M for each c ∈ C.

We refer to fM, RM, and cM as the interpretations of the symbols f , R,
and c. We often write the structure as M = (M,fM, RM, cM : f ∈ F , R ∈ R,
and c ∈ C). We will use the notation A,B,M,N, . . . to refer to the underlying
sets of the structures A,B,M,N ,

For example, suppose that we are studying groups. We might use the lan-
guage Lg = {·, e}, where · is a binary function symbol and e is a constant
symbol. An Lg-structure G = (G, ·G , eG) will be a set G equipped with a binary
relation ·G and a distinguished element eG . For example, G = (R, ·, 1) is an
Lg-structure where we interpret · as multiplication and e as 1; that is, ·G = ·
and eG = 1. Also, N = (N,+, 0) is an Lg-structure where ·N = + and eG = 0.
Of course, N is not a group, but it is an Lg-structure.

Usually, we will choose languages that closely correspond to the structure
that we wish to study. For example, if we want to study the real numbers as
an ordered field, we would use the language of ordered rings Lor and give each
symbol its natural interpretation.

Formulas and Terms

We use the language L to create formulas describing properties of L-structures.
Formulas will be strings of symbols built using the symbols of L, variable sym-
bols v1, v2, . . ., the equality symbol =, the Boolean connectives ∧, ∨, and ¬,
which we read as “and,” “or,” and “not”, the quantifiers ∃ and ∀, which we
read as “there exists” and “for all”, and parentheses (,).

Definition 1.3 The set of L-terms is the smallest set T such that
i) c ∈ T for each constant symbol c ∈ C,
ii) each variable symbol vi ∈ T for i = 1, 2, . . ., and
iii) if t1, . . . , tnf ∈ T and f ∈ F , then f(t1, . . . , tnf) ∈ T .

For example, ·(v1,−(v3, 1)), ·(+(v1, v2),+(v3, 1)) and +(1,+(1,+(1, 1))) are
Lr-terms. For simplicity, we will usually write these terms in the more standard
notation v1(v3 − 1), (v1 + v2)(v3 + 1), and 1 + (1 + (1 + 1)) when no confusion

2

arises. In the Lr-structure (Z,+, ·, 0, 1), we think of the term 1 + (1 + (1 + 1))
as a name for the element 4, while (v1 + v2)(v3 + 1) is a name for the function
(x, y, z) 7→ (x+ y)(z + 1). We will see below that we can do something similar
for any term in any L-structure.

We are now ready to define L-formulas.

Definition 1.4 We say that φ is an atomic L-formula if φ is either
i) t1 = t2, where t1 and t2 are terms, or
ii) R(t1, . . . , tnR), where R ∈ R and t1, . . . , tnR are terms.

The set of L-formulas is the smallest setW containing the atomic formulas such
that

i) if φ is in W, then ¬φ is in W,
ii) if φ and ψ are in W , then (φ ∧ ψ) and (φ ∨ ψ) are in W, and
iii) if φ is in W, then ∃vi φ and ∀vi φ are in W.

Here are three examples of Lor-formulas.
• v1 = 0 ∨ v1 > 0.
• ∃v2 v2 · v2 = v1.
• ∀v1 (v1 = 0 ∨ ∃v2 v2 · v1 = 1).
Intuitively, the first formula asserts that v1 ≥ 0, the second asserts that v1 is

a square, and the third asserts that every nonzero element has a multiplicative
inverse.

We want to define when a formula is true in a structure. The first example
above already illustrates one problem we have to consider. Let R be the real
numbers. Is the formula v1 ≥ 0 true? Of course the answer is “it depends”.
If v1 = 2 then it is true, while if v1 = −7, then it is false. Similarly, in the
Lor-structure (Z,+,−, ·, <, 0, 1), the second formula would be true if v1 = 9 but
false if v1 = 8. It should be clear that to decide if a formula is true or false we
need to consider how we interpret the variables.

Definition 1.5 Let V = {v0, v1, . . .}. If M is an L- structure, an assignment
is a function σ : V →M .

We start by showing how to evaluate terms. Suppose M is an L- structure
and σ : V →M is an assignment. We inductively define tM[σ] ∈M as follows:

i) if t = c ∈ C is a constant, then tM[σ] = cM;
ii) if t = vi is a variable, then tM[σ] = σ(vi);
iii) if t1, . . . , tm are terms, f is anm-ary function symbol and t = f(t1, . . . , tm),

then
tM[σ] = fM(tM1 [σ], . . . , tMm [σ]).

For example, let L = {f, g, c}, where f is a unary function symbol, g is
a binary function symbol, and c is a constant symbol. We will consider the
L-terms t1 = g(v1, c), t2 = f(g(c, f(v1))), and t3 = g(f(g(v1, v2)), g(v1, f(v2))).
Let M be the L-structure (R, exp,+, 1); that is, fM = exp, gM = +, and
cM = 1.

Then
tM1 [σ] = σ(v1) + 1,

3

tM2 [σ] = e1+eσ(v1)
, and

tM3 [σ] = eσ(v1)+σ(v2) + (σ(v1) + eσ(v2)).

If σ : V → M is an assignment, v ∈ V and a ∈ M we let σ[av] be the
assignment

σ
[a
v

]
(vi) =

{
σ(vi) if vi 6= v
a if vi = v

.

Satisfaction

Before defining truth for formulas, we need to isolate one other important con-
cept.

Definition 1.6 We say that an occurence of a variable v in a formula φ is free
it is not inside a ∃v or ∀v quantifier; otherwise, we say that it is bound.

For example in the formula

∀v2 (v0 > 0 ∧ ∃v1 v1 · v2 = v0)

v0 occurs freely while v1 and v2 are bound. A more complicated example is the
formula

v0 > 0 ∨ ∃v0 v1 + v0 = 0.

Clearly v1 occurs freely, but v0 has both free and bound occurences. The first
occurence is free, while the second is bound.

Definition 1.7 Let M be an L-structure. We inductively define M |=σ φ for
all L-formulas φ and all assignments σ. Intuitively, M |=σ φ means “φ is true
in M under assignment σ.”

i) If φ is t1 = t2, then M |=σ φ if tM1 [σ] = tM2 [σ].
ii) If φ is R(t1, . . . , tnR), then M |=σ φ if (tM1 [σ], . . . , tMnR [σ]) ∈ RM.
iii) If φ is ¬ψ, then M |=σ φ if M 6|=σ ψ.
iv) If φ is (ψ ∧ θ), then M |=σ φ if M |=σ ψ and M |=σ θ.
v) If φ is (ψ ∨ θ), then M |=σ φ if M |=σ ψ or M |=σ θ.
vi) If φ is ∃vjψ, then M |=σ φ if there is a ∈M such that M |=σ[avj

] ψ.

vii) If φ is ∀vjψ, then M |=σ φ if M |=σ[avj
] ψ for all a ∈M .

If M |=σ φ we say that M with assignment σ satisfies φ or φ is true in M
with assignment σ.

Remarks 1.8 • There are a number of useful abbreviations that we will use:
φ → ψ is an abbreviation for ¬φ ∨ ψ, and φ ↔ ψ is an abbreviation for (φ →
ψ) ∧ (ψ → φ). In fact, we did not really need to include the symbols ∨ and ∀.
We could have considered φ∨ψ as an abbreviation for ¬(¬φ∧¬ψ) and ∀vφ as an
abbreviation for ¬(∃v¬φ). Viewing these as abbreviations will be an advantage

4

when we are proving theorems by induction on formulas because it eliminates
the ∨ and ∀ cases.

We also will use the abbreviations
n∧
i=1

ψi and
n∨
i=1

ψi for ψ1 ∧ . . . ∧ ψn and

ψ1 ∨ . . . ∨ ψn, respectively.
• In addition to v1, v2, . . . , we will use w, x, y, z, ... as variable symbols.
• It is important to note that the quantifiers ∃ and ∀ range only over ele-

ments of the model. For example the statement that an ordering is complete
(i.e., every bounded subset has a least upper bound) cannot be expressed as a
formula because we cannot quantify over subsets. The fact that we are limited
to quantification over elements of the structure is what makes it “first-order”
logic.

When proving results about satisfaction in models, we often must do an
induction on the construction of formulas. As a first example of this method
we show that M |=σ φ only depends on the restriction of σ to the variables
occuring freely in φ.

Lemma 1.9 (Coincedence Lemma) Suppose M is an L-structure.
i) Suppose t is an L-term and σ, τ : V → M are assignments that agree on

all variables occuring in t. Then tM[σ] = tM[τ].
ii) Suppose φ is an L-formula and σ, τ : V →M are assignments that agree

on all variables occuring freely in φ. Then M |=σ φ if and only if M |=τ φ.

Proof i) We prove this by induction on terms.
If t = c ∈ C is a constant, then

tM[σ] = cM = tM[τ].

If t = vi is a variable, then

tM[σ] = σ(vi) = τ(vi) = tM[τ].

Suppose the lemma is true for t1, . . . , tm, f is an m-ary function symbol and
t = f(t1, . . . , tm). Then

tM[σ] = fM(tM1 [σ], . . . , tMm [σ]) = fM(tM1 [τ], . . . , tMm [τ]) = tM [τ].

ii) We prove this by induction on formulas.
Suppose φ is t1 = t2 where t1 and t2 are L-terms. Then

M |=σ φ ⇔ tM1 [σ] = tM2 [σ]
⇔ tM1 [τ] = tM2 [τ]
⇔ M |=τ σ.

Suppose R is an m-ary relation symbol, t1, . . . , tm are L- terms, and φ is
R(t1, . . . , tm). Then

M |=σ φ ⇔ (tM1 [σ], . . . , tMm [σ]) ∈ RM

⇔ (tM1 [τ], . . . , tMm [τ]) ∈ RM

⇔ M |=τ φ.

5

Suppose the claim is true for ψ and φ is ¬ψ. Then

M |=σ φ ⇔ M 6|=σ ψ

⇔ M 6|=τ ψ

⇔ M |=τ φ.

Suppose the claim is true for ψ and θ and φ is ψ ∧ θ. Then

M |=σ φ ⇔ M 6|=σ ψ and M |=σ θ

⇔ M 6|=τ ψ and M |=τ θ

⇔ M |=τ φ.

Suppose the claim is true for ψ, φ is ∃viψ andM |=σ φ. Then there is a ∈M
such that M |=σ[avi

] ψ. The assignments σ[avi] and τ [avi] agree on all variables
free in ψ. Thus, by induction, M |=τ [avi

] ψ and M |=τ φ. Symmetricly, if
M |=τ φ, then M |=σ φ.

Thus, by induction, M |=σ φ if and only if M |=τ φ.

Definition 1.10 We say that an L-formula φ is a sentence if φ has no freely
occuring variables.

Corollary 1.11 Suppose φ is an L-formula and M is an L-structure. The
following are equivalent:

i) M |=σ φ for some assignment σ;
ii) M |=σ φ for all assignments σ.

Definition 1.12 If φ is a sentence, we write M |= φ if M |=σ φ for all
assignments σ : V →M .

Suppose φ is a formula with free variables from v1, . . . , vn. For notational
simplicity, if a1, . . . , an ∈ M we write tM(a) tM[σ] for the common value of
tM[σ] where σ is an assignment with σ(vi) = ai for i = 1, . . . , n. Similarly, we
write and tM |= φ(a1, . . . , an) if M |=σ φ for any such σ. By the Coincedence
Lemma, this is well defined.

L-embeddings and Substructures

We will also study maps that preserve the interpretation of L.

Definition 1.13 Suppose thatM andN are L-structures with universesM and
N , respectively. An L-embedding η :M→ N is a one-to-one map η : M → N
that preserves the interpretation of all of the symbols of L. More precisely:

i) η(fM(a1, . . . , anf)) = fN (η(a1), . . . , η(anf)) for all f ∈ F and a1, . . . , an ∈
M ;

ii) (a1, . . . , amR) ∈ RM if and only if (η(a1), . . . , η(amR)) ∈ RN for all R ∈ R
and a1, . . . , amj ∈M ;

iii) η(cM) = cN for c ∈ C.

6

A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the
inclusion map is an L-embedding, we say either that M is a substructure of N
or that N is an extension of M.

For example:
i) (Z,+, 0) is a substructure of (R,+, 0).
ii) If η : Z → R is the function η(x) = ex, then η is an Lg-embedding of

(Z,+, 0) into (R, ·, 1).

The next proposition asserts that if a formula without quantifiers is true in
some structure, then it is true in every extension and substructre. It is proved
by induction on quantifier-free formulas.

Proposition 1.14 Suppose that M is a substructure of N , a ∈ M , and φ(v)
is a quantifier-free formula. Then, M |= φ(a) if and only if N |= φ(a).

Proof

Claim If t(v) is a term and b ∈ M , then tM(b) = tN (b). This is proved by
induction on terms.

If t is the constant symbol c, then cM = cN .
If t is the variable vi, then tM(b) = bi = tN (b).
Suppose that t = f(t1, . . . , tn), where f is an n-ary function symbol, t1, . . . , tn

are terms, and tMi (b) = tNi (b) for i = 1, . . . , n. BecauseM⊆ N , fM = fN |Mn.
Thus,

tM(b) = fM(tM1 (b), . . . , tMn (b))
= fN (tM1 (b), . . . , tMn (b))
= fN (tN1 (b), . . . , tNn (b))
= tN (b).

We now prove the proposition by induction on formulas.
If φ is t1 = t2, then

M |= φ(a)⇔ tM1 (a) = tM2 (a)⇔ tN1 (a) = tN2 (a)⇔ N |= φ(a).

If φ is R(t1, . . . , tn), where R is an n-ary relation symbol, then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (tM1 (a), . . . , tMn (a)) ∈ RN

⇔ (tN1 (a), . . . , tNn (a)) ∈ RN

⇔ N |= φ(a).

Thus, the proposition is true for all atomic formulas.
Suppose that the proposition is true for ψ and that φ is ¬ψ. Then,

M |= ¬φ(a)⇔M 6|= ψ(a)⇔ N 6|= ψ(a)⇔ N |= φ(a).

7

Finally, suppose that the proposition is true for ψ0 and ψ1 and that φ is
ψ0 ∧ ψ1. Then,

M |= φ(a) ⇔ M |= ψ0(a) and M |= ψ1(a)
⇔ N |= ψ0(a) and N |= ψ1(a)
⇔ N |= φ(a).

We have shown that the proposition holds for all atomic formulas and that
if it holds for φ and ψ, then it also holds for ¬φ and φ ∧ ψ. Because the set
of quantifier-free formulas is the smallest set of formulas containing the atomic
formulas and closed under negation and conjunction, the proposition is true for
all quantifier-free formulas.

Elementary Equivalence and Isomorphism

We next consider structures that satisfy the same sentences.

Definition 1.15 We say that two L-structures M and N are elementarily
equivalent and write M≡ N if

M |= φ if and only if N |= φ

for all L-sentences φ.

We let Th(M), the full theory of M, be the set of L-sentences φ such that
M |= φ. It is easy to see that M≡ N if and only if Th(M)= Th(N).

Our next result shows that Th(M) is an isomorphism invariant of M. The
proof uses the important technique of “induction on formulas.”

Theorem 1.16 Suppose that j :M→N is an isomorphism. Then, M≡ N .

Proof We show by induction on formulas that M |= φ(a1, . . . , an) if and only
if N |= φ(j(a1), . . . , j(an)) for all formulas φ.

We first must show that terms behave well.
Claim Suppose that t is a term and the free variables in t are from v =
(v1, . . . , vn). For a = (a1, . . . , an) ∈ M , we let j(a) denote (j(a1), . . . , j(an)).
Then j(tM(a)) = tN (j(a)). More formally, we are showing that j(tM[σ]) =
tN [j ◦ σ] for any assignment σ

We prove this by induction on terms.
i) If t = c, then j(tM(a)) = j(cM) = cN = tN (j(a)).
ii) If t = vi, then j(tM(a)) = j(ai) = tN (j(ai)).
iii) If t = f(t1, . . . , tm), then

j(tM(a)) = j(fM(tM1 (a), . . . , tMm (a)))
= fN (j(tM1 (a)), . . . , j(tMm (a)))
= fN (tN1 (j(a)), . . . , tNm(j(a)))
= tN (j(a)).

8

We proceed by induction on formulas.
i) If φ(v) is t1 = t2, then

M |= φ(a) ⇔ tM1 (a) = tM2 (a)
⇔ j(tM1 (a)) = j(tM2 (a)) because j is injective
⇔ tN1 (j(a)) = tN2 (j(a))
⇔ N |= φ(j(a)).

ii) If φ(v) is R(t1, . . . , tn), then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (j(tM1 (a)), . . . , j(tMn (a))) ∈ RN

⇔ (tN1 (j(a)), . . . , tNn (j(a))) ∈ RN

⇔ N |= φ(j(a)).

iii) If φ is ¬ψ, then by induction

M |= φ(a)⇔M 6|= ψ(a)⇔ N 6|= ψ(j(a))⇔ N |= φ(j(a)).

iv) If φ is ψ ∧ θ, then

M |= φ(a) ⇔ M |= ψ(a) and M |= θ(a)
⇔ N |= ψ(j(a)) and N |= θ(j(a))⇔ N |= φ(j(a)).

v) If φ(v) is ∃w ψ(v, w), then

M |= φ(a) ⇔ M |= ψ(a, b) for some b ∈M
⇒ N |= ψ(j(a), j(b)
⇒ N |= φ(j(a)).

On the other hand,

N |= φ(j(a)) ⇔ N |= ψ(j(a), c) for some c ∈ N
⇒ M |= ψ(a, j−1(c)) because j is surjective.
⇒ M |= φ(a).

2 Theories

Let L be a language. An L-theory T is simply a set of L-sentences. We say that
M is a model of T and write M |= T if M |= φ for all sentences φ ∈ T .

The set T = {∀x x = 0,∃x x 6= 0} is a theory. Because the two sentences in
T are contradictory, there are no models of T . We say that a theory is satisfiable
if it has a model.

9

We say that a class of L-structures K is an elementary class if there is an
L-theory T such that K = {M :M |= T}.

One way to get a theory is to take Th(M), the full theory of an L-structure
M. In this case, the elementary class of models of Th(M) is exactly the class
of L-structures elementarily equivalent to M. More typically, we have a class
of structures in mind and try to write a set of properties T describing these
structures. We call these sentences axioms for the elementary class.

We give a few basic examples of theories and elementary classes that we will
return to frequently.

Example 2.1 Infinite Sets

Let L = ∅.
Consider the L-theory where we have, for each n, the sentence φn given by

∃x1∃x2 . . . ∃xn
∧

i<j≤n

xi 6= xj .

The sentence φn asserts that there are at least n distinct elements, and an
L-structure M with universe M is a model of T if and only if M is infinite.

Example 2.2 Linear Orders

Let L = {<}, where < is a binary relation symbol. The class of linear orders is
axiomatized by the L-sentences
∀x ¬(x < x),
∀x∀y∀z ((x < y ∧ y < z)→ x < z),
∀x∀y (x < y ∨ x = y ∨ y < x).
There are a number of interesting extensions of the theory of linear orders.

For example, we could add the sentence

∀x∀y (x < y → ∃z (x < z ∧ z < y))

to get the theory of dense linear orders, or we could instead add the sentence

∀x∃y (x < y ∧ ∀z(x < z → (z = y ∨ y < z)))

to get the theory of linear orders where every element has a unique successor.
We could also add sentences that either assert or deny the existence of top or
bottom elements.

Example 2.3 Equivalence Relations

Let L = {E}, where E is a binary relation symbol. The theory of equivalence
relations is given by the sentences
∀x E(x, x),
∀x∀y(E(x, y)→ E(y, x)),
∀x∀y∀z((E(x, y) ∧ E(y, z))→ E(x, z)).

10

If we added the sentence

∀x∃y(x 6= y ∧ E(x, y) ∧ ∀z (E(x, z)→ (z = x ∨ z = y)))

we would have the theory of equivalence relations where every equivalence class
has exactly two elements. If instead we added the sentence

∃x∃y(¬E(x, y) ∧ ∀z(E(x, z) ∨ E(y, z)))

and the infinitely many sentences

∀x∃x1∃x2 . . . ∃xn

 ∧
i<j≤n

xi 6= xj ∧
n∧
i=1

E(x, xi)


we would axiomatize the class of equivalence relations with exactly two classes,
both of which are infinite.

Example 2.4 Graphs

Let L = {R} where R is a binary relation. We restrict our attention to irreflexive
graphs. These are axiomatized by the two sentences
∀x ¬R(x, x),
∀x∀y (R(x, y)→ R(y, x)).

Example 2.5 Groups

Let L = {·, e}, where · is a binary function symbol and e is a constant symbol.
We will write x · y rather than ·(x, y). The class of groups is axiomatized by
∀x e · x = x · e = x,
∀x∀y∀z x · (y · z) = (x · y) · z,
∀x∃y x · y = y · x = e.

We could also axiomatize the class of Abelian groups by adding

∀x∀y x · y = y · x.

Let φn(x) be the L-formula

x · x · · ·x︸ ︷︷ ︸
n−times

= e;

which asserts that xn = e.
We could axiomatize the class of torsion-free groups by adding

{∀x (x = e ∨ ¬φn(x)) : n ≥ 2}

to the axioms for groups. Alternatively, we could axiomatize the class of groups
where every element has order at most N by adding to the axioms for groups
the sentence

∀x
∨
n≤N

φn(x).

11

Note that similar ideas will not work to axiomatize the class of torsion groups
because the corresponding sentence would be infinitely long. In the next chapter,
we will see that the class of torsion groups is not elementary.

Let ψn(x, y) be the formula

x · x · · ·x︸ ︷︷ ︸
n−times

= y;

which asserts that xn = y. We can axiomatize the class of divisible groups by
adding the axioms {∀y∃x ψn(x, y) : n ≥ 2}.

It will often be useful to deal with additive groups instead of multiplicative
groups. The class of additive groups is the collection structures in the language
L = {+, 0}, axiomatized as above replacing · by + and e by 0.

Example 2.6 Ordered Abelian Groups

Let L = {+, <, 0}, where + is a binary function symbol, < is a binary relation
symbol, and 0 is a constant symbol. The axioms for ordered groups are

the axioms for additive groups,
the axioms for linear orders, and
∀x∀y∀z(x < y → x+ z < y + z).

Example 2.7 Left R-modules

Let R be a ring with multiplicative identity 1. Let L = {+, 0} ∪ {r : r ∈ R}
where + is a binary function symbol, 0 is a constant, and r is a unary function
symbol for r ∈ R. In an R-module, we will interpret r as scalar multiplication
by R. The axioms for left R-modules are

the axioms for additive commutative groups,
∀x r(x+ y) = r(x) + r(y) for each r ∈ R,
∀x (r + s)(x) = r(x) + s(x) for each r, s ∈ R,
∀x r(s(x)) = rs(x) for r, s ∈ R,
∀x 1(x) = x.

Example 2.8 Rings and Fields

Let Lr be the language of rings {+,−, ·, 0, 1}, where +, −, and · are binary
function symbols and 0 and 1 are constants. The axioms for rings are given by

the axioms for additive commutative groups,
∀x∀y∀z (x− y = z ↔ x = y + z),
∀x x · 0 = 0,
∀x∀y∀z (x · (y · z) = (x · y) · z),
∀x x · 1 = 1 · x = x,
∀x∀y∀z x · (y + z) = (x · y) + (x · z),
∀x∀y∀z (x+ y) · z = (x · z) + (y · z).
The second axiom is only necessary because we include − in the language

(this will be useful later). We axiomatize the class of fields by adding the axioms

12

∀x∀y x · y = y · x,
∀x (x 6= 0→ ∃y x · y = 1).
We axiomatize the class of algebraically closed fields by adding to the field

axioms the sentences

∀a0 . . . ∀an−1∃x xn +
n−1∑
i=0

aix
i = 0

for n = 1, 2, Let ACF be the axioms for algebraically closed fields.
Let ψp be the Lr-sentence ∀xx+ . . .+ x︸ ︷︷ ︸

p−times

= 0, which asserts that a field has

characteristic p. For p > 0 a prime, let ACFp = ACF ∪{ψp} and ACF0 = ACF
∪{¬ψp : p > 0}, be the theories of algebraically closed fields of characteristic p
and characteristic zero, respectively.

Example 2.9 Ordered Fields

Let Lor = Lr ∪ {<}. The class of ordered fields is axiomatized by the axioms
for fields,

the axioms for linear orders,
∀x∀y∀z (x < y → x+ z < y + z),
∀x∀y∀z ((x < y ∧ z > 0)→ x · z < y · z).

Example 2.10 Differential Fields

Let L = Lr ∪ {δ}, where δ is a unary function symbol. The class of differential
fields is axiomatized by

the axioms of fields,
∀x∀y δ(x+ y) = δ(x) + δ(y),
∀x∀y δ(x · y) = x · δ(y) + y · δ(x).

Example 2.11 Peano Arithmetic1

Let L = {+, ·, s, 0}, where + and · are binary functions, s is a unary function,
and 0 is a constant. We think of s as the successor function x 7→ x + 1. The
Peano axioms for arithmetic are the sentences
∀x s(x) 6= 0,
∀x (x 6= 0→ ∃y s(y) = x),
∀x x+ 0 = x,
∀x ∀y x+ (s(y)) = s(x+ y),
∀x x · 0 = 0,
∀x∀y x · s(y) = (x · y) + x,

and the axioms Ind(φ) for each formula φ(v, w), where Ind(φ) is the sentence
∀w [(φ(0, w) ∧ ∀v (φ(v, w)→ φ(s(v), w)))→ ∀x φ(x,w)].
The axiom Ind(φ) formalizes an instance of induction. It asserts that if

a ∈M , X = {m ∈M :M |= φ(m, a)}, 0 ∈ X, and s(m) ∈ X whenever m ∈ X,
then X = M .

1This axiomatization is traditional, but in §10 we give a different axiomatization of Peano
Arithmetic.

13

Logical Consequence

Definition 2.12 Let T be an L-theory and φ an L-sentence. We say that φ is
a logical consequence of T and write T |= φ if M |= φ whenever M |= T .

We give several examples.

Example 2.13 Let L = {·, 1} be the language groups and let T be the theory
of groups. Then

T |= ∀x∀y∀z (x · z = y · z → x = y).

Proof Suppose G |= T is a group and a, b, c ∈ G and ac = bc. There is d ∈ G
such that cd = 1.

(ac)d = (bc)d
a(cd) = b(cd)
a · 1 = b · 1
a = b

Example 2.14 Let L = {+, <, 0} and let T be the theory of ordered Abelian
groups. Then ∀x(x 6= 0→ x+ x 6= 0) is a logical consequence of T .

Proof Suppose that M = (M,+, <, 0) is an ordered Abelian group. Let
a ∈ M \ {0}. We must show that a + a 6= 0. Because (M,<) is a linear order
a < 0 or 0 < a. If a < 0, then a + a < 0 + a = a < 0. Because ¬(0 < 0),
a+ a 6= 0. If 0 < a, then 0 < a = 0 + a < a+ a and again a+ a 6= 0.

Example 2.15 Let T be the theory of groups where every element has order 2.
Then, T 6|= ∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).

Proof Clearly, Z/2Z |= T ∧ ¬∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).

Exercise 2.16 Show that if T is unsatisfiable, then T |= φ for all φ.

In general, to show that T |= φ we give an informal mathematical proof
as above that M |= φ whenever M |= T . To show that T 6|= φ, we usually
construct a counterexample, i.e., we construct M |= T ∪ {¬φ}.

The following observation will be useful. It formalizes the usual way we
prove a universal statement by naming a generic element and proving it for that
element.

Lemma 2.17 Suppose c is a constant not occurring in T or φ(v) where φ is a
formula with free variable φ. and T |= φ(c). Then M |= ∀v φ(v).

14

Proof Suppose M |= T . Let a be any element of M. We construct M∗ by
changing the interpretation to make cM = a. Since c does not occur in T and
we have changed the interpretation of no other symbols M∗ |= T . But then
M∗ |= φ(c) and M |= φ(a). Thus M |= ∀v φ(v).

In the next sections we will also need a notion of logical consequence for
formulas.

Definition 2.18 If Γ is a set of L-formulas and φ is an L-formula, we say that
φ is a logical consequnce of Γ and write Γ |= φ if M |=σ φ, whenever M is an
L-structure, σ : V →M is an assignment and M |=σ ψ for all ψ ∈ Γ.

Exercise 2.19 Suppose Γ is a set of formulas, φ(v) is a formula where v is free,
ψ is a formula and w is either a variable or constant symbol not occurring in
either Γ , φ or ψ.

a) Show that if Γ |= φ(w), then Γ |= ∀v φ(v).
b) Show that if Γ ∪ {φ(w)} |= ψ, then Γ ∪ {∃v φ(v)} |= ψ.

3 Formal Proofs

A priori to show Γ |= φ we must examine all structures M and all assignments
σ : V → M where M |=σ Γ and show that M |=σ φ. This is in general an
impossible task. In mathematics we show that Γ |= φ by giving a proof. In this
section we will give one example of a formal proof system. We will write Γ ` φ
if there is a formal proof of φ from Γ. We will demand two properties of our
proof system.
• SOUNDNESS: If Γ ` φ, then Γ |= φ.

Thus anything that is provable is a logical consequence.
• COMPLETENESS: If Γ |= φ, then Γ ` φ.

Thus every logical consequence is provable.
Soundness of our system will be routine. Gödel’s Completeness Theorem

will be proved in the next section.
In addition we will demand that proof are finite. Any proof will be a finite

collection of symbols. Moreover, it should be easy to check that a proported
proof is correct.

Our proof system is a variant of the sequent calculus.

Definition 3.1 A proof will be a finite sequence of assertions of the form
1. Γ1 ` φ1

2. Γ2 ` φ2

...
...

n. Γn ` φn
where each Γi is a finite set of formulas (possibly empty), φi is a formula and
each assertion Γi ` φi can be derived from the assertions Γ1 ` φ1, . . . ,Γi−1 `
φi−1 by one of the inference rules that we will shortly describe.

15

We think of “Γ ` φ” as the assertion that φ is derivable from Γ. We will
write Γ, ψ ` φ to abbreviate Γ ∪ {ψ} ` φ.

Our inference rules will have the form

Γ1 ` φ1 . . . Γn ` φn
∆ ` ψ.

This means that if have already established Γ1 ` φ1, . . . ,Γn ` φn, then we can
conlclude that ∆ ` ψ.

We begin to give the rules of our calculus.

Structural Rules:
S1. (Assumption) If φ ∈ Γ, then

Γ ` φ

S2. (Monotonicity) If Γ ⊆ ∆, then

Γ ` φ
∆ ` φ

S3. (Proof by cases)
Γ, ψ ` φ Γ,¬ψ ` φ

Γ ` φ

Connective Rules
C1. (Contradiction Rule)

Γ,¬φ ` ψ Γ,¬φ ` ¬ψ
Γ ` φ

C2. (Left ∨-rule)
Γ, φ ` θ Γ, ψ ` θ

Γ, (φ ∨ ψ) ` θ

C3. (Right ∨-rules)

Γ ` φ
Γ ` (φ ∨ ψ)

Γ ` φ
Γ ` (ψ ∨ φ)

Before giving the inference rules for quantifiers and equality we give some
sample derivations and prove some useful inference rules which are consequences
of the rules above.

Example 3.2 ` (φ ∨ ¬φ)

16

1. φ ` φ S1
2. φ ` (φ ∨ ¬φ) C3
3. ¬φ ` ¬φ S1
4. ¬φ ` (φ ∨ ¬φ) C3
5. ` (φ ∨ ¬φ) S3

Example 3.3 ¬¬φ ` φ

1. ¬¬φ,¬φ ` ¬¬φ S1
2. ¬¬φ,¬φ ` ¬φ S1
3. ¬¬φ ` φ C1

Lemma 3.4 (Second Contradiction Rule)

Γ ` ψ Γ ` ¬ψ
Γ ` φ

Proof
1. Γ ` ψ Premise
2. Γ,¬φ ` ψ S2
3. Γ ` ¬ψ Premise
4. Γ,¬φ ` ¬ψ S2
5. Γ ` φ C1

Lemma 3.5 (Chain Rule)

Γ ` φ Γ, φ ` ψ
Γ ` ψ

Proof
1. Γ ` φ Premise
2. Γ,¬φ ` φ S2
3. Γ,¬φ ` ¬φ S1
4. Γ,¬φ ` ψ Apply 3.4 to 2,3
5. Γ, φ ` ψ Premise
6. Γ ` ψ apply S3 to 4,5

Having proved the Second Contradiction Rule, we are now free to use it as
if it was an inference rules.

Lemma 3.6 (Contraposition)

Γ, φ ` ψ
Γ,¬ψ ` ¬φ

Proof
1. Γ, φ ` ψ Premise
2. Γ,¬ψ, φ ` ψ S2
3. Γ,¬ψ, φ ` ¬ψ S1
4. Γ,¬ψ, φ ` ¬φ apply 3.4 to 2,3
5. Γ,¬ψ,¬φ ` ¬φ S1
6. Γ,¬ψ ` ¬φ apply S3 to 4,5

17

Exercise 3.7 We can similarly prove the following versions of the contraposition
law.

Γ,¬φ ` ¬ψ
Γ, ψ ` φ

Γ,¬φ ` ψ
Γ,¬ψ ` φ

Γ, φ ` ¬ψ
Γ, ψ ` ¬φ

Lemma 3.8 (Modus ponens)

Γ ` (φ→ ψ) Γ ` φ
Γ ` ψ

Proof
Recall that (φ→ ψ) is an abbreviation for (¬φ ∨ ψ).

1. Γ ` φ Premise
2. Γ,¬φ ` φ S2
3. Γ,¬φ ` ¬φ S1
4. Γ,¬φ ` ψ 3.4 applied to 2,3
5. Γ, ψ ` ψ S1
6. Γ, (¬φ ∨ ψ) ` ψ C2
7. Γ ` (¬φ ∨ ψ) Premise
8. Γ ` ψ 3.5 applied to 6,7

Equality Rules:
E1.(Reflexivity) Let t be any term.

` t = t

E2. (Substitution) Let φ(v) be a formula in which v occurs freely Let t0, t1
be terms and let φ(ti) be the formula obtained by substituting ti for all free
occurences of v in φ(v).

Γ ` φ(t0)
Γ, t0 = t1 ` φ(t1)

We give two sample derivations.

Example 3.9 t0 = t1 ` t1 = t0.

Let φ(v) be “v = t0”.
1. ` t0 = t0 E1
2. t0 = t1 ` t0 = t0 S2
3. t0 = t1 ` t1 = t0 E2 applied to φ(v)

Example 3.10 t0 = t1, t1 = t2 ` t0 = t2

18

Substitute t2 for t1 in t0 = t1.

We conclude our list of inference rules with rules for manipulating quantifiers.

Quantifier Rules
Q1. (right ∃-introduction) Let φ(v) be a formula in which v is a free variable
(there may be others). Suppose t is a term and φ(t) is the formula obtained by
replacing all free occurences of v by t.

Γ ` φ(t)
Γ ` ∃vφ(v)

Q2. (left ∃-introduction) Let φ(v) be a formula in which v is a free variable.
Let y be either i) a constant symbol not occuring in Γ or ψ or ii) a variable not
occuring freely in Γ or ψ.

Γ, φ(y) ` ψ
Γ,∃vφ(v) ` ψ

Q2. expresses the usual way that we prove ψ from ∃vφ(v). We assume that
φ(v) holds for some v and show that φ(v) ` ψ. We then conclude ψ follows from
∃v φ(v). See Exercise 2.19

This completes our list of inference rules. We give one more useful lemma
and two sample derivations.

Example 3.11 ` ∃x x = x

Let t be a term. Let φ(v) be v = v.
1. ` t = t E1
2. ` ∃x x = x Q1

Lemma 3.12 (Right ∀-introduction) Suppose v does not occur freely in Γ
then

Γ ` φ(v)
Γ ` ∀v φ(v).

Proof
Let ψ be any sentence. Recall that ∀v φ(v) is an abbreviation for ¬∃v ¬φ(v).

1. Γ ` φ(v) Premise
2. Γ,¬φ(v) ` φ(v) S2
3. Γ,¬φ(v) ` ¬φ(v) S1
4. Γ,¬φ(v) ` ψ apply 3.4 to 2,3
5. Γ,∃v¬φ(v) ` ψ Q2
6. Γ,¬ψ ` ¬∃v¬φ(v) apply 3.6 to 5
7. Γ,¬φ(v) ` ¬ψ apply 3.4 to 2,3
8. Γ,∃v¬φ(v) ` ¬ψ Q2
9. Γ, ψ ` ¬∃v¬φ(v) apply 3.7 to 8

10. Γ ` ¬∃v¬φ(v) by S2 from 6,9

19

Example 3.13 ∃x∀y φ(x, y) ` ∀y∃x φ(x, y).

1. ¬φ(x, y) ` ¬φ(x, y) S1
2. ¬φ(x, y) ` ∃y ¬φ(x, y) Q1
3. ¬∃y ¬φ(x, y) ` φ(x, y) apply 3.7 to 2.
4. ¬∃y ¬φ(x, y) ` ∃xφ(x, y) Q1
5. ¬∃y ¬φ(x, y) ` ∀y∃xφ(x, y) 3.12
6. ∃x¬∃y ¬φ(x, y) ` ∀y∃xφ(x, y) Q2

Theorem 3.14 (Soundness Theorem) Suppose that the assertion Γ ` φ can
be derived using the inference rules given above. Then Γ |= φ.

Proof
Recall that Γ |= φ if for any L-structureM and any assignment σ : V →M ,

if M |=σ Γ, then M |=σ φ.
We prove the Soundness Theorem by induction on proofs.

Base cases:
S1. Clearly if φ ∈ Γ, then Γ |= φ.
E1. Clearly M |=σ t = t for any assignment σ.

Inference rules: If we have an inference rule

Γ1 ` φ1 . . . Γn ` φn
∆ ` ψ

then we must show that if Γi |= φi for all i, then ∆ |= ψ.

This is obvious for S2, C2, C3, E2, and Q1.

S3. Suppose Γ, φ |= ψ and Γ,¬φ |= ψ. If M |= Γ, then M |= φ or M |= ¬φ.
In either case M |= ψ.

C1. Suppose Γ,¬φ |= ψ and Γ,¬φ |= ¬ψ. Let M |= Γ. Since we can’t have
M |= ψ and M |= ¬ψ we must have M |= φ.

Q2. See Exercise 2.19

Since all of the inference rules preserve truth the soundness theorem holds.

Definition 3.15 Suppose Γ is a (possibly infinite) set of sentences. We say that
φ is provable from Γ if for some finite ∆ ⊆ Γ the assertion ∆ ` φ is derivable in
our calculus. If φ is provable from Γ we write Γ ` φ.

This is a slight abuse of notation, but should cause no confusion.

Corollary 3.16 If Γ ` φ, then Γ |= φ.

Proof Let ∆ be a finite subset of Γ such that ∆ ` φ is derivable. Then ∆ |= φ.
Since any model of Γ is a model of ∆, Γ |= φ.

Definition 3.17 : We say that Γ is consistent if there is no sentence φ such
that Γ ` φ and Γ ` ¬φ.

20

Proposition 3.18 i) Γ is inconsistent if and only if Γ ` ψ for every formula
ψ.

ii) If Γ is satisfiable, then Γ is consistent.
iii) If Γ is consistent, then for any formula φ either Γ∪ {φ} is consistent or

Γ ∪ {¬φ} is consistent (or both).

iv) If Γ 6` φ, then Γ ∪ {¬φ} is consistent.

Proof i) If Γ ` φ and Γ ` ¬φ, then Γ ` ψ by Lemma 3.4. Certainly if every
sentence is derivable from Γ, then Γ is inconsistent.

ii) If A |= Γ either A 6|= φ or A 6|= ¬φ. Thus by the Soundness Theorem,
Γ 6` φ or Γ 6` ¬φ.

iii) Suppose not. Let ψ be any sentence. By i) Γ, φ ` ψ and Γ,¬φ ` ψ. By
S3, Γ ` ψ. Thus Γ is inconsistent.

iv) Suppose Γ∪{¬φ} is inconsistent. Then Γ∪{¬φ} ` φ. Since Γ∪{φ} ` φ,
by S3, Γ ` φ.

In §4 we will prove the converse of 3.18 ii). We will see that the converse is
just a restatement of Gödel’s Completeness Theorem.

4 Gödel’s Completeness Theorem

In this section we will prove one of the central theorems of mathematical logic

Theorem 4.1 (Gödel’s Completeness Theorem) Let Γ be a set of L-sentences.
If Γ |= φ, then Γ ` φ.

To prove the Completeness Theorem we will infact prove the following con-
verse to 3.18 ii).

(*) If Γ is consistent, then Γ is satisfiable.
Proof (*) ⇒ Completeness

Suppose Γ 6` φ, then, by 3.18, Γ ∪ {¬φ} is consistent. By (*) Γ ∪ {¬φ} has
a model M. But then Γ 6|= φ.

To prove (*) we must actually construct a model of Γ. The method of proof
we give here is due to Leon Henkin.

Definition 4.2 We say that a consistent set of L-sentences Σ is maximal
consistent if for all L-sentences φ either φ ∈ Σ or ¬φ ∈ Σ (as Σ is consistent
exactly one of φ and ¬φ is in Σ).

Lemma 4.3 i) If Σ is maximal consistent and Σ ` φ, then φ ∈ Σ.
ii) If Σ is maxiaml consistent and φ ∨ ψ ∈ Σ, then φ ∈ Σ or ψ ∈ Σ.

Proof
i) If not, ¬φ ∈ Σ and Σ is inconsistent.

21

ii) Otherwise ¬φ and ¬ψ are both in Σ and hence ¬(φ∨ψ) ∈ Σ, contradicting
consistency.

Definition 4.4 We say that Σ has the witness property if for any L-formula
φ(v) there is a constant c such that

Σ ` (∃vφ(v) → φ(c)).

Theories with this property are sometimes called Henkinized.

The proof of (*) comes in two steps:
STEP 1. Show that if Γ is consistent, there is Σ ⊇ Γ which is maximal con-

sistent and Henkinized. (Note: In general we will have to expand the language
to get a theory with the witness property.)

STEP 2. Show that if Σ is maximal consistent and has the witness property,
then there is a model of Σ.

We will examine STEP 2 first. Let L denote the language of Σ. Let C be the
constants of L. The universe of our model will be equivalence classes of elements
of C. If c1 and c2 are constants we say that c1Ec2 iff and only if c1 = c2 ∈ Σ.

Lemma 4.5 E is an equivalence relation.

Proof
Let c1, c2, c3 ∈ C. By E1, E2, and the examples following them

Σ ` c1 = c1

Σ, c1 = c2 ` c2 = c1

and
Σ, c1 = c2, c2 = c3 ` c1 = c3.

Thus, by 4.3, E is an equivalence relation.
For c ∈ C let [c] denote the equivalence class of c. We now begin to build a

structure A which we call the canonical structure for Σ. The underlying set of
A will be

A = {[c] : c ∈ C}.
The next lemma will allow us to interpret the relation and function symbols of
L.

Lemma 4.6 i) If R is an n-ary relation symbol of L, c1, . . . , cn, d1, . . . , dn ∈ C
and ciEdi for all i, then

R(c1, . . . , cn) ∈ Σ⇔ R(d1, . . . , dn) ∈ Σ.

ii) Let f be an n-ary function symbol of L and let c1, . . . , cn ∈ C, there is
d ∈ C such that f(c1, . . . , cn) = d ∈ Σ.

iii) Let f be an n-ary function symbol of L and let c0, . . . , cn, d0, . . . , dn ∈ C
such that ciEdi for i ≥ 0, f(c1, . . . , cn) = c0 ∈ Σ and f(d1, . . . , dn) = d0 ∈ Σ.
Then c0 = d0 ∈ Σ.

22

Proof
i) By repeated applications of E2,

c1 = d1, . . . , cn = dn ` R(c1, . . . , cn)↔ R(d1, . . . , dn)

ii) By E1
` f(c1, . . . , cn) = f(c1, . . . , cn)

where φ(v) is f(c1, . . . , cn) = v. Thus by Q1

` ∃v f(c1, . . . , cn) = v.

Thus ∃v f(c1, . . . , cn) = v is in Σ. Since Σ has the witness proterty, there is a
constant symbol d such that f(c1, . . . , cn) = d ∈ Σ.

iii) By repeated application of E2,

c1 = d1, . . . , cn = dn, f(c1, . . . , cn) = c0 ` f(d1, . . . , dn) = c0

Thus Σ ` f(d1, . . . , dn) = c0 and Σ ` f(d1, . . . , dn) = d0. By the examples in
§3, Σ ` c0 = d0.

We can now give the interpretation of L in A.

• The universe of A is A.

• For each constant symbol c of L, let cA = [c].

• If R is an n-ary relation symbol let RA ⊆ An be defined by

RA = {([c1], . . . , [cn]) ∈ An : R(c1, . . . , cn) ∈ Σ}.

By 4.6 i) RA is well defined.

• If f is an n-ary function symbol define fA : An → A by

fA([c1], . . . , [cn]) = [d]⇔ f(c1, . . . , cn) = d ∈ Σ.

By 4.6 ii) and iii) fA is well defined and fA : An → A.

Lemma 4.7 Suppose t(v1, . . . , vn) is a term (some of the variables may not
occur) and c0, . . . , cn ∈ C such that t(c1, . . . , cn) = c0 ∈ Σ. If σ is an assignment
where σ(vi) = [ci], then tA[σ] = [c0]. Moreover if d0, . . . , dn ∈ C, t(d1, . . . , dn) =
d0 ∈ Σ and diEci for i > 0, then c0Ed0.

Proof The moreover is clear since

t(c1, . . . , cn) = c0, t(d1, . . . , dn) = d0, c1 = d1, . . . , cn = dn ` c0 = d0

so c0 = d0 ∈ Σ.
The main assertion is proved by induction on the complexity of t.

If t is a constant symbol c, then tA[σ] = [c]. Since c = c0 ∈ Σ, [c] = [c0].

23

If t is the variable vi, then tA[σ] = [ci] and ci = c0 ∈ Σ, thus [c0] = tA[σ].
Suppose t is f(t1, . . . , tm) and the claim holds for t1, . . . , tm. For each i,

∃w ti(c1, . . . , cn) = w ∈ Σ.

Thus since Σ has the witness property, for each i there is bi ∈ C such that
ti(c1, . . . , cn) = bi ∈ Σ. By our inductive assumption tAi [σ] = [bi]. Clearly
t(c1, . . . , cn) = f(b1, . . . , bm) ∈ Σ, thus f(b1, . . . , bm) = c0 ∈ Σ. But then

tA[σ] = f([b1], . . . , [bm]) = [c0]

as desired.
Thus the claim holds for all terms.

Theorem 4.8 If Σ is a maximal, consistent theory with the witness property
and A is the canonical structure for Σ, then A |= Σ.

Proof
We will prove that for all formulas φ(v1, . . . , vn) and constants c1, . . . , cn,

A |= φ([c1], . . . , [cn]) if and only if φ(c1, . . . , cn) ∈ Σ.

This will be proved by induction on the complexity of φ.

1) φ is t1(v1, . . . , vn) = t2(v1, . . . , vn)
Since Σ has the witness property there are d1, d2 ∈ C such that ti(c1 . . . , cn) =

di ∈ Σ. By Lemma 4.7 ti([c1], . . . , [cn]) = [di]. Thus

A |= t1([c1], . . . , [cn]) = t2([c1], . . . , [cn]) ⇔ [d1] = [d2]
⇔ t1(c) = t2(c) ∈ Σ.

2) φ is R(t1, . . . , tm) where R is an m-ary relation symbol.
Since Σ has the witness property there are d1, . . . , dm ∈ C such that ti(c1, . . . , cn) =

di ∈ Σ. By Lemma 4.7, ti([c1], . . . , [cn]) = [di].

A |= φ([c1], . . . , [cn]) ⇔ ([d1], . . . , [dm]) ∈ RA

⇔ R(d1, . . . , dm) ∈ Σ
⇔ R(t1(c), . . . , tm(c)) ∈ Σ.

3) φ is ¬ψ
Then

A |= φ([c]) ⇔ A 6|= ψ([c])
⇔ ψ(c) 6∈ Σ (by induction)
⇔ φ(c) ∈ Σ since Σ is maximal.

4) φ is ψ ∨ θ

24

A |= φ([c]) ⇔ A |= ψ([c]) or A |= θ([ci])
⇔ ψ(c) ∈ Σ or θ(c) ∈ Σ by induction
⇔ φ(c) ∈ Σ by 4.3 ii).

5) φ(v) is ∃w ψ(w, v)
If A |= ∃w ψ(w, [c]), then there is d ∈ C such that A |= ψ([d], [c]). By

induction ψ(d, c) ∈ Σ, and by maximality ∃w ψ(w, c) ∈ Σ.
On the other hand if ∃w ψ(w, c) ∈ Σ, then, since Σ has the witness property,

there is d ∈ C, such that ψ(d, c) ∈ Σ. By induction A |= ψ([d], [c]) and A |=
φ([c]).

We have now completed STEP 2. That is, we have shown that if Σ is
maximal, consistent theory with the witness property, then there is A |= Σ.
The Completeness Theorem will now follow from the following result.

Theorem 4.9 Let Γ be a consistent L-theory. There is L∗ ⊇ L and Σ ⊇ Γ a
maximal consistent L∗-theory with the witness property.

Let L0=L, let C0 be the constants of L, and let Γ0 = Γ. Let Fn be the set
of all Ln-formulas in one free variable v.

Let Ln+1 = Ln ∪ {cφ : φ(v) ∈ Fn}, where each cφ is a new constant symbol.
For φ(v) ∈ Fn let θφ be the formula

(∃vφ(v) → φ(cφ)).

Let
Γn+1 = Γn ∪ {θφ : φ ∈ Fn},

Γ∗ =
⋃
n≥0

Γn and L∗ =
⋃
n≥0

Ln.

The following Lemma is the key step to proving the consistency of Γ∗.

Lemma 4.10 Suppose ∆ is a consistent L-theory, φ(v) is an L-formula with
free variable v, c a constant symbol not in L and θ is the formula

∃vφ→ φ(c).

If ψ is an L-sentence and ∆, θ ` ψ, then ∆ ` ψ.
In particular, if ∆ is consistent, then ∆ ∪ {θ} is consistent.

Proof

25

1. ∆,¬∃vφ(v) ` ¬∃vφ(v) S1
2. ∆,¬∃vφ(v) ` θ C3 since θ is (¬∃vφ(v) ∨ φ(c))
3. ∆, θ ` ψ Premise
4. ∆,¬∃vφ(v), θ ` ψ S2
5. ∆,¬∃vφ(v) ` ψ apply Lemma 3.5 to 2,4
6. ∆, φ(c) ` φ(c) S1
7. ∆, φ(c) ` θ C3 since θ is (¬∃vφ(v) ∨ φ(c))
8. ∆, φ(c), θ ` ψ S2 to 2,4
9. ∆, φ(c) ` ψ by Lemma 3.5

10. ∆,∃vφ(v) ` ψ Q2 (as c does not occur in ψ)
11. ∆ ` ψ S3 applied to 5,10

Lemma 4.11 i) If Σ ⊇ Γ∗ is an L∗-theory, then Σ has the witness property.
ii) Each Γn is consistent.
iii) Γ∗ is consistent.

Proof
i) For any L∗ formula φ(v) in one free variable v, there is an n, such that

φ(v) ∈ Fn. Then (∃vφ(v) → φ(cφ)) ∈ Γn+1 ⊆ Σ. Thus Σ has the witness
property.

ii) We prove this by induction on n. Since Γ0 = Γ it is conistent. Suppose
Γn is consistent, but Γn+1 is inconsistent. Since the proofs of contradictions are
finite, there are φ1, . . . , φm ∈ Fn such that Γn, θφ1 , . . . , θφm is inconsistent. By
choosing m-minimal we may assume that ∆ = Γn, θφ1 , . . . , θφm−1 is consistent.
By Lemma 4.10 ∆ ∪ θφm is still consistent, a contradiction.

iii) In general suppose we have consistent theories

Σ0 ⊆ Σ1 ⊆ . . .

and Σ =
⋃
n Σn. If Σ is inconsistent, there is φ such that Σ ` φ ∧ ¬φ. Since

the proof of φ∧¬φ uses only finitely many premises from Σ, there is an n such
that Σn ` φ ∧ ¬φ, a contradiction.

We have one lemma remaining.

Lemma 4.12 If ∆ is a consistent L-theory, there is a maximal consistent L-
theory Σ ⊇ ∆.

If we apply Lemma 4.12 to Γ∗ from Lemma 4.11 we obtain a maximal con-
sistent Σ ⊇ Γ with the witness property.

We first prove Lemma 4.12 in the special case that the language L is count-
able. We let φ0, φ1, . . . list all L-sentences. We build a sequence of consistent
L-theories

∆ = ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ . . .

as follows: We assume that ∆n is consistent. If ∆n ∪ {φn} is consistent, let
∆n+1 = ∆n ∪ {φn}. If not, let ∆n+1 = ∆n ∪ {¬φn}. By Lemma 3.18 iii), ∆n+1

is consistent.

26

Let Σ =
⋃
n ∆n. As in Lemma 4.11 iii), Σ is a consistent L-theory. For any

φ, either φ or ¬φ is in Σ. Thus Σ is maximal consistent.
In the general case when L is uncountable we need to use Zorn’s Lemma.

Definition 4.13 Let P be a set and let < be a partial order of P . We say that
X ⊆ P is a chain if for all x, y ∈ X x = y or x < y or x > y (ie. < linearly
orders X). We say that z ∈ P is an upper bound for X if for all x ∈ X, x ≤ z.
We say that z ∈ P is maximal for < if there is no z∗ ∈ P , with z < z∗.

Lemma 4.14 (Zorn’s Lemma) Let (P,<) be a partial order such that every
chain has an upper bound. Then there is z ∈ P maximal for <.

Zorn’s Lemma is equivalent to the Axiom of Choice.

Proof of Lemma 4.12
Let P = {Γ ⊇ ∆ : Γ is a consistent L-theory}. We order P by Γ0 < Γ1 if

and only if Γ0 ⊂ Γ1.

Claim If X ⊂ P is a chain, then X has an upper bound.
Let

Γ∗ =
⋃

Γ∈X
Γ.

Clearly for all Γ ∈ X, Γ ⊆ Γ∗ thus Γ∗ is an upper bound. We need only show
that Γ∗ ∈ P (ie. Γ∗ is consistent).

Suppose Γ∗ is inconsistent. Since proofs are finite, there are θ1, . . . , θm ∈ Γ∗

such that {θ1, . . . , θm} is inconsistent. For each i, there is ni, such that θi ∈ Γni .
Since X is a chain, there is k ≤ m such that for all i, Γni ⊆ Γnk . Thus all
θi ∈ Γnk and Γnk is inconsistent, a contradiction. Hence Γ∗ ∈ P .

Thus we may apply Zorn’s Lemma to obtain Σ ∈ P which is maximal for
<. Since Σ ∈ P , Σ ⊇ ∆ and Σ is consistent. Let φ be any L-sentence, By 3.18
iii) one of Σ ∪ {φ} or Σ ∪ {¬φ} is consistent. Say Σ ∪ {φ} is consistent. Then
φ ∈ Σ for otherwise Σ ∪ {φ} would contradict the maximality of Σ. Thus Σ is
maximal.

We can now summarize the proof of the Completeness Theorem. Suppose
Γ is a consistent L-theory. By Lemma 4.11 there is L∗ ⊇ L and Γ∗ ⊇ Γ a
consistent L∗-theory such that every L∗-theory extending Γ∗ has the witness
property. By Lemma 4.12 there is a maximal consistent L∗-theory Σ ⊇ Γ∗.
By construction Σ has the witness property. By Theorem 4.8 there is A |= Σ.
Clearly A |= Γ.

Our proof gives some information about the size of the model obtained. For
L any language, |L| is the cardinality of the set of constant, function and relation
symbols of L. The cardinality of M is |M |, the cardinality of the universe of
M.

Corollary 4.15 Suppose Γ is a consistent L-theory. Then Γ has a model A =
(A, . . .) with |A| ≤ max(|L|,ℵ0).

27

Proof The model of Γ that we build above as cardinality at most |C|, where C
is the set of constant symbols of L∗. We argue inductively that Ln has at most
|L|+ ℵ0 constant symbols. This is because Ln+1 has at most one new constant
symbol for each Ln-formula. In general if a language has κ symbols, there are
max(κ,ℵ0) possible formulas (formulas are finite strings of symbols).]

5 Basic Model Theory

Our first result is deceptively simple but suprisingly powerful consequence of
the Completeness Theorem.

Theorem 5.1 (Compactness Theorem) Suppose Γ is a set of sentences and
every finite subset of Γ is satisfiable. Then Γ is satisfiable. Indeed Γ has a model
of cardinality at most max(|L|,ℵ0).

Proof If Γ is not satisfiable, then, by the Completeness Theorem, Γ is incon-
sistent. Thus for some φ, Γ ` φ and Γ ` ¬φ. But then there is a finite ∆ ⊆ Γ
such that ∆ ` φ and ∆ ` ¬φ. By the Soundness Theorem, ∆ is not satisfiable.

Corollary 5.2 Suppose Γ has arbitrarily large finite models, then Γ has an
infinite model.

Proof Let φn be the sentence:

∃v1 . . . ∃vn
∧

i<j≤n

vi 6= vj .

Let Γ∗ = Γ∪{φn : n = 1, 2, . . .}. Clearly any model of Γ∗ is an infinite model of
Γ. If ∆ ⊂ Γ∗ is finite, then for some N , ∆ ⊂ Γ ∪ {φ1, . . . , φN}. There is A |= Γ
with |A| ≥ N , thus A |= ∆. By the Compactness Theorem, Γ∗ has a model.

Corollary 5.3 Let L = {+, ·, 0, 1, <} and let Th(N), be the complete theory of
the natural numbers. There is A |= Th(N) with a ∈ A infinite.

Proof Let L∗ = L ∪ {c}, where c is a new constant symbol. Let Γ = Th(N) ∪
{c > 0, c > 1, c > 1 + 1, c > 1 + 1 + 1, . . .}. If ∆ ⊂ Γ is finite, then

∆ ⊆ Th(N) ∪ {c > 0, . . . , c > 1 + . . .+ 1︸ ︷︷ ︸
N−times

}

for some N . But then we can find a model of ∆ by taking the natural numbers
and interpreting c as N +1. Thus by the Compactness Theorem Γ has a model.
In this model the interpretation of c is greater that every natural number.

Example: Let G = (V,E) be a graph such that every finite subgraph can be
four colored.2 We claim that G can be four colored. Let L = {R,B, Y,G}∪{cv :
v ∈ V }. Let Γ be the L-theory with axioms:

2That is, we can color the vertices with four colors so that no adjacent vertices have the
same color. For example, the Four Color Theorem says that every finite planar graph can be
four colored.

28

i) ∀x [(R(x)∧¬B(x)∧¬Y (x)∧¬G(x))∨. . .∨(¬R(x)∧¬B(x)∧¬Y (x)∧G(x))]

ii) if (v, w) ∈ E add the axiom: ¬(R(cv) ∧R(cw)) ∧ . . . ∧ ¬(G(cv) ∧G(cw)).

If ∆ is a finite subset of Γ, let V∆ be the verticies such that cv is used in
∆. Since the restriction of G to V∆ is four colorable, ∆ is consistent. Thus Γ is
consistent. Let A |= Γ.

Color G by coloring v as A colors cv.

Theorem 5.4 (Upward Löwenheim–Skolem Theorem) Suppose Γ is an
L-theory. If Γ has an infinite model, then it has a model of cardinality κ for
every κ ≥ max(|L|,ℵ0).

Proof Let I be a set of cardinality κ. Let L∗ = L ∪ {cα : α ∈ I}. Let

Γ∗ = Γ ∪ {cα 6= cβ : α 6= β}.

If ∆ is a finite subset of Γ∗, then in any infinite model A of Γ we can interpret
the constants such that A |= ∆. Thus Γ has a model of size at most κ. But
certainly any model of Γ∗ has size at least κ (the map α 7→ ĉα is one to one).

Definition 5.5 A consistent theory Γ is complete if Γ |= φ or Γ |= ¬φ for all
L-sentences φ.

It is easy to see that Γ is complete if and only ifM≡ N for anyM,N |= Γ.
IfM is an L-structure, then Th(M) is a complete theory, but it may be difficult
to figure out if φ ∈ Th(M). We will give one useful test to decide if a theory is
complete.

We know from the Löwenheim-Skolem theorem that if a theory has an infinite
model it has arbitrarily large models. Thus the theory of an infinite structure
can not capture the structure up to isomorphism. Sometimes though knowing
the theory and the cardinality determines the structure.

Definition 5.6 Γ is κ-categorical if and only if any two models of Γ of cardi-
nality κ are isomorphic.

• Let L be the empty language. Then the theory of an infinite set is κ-
categorical for all cardinals κ.
• Let L = {E}, where E is a binary relation, and let T be the theory of an

equivalence relation with exactly two classes, both of which are infinite. It is
easy to see that any two countable models of T are isomorphic. On the other
hand, T is not κ-categorical for κ > ℵ0. To see this, let M0 be a model where
both classes have cardinality κ, and let M1 be a model where one class has
cardinality κ and the other has cardinality ℵ0. Clearly, M0 and M1 are not
isomorphic.

Let L = {+, 0} be the language of additive groups and let T be the L-theory
of nontrivial torsion-free divisible Abelian groups. The axioms of T are the
axioms for Abelian groups together with the axioms

∃x x 6= 0,

29

∀x(x 6= 0→ x+ . . .+ x︸ ︷︷ ︸
n−times

6= 0)

and
∀y∃x x+ . . .+ x︸ ︷︷ ︸

n−times

= y

for n = 1, 2,

Proposition 5.7 The theory of torsion-free divisible Abelian groups is κ-categorical
for all κ > ℵ0.

Proof We first argue that models of T are essentially vector spaces over the
field of rational numbers Q. Clearly, if V is any vector space over Q, then the
underlying additive group of V is a model of T . On the other hand, if G |= T ,
g ∈ G, and n ∈ N with n > 0, we can find h ∈ G such that nh = g. If nk = g,
then n(h− k) = 0. Because G is torsion-free there is a unique h ∈ G such that
nh = g. We call this element g/n. We can view G as a Q-vector space under
the action m

n g = m(g/n).
Two Q-vector spaces are isomorphic if and only if they have the same dimen-

sion. Thus, models of T are determined up to isomorphism by their dimension.
If G has dimension λ, then |G| = λ + ℵ0. If κ is uncountable and G has car-
dinality κ, then G has dimension κ. Thus, for κ > ℵ0 any two models of T of
cardinality κ are isomorphic.

Note that T is not ℵ0-categorical. Indeed, there are ℵ0 nonisomorphic models
corresponding to vector spaces of dimension 1, 2, 3, . . . and ℵ0.

A similar argument applies to the theory of algebraically closed fields. Let
ACFp be the theory of algebraically closed fields of characteristic p, where p is
either 0 or a prime number.

Proposition 5.8 ACFp is κ-categorical for all uncountable cardinals κ.

Proof Two algebraically closed fields are isomorphic if and only if they have the
same characteristic and transcendence degree (see, for example Lang’s Algebra
X §1). An algebraically closed field of transcendence degree λ has cardinality λ+
ℵ0. If κ > ℵ0, an algebraically closed field of cardinality κ also has transcendence
degree κ. Thus, any two algebraically closed fields of the same characteristic
and same uncountable cardinality are isomorphic.

Theorem 5.9 (Vaught’s Test) Suppose every model of Γ is infinite, κ ≥
max(|L|,ℵ0) and Γ is κ-categorical. Then Γ is complete.

Proof Suppose not. Let φ be an L-sentence such that Γ 6|= φ and Γ 6|= ¬φ.
Let Γ0 = Γ ∪ {φ} and Γ1 = Γ ∪ {¬φ}. Each Γi has a model, thus since Γ
has only infinite models, each Γi has an infinite model. By the Löwenheim-
Skolem theorem there is Ai |= Γi where Ai has cardinality κ. Since Γ is κ-
categorical, A0

∼= A1 and hence by 1.16, A0 ≺ A1. But A0 |= φ and A1 |= ¬φ,
a contradiction.

30

The assumption that T has no finite models is necessary. Suppose that T is
the {+, 0}-theory of Abelian groups, where every element has order 2. In the
exercises, we will show that T is κ-categorical for all κ ≥ ℵ0. However, T is
not complete. The sentence ∃x∃y∃z (x 6= y ∧ y 6= z ∧ z 6= x) is false in the
two-element group but true in every other model of T .

Vaught’s Test implies that all of the categorical theories discussed above are
complete. In particular, the theory of algebraically closed fields of a fixed char-
acteristic is complete. This result of Tarski has several immediate interesting
consequences.

The next definition is, for the moment, imprecise. In later chapters we will
make the concepts precise.

Definition 5.10 We say that an L-theory T is decidable if there is an algorithm
that when given an L-sentence φ as input decides whether T |= φ.

Lemma 5.11 Let T be a recursive complete satisfiable theory in a recursive
language L. Then T is decidable.

Proof Start enumerating all finite sequence of strings of L-symbols. For each
one, check to see if it is a derivation of ∆ ` φ or ∆ ` ¬φ. If it is then check
to see if all of the sentences in ∆ are in Γ. If so output yes if ∆ ` φ and no if
∆ ` ¬φ. If not, goon to the next string. Since Γ is complete, the Completeness
Theorem implies there is a finite ∆ ⊆ Γ such that ∆ ` φ or ∆ ` ¬φ. Thus our
search will halt at some stage.

Informally, to decide whether φ is a logical consequence of a complete sat-
isfiable recursive theory T , we begin searching through possible proofs from T
until we find either a proof of φ or a proof of ¬φ. Because T is satisfiable, we
will not find proofs of both. Because T is complete, we will eventually find a
proof of one or the other.

Corollary 5.12 For p = 0 or p prime, ACFp is decidable. In particular,
Th(C), the first-order theory of the field of complex numbers, is decidable.

The completeness of ACFp can also be thought of as a first-order version of
the Lefschetz Principle from algebraic geometry.

Corollary 5.13 Let φ be a sentence in the language of rings. The following
are equivalent.

i) φ is true in the complex numbers.
ii) φ is true in every algebraically closed field of characteristic zero.
iii) φ is true in some algebraically closed field of characteristic zero.
iv) There are arbitrarily large primes p such that φ is true in some alge-

braically closed field of characteristic p.
v) There is an m such that for all p > m, φ is true in all algebraically closed

fields of characteristic p.

31

Proof The equivalence of i)–iii) is just the completeness of ACF0 and v)⇒ iv)
is obvious.

For ii) ⇒ v) suppose that ACF0 |= φ. There is a finite ∆ ⊂ ACF0 such that
∆ ` φ. Thus, if we choose p large enough, then ACFp |= ∆. Thus, ACFp |= φ
for all sufficiently large primes p.

For iv) ⇒ ii) suppose ACF0 6|= φ. Because ACF0 is complete, ACF0 |= ¬φ.
By the argument above, ACFp |= ¬φ for sufficiently large p; thus, iv) fails.

Ax found the following striking application of Corollary 5.13.

Theorem 5.14 Every injective polynomial map from Cn to Cn is surjective.

Proof Remarkably, the key to the proof is the simple observation that if k
is a finite field, then every injective function f : kn → kn is surjective. From
this observation it is easy to show that the same is true for F alg

p , the algebraic
closure of the p-element field.
Claim Every injective polynomial map f : (F alg

p)n → (F alg
p)n is surjective.

Suppose not. Let a ∈ F alg
p be the coefficients of f and let b ∈ (F alg

p)n such
that b is not in the range of f . Let k be the subfield of F alg

p generated by a, b.
Then f |kn is an injective but not surjective polynomial map from kn into itself.
But F alg

p =
⋃∞
n=1 Fpn is a locally finite field. Thus k is finite, a contradiction.

Suppose that the theorem is false. Let X = (X1, . . . , Xn). Let f(X) =
(f1(X), . . . , fn(X)) be a counterexample where each fi ∈ C[X] has degree at
most d. There is an L-sentence Φn,d such that for K a field, K |= Φn,d if and
only if every injective polynomial map from Kn to Kn where each coordinate
function has degree at most d is surjective. We can quantify over polynomials
of degree at most d by quantifying over the coefficients. For example, Φ2,2 is
the sentence
∀a0,0∀a0,1∀a0,2∀a1,0∀a1,1∀a2,0∀b0,0∀b0,1∀b0,2∀b1,0∀b1,1∀b2,0[(
∀x1∀y1∀x2∀y2((

∑
ai,jx

i
1y
j
1 =

∑
ai,jx

i
2y
j
2 ∧
∑
bi,jx

i
1y
j
1 =

∑
bi,jx

i
2y
j
2)→

(x1 = x2 ∧ y1 = y2))
)
→ ∀u∀v∃x∃y

∑
ai,jx

iyj = u ∧
∑
bi,jx

iyj = v
]
.

By the claim Falg
p |= Φn,d for all primes p. By Corollary 5.13, C |= Φn,d, a

contradiction.

Back-and-Forth

We give two examples of ℵ0-categorical theories. The proofs use the “back-
and-forth” method, a style of argument that has many interesting applications.
We start with Cantor’s proof that any two countable dense linear orders are
isomorphic.

Let L = {<} and let DLO be the theory of dense linear orders without
endpoints. DLO is axiomatized by the axioms for linear orders plus the axioms

∀x∀y (x < y → ∃z x < z < y)

and
∀x∃y∃z y < x < z.

32

Theorem 5.15 The theory DLO is ℵ0-categorical and complete.

Proof Let (A,<) and (B,<) be two countable models of DLO. Let a0, a1, a2, . . .
and b0, b1, b2, . . . be one-to-one enumerations of A and B. We will build a
sequence of partial bijections fi : Ai → Bi where Ai ⊂ A and Bi ⊂ B are finite
such that f0 ⊆ f1 ⊆ . . . and if x, y ∈ Ai and x < y, then fi(x) < fi(y). We
call fi a partial embedding. We will build these sequences such that A =

⋃
Ai

and B =
⋃
Bi. In this case, f =

⋃
fi is the desired isomorphism from (A,<)

to (B,<).
At odd stages of the construction we will ensure that

⋃
Ai = A, and at even

stages we will ensure that
⋃
Bi = B.

stage 0: Let A0 = B0 = f0 = ∅.
stage n+ 1 = 2m+ 1: We will ensure that am ∈ An+1.

If am ∈ An, then let An+1 = An, Bn+1 = Bn and fn+1 = fn. Suppose that
am 6∈ An. To add am to the domain of our partial embedding, we must find
b ∈ B \Bn such that

α < am ⇔ fn(α) < b

for all α ∈ An. In other words, we must find b ∈ B, which is in the image under
fn of the cut of am in An. Exactly one of the following holds:

i) am is greater than every element of An, or
ii) am is less than every element of An, or
iii) there are α and β ∈ An such that α < β, γ ≤ α or γ ≥ β for all γ ∈ An

and α < am < β.
In case i) because Bn is finite and B |= DLO, we can find b ∈ B greater

than every element of Bn. Similarly in case ii) we can find b ∈ B less than every
element of Bn. In case iii), because fn is a partial embedding, fn(α) < fn(β)
and we can choose b ∈ B \Bn such that fn(α) < b < fn(β). Note that

α < am ⇔ fn(α) < b

for all α ∈ An.
In any case, we let An+1 = An ∪ {am}, Bn+1 = Bn ∪ {b}, and extend fn to

fn+1 : An+1 → Bn+1 by sending am to b. This concludes stage n.
stage n+ 1 = 2m+ 2: We will ensure that bm ∈ Bn+1.

Again, if bm is already in Bn, then we make no changes and let An+1 =
An, Bn+1 = Bn and fn+1 = fn. Otherwise, we must find a ∈ A such that the
image of the cut of a in An is the cut of bm in Bn. This is done as in the odd
case.

Clearly, at odd stages we have ensured that
⋃
An = A and at even stages we

have ensured that
⋃
Bn = B. Because each fn is a partial embedding, f =

⋃
fn

is an isomorphism from A onto B.
Because there are no finite dense linear orders, Vaught’s test implies that

DLO is complete.
The proof of Theorem 5.15 is an example of a back-and-forth construction.

At odd stages, we go forth trying to extend the domain, whereas at even stages
we go back trying to extend the range. We give another example of this method.

33

The Random Graph

Let L = {R}, where R is a binary relation symbol. We will consider an L-theory
containing the graph axioms ∀x ¬R(x, x) and ∀x∀y R(x, y) → R(y, x). Let ψn
be the “extension axiom”

∀x1 . . . ∀xn∀y1 . . . ∀yn

 n∧
i=1

n∧
j=1

xi 6= yj → ∃z
n∧
i=1

(R(xi, z) ∧ ¬R(yi, z))

 .

We let T be the theory of graphs where we add {∃x∃y x 6= y} ∪ {ψn : n =
1, 2, . . .} to the graph axioms. A model of T is a graph where for any finite
disjoint sets X and Y we can find a vertex with edges going to every vertex in
X and no vertex in Y .

Theorem 5.16 T is satisfiable and ℵ0-categorical. In particular, T is complete
and decidable.

Proof We first build a countable model of T . Let G0 be any countable graph.
Claim There is a graph G1 ⊃ G0 such that G1 is countable and if X and Y
are disjoint finite subsets of G0 then there is z ∈ G1 such that R(x, z) for x ∈ X
and ¬R(y, z) for y ∈ Y .

Let the vertices of G1 be the vertices of G0 plus new vertices zX for each finite
X ⊆ G0. The edges of G1 are the edges of G together with new edges between
x and zX whenever X ⊆ G0 is finite and x ∈ X. Clearly, G1 is countable and
has the desired property.

We iterate this construction to build a sequence of countable graphs G0 ⊂
G1 ⊂ . . . such that if X and Y are disjoint finite subsets of Gi, then there is
z ∈ Gi+1 such that R(x, z) for x ∈ X and ¬R(y, z) for y ∈ Y . Then, G =

⋃
Gn

is a countable model of T .
Next we show that T is ℵ0-categorical. Let G1 and G2 be countable models

of T . Let a0, a1, . . . list G1, and let b0, b1, . . . list G2. We will build a sequence
of finite partial one-to-one maps f0 ⊆ f1 ⊆ f2 ⊆ . . . such that for all x, y in the
domain of fs,

G1 |= R(x, y) if and only if G2 |= R(fs(x), fs(y)). (∗)

Let f0 = ∅.
stage s+ 1 = 2i+ 1: We make sure that ai is in the domain.

If ai is in the domain of fs, let fs+1 = fs. If not, let α1, . . . , αm list the
domain of fs and let X = {j ≤ m : R(αj , ai)} and let Y = {j ≤ m : ¬R(αj , ai)}.
Because G2 |= T , we can find b ∈ G2 such that G2 |= R(fs(αj), b) for j ∈ X
and G2 |= ¬R(fs(αj), b) for j ∈ Y . Let fs+1 = fs ∪{(ai, b)}. By choice of b and
induction, fs+1 satisfies (∗).
stage s+ 1 = 2i+ 2: By a similar argument, we can ensure that fs+1 satisfies
(∗) and bi is in the image of fs+1.

34

Let f =
⋃
fs. We have ensured that f maps G1 onto G2. By (∗), f is a

graph isomorphism. Thus, G1
∼= G2 and T is ℵ0-categorical.

Because all models of T are infinite, T is complete. Because T is recursively
axiomatized, T is decidable.

The theory T is very interesting because it gives us insights into random
finite graphs. Let GN be the set of all graphs with vertices {1, 2, . . . , N}. We
consider a probability measure on GN where we make all graphs equally likely.
This is the same as constructing a random graph where we independently decide
whether there is an edge between i and j with probability 1

2 . For any L-sentence
φ,

pN (φ) =
|{G ∈ GN : G |= φ}|

|GN |
is the probability that a random element of GN satisfies φ.

We argue that large graphs are likely to satisfy the extension axioms.

Lemma 5.17 lim
N→∞

pN (ψn) = 1 for n = 1, 2,

Proof Fix n. LetG be a random graph in GN whereN > 2n. Fix x1, . . . , xn, y1, . . . , yn, z ∈
G distinct. Let q be the probability that

¬

(
n∧
i=1

(R(xi, z) ∧ ¬R(yi, z))

)
.

Then q = 1−2−2n. Because these probabilities are independent, the probability
that

G |= ¬∃z¬

(
n∧
i=1

(R(xi, z) ∧ ¬R(yi, z))

)
is qN−2n. Let M be the number of pairs of disjoint subsets of G of size n. Thus

pN (¬ψn) ≤MqN−2n < N2nqN−2n.

Because q < 1,
lim
N→∞

pN (¬ψn) = lim
N→∞

N2nqN = 0,

as desired.
We can now use the fact that T is complete to get a good understanding of

the asymptotic properties of random graphs.

Theorem 5.18 (Zero-One Law for Graphs) For any L-sentence φ either
lim
N→∞

pN (φ) = 0 or lim
N→∞

pN (φ) = 1. Moreover, T axiomatizes {φ : lim
N→∞

pN (φ) =

1}, the almost sure theory of graphs. The almost sure theory of graphs is decid-
able and complete.

Proof If T |= φ, then there is n such that if G is a graph and G |= ψn,
then G |= φ. Thus, pN (φ) ≥ pN (ψn) and by Lemma 5.17, lim

N→∞
pN (φ) = 1.

On the other hand, if T 6|= φ, then, because T is complete, T |= ¬φ and
lim
N→∞

pN (¬φ) = 1 so lim
N→∞

pN (φ) = 0.

35

Ultraproducts

Let I be an infinite set. We let

P(I) = {A : A ⊆ I}

be the power set of I.

Definition 5.19 We say that F ⊆ P(I) is a filter if
i) I ∈ F , ∅ 6∈ F ;
ii) If A ∈ F and A ⊆ B, then B ∈ F ;
iii) If A,B ∈ F then A ∩B ∈ F .

We say that F is an ultrafilter if in addition,
iv) for all A ⊆ I either A ∈ F or I \A ∈ F .

Example 5.20 Cof = {A ⊆ I : I \A is finite} is a filter.

Example 5.21 Let I = R then F = {A : R \A has Lebesgue measure zero}, is
a filter.

Lemma 5.22 If F ⊆ P(I) is a filter, A ⊆ I and I \A 6∈ F , then

F ′ = {C : there is B ∈ F , C ⊇ A ∩B}

is an ultrafilter. Note that A ∈ F ′.

Proof Since I ⊇ I ∩A, I ∈ F ′.
If ∅ ∈ F ′, then there is B ∈ F such that A ∩ B = ∅. But then B ⊆ I \ A

and I \A ∈ F , a contradiction.
It is easy to see that F ′ is closed under superset.
If C1, C2 ∈ F ′ there are B1, B2 ∈ F such that Ci ⊇ Bi ∩A. Then C1 ∩C2 ⊇

B1 ∩B2 ∩A, so C1 ∩ C2 ∈ F ′.

Corollary 5.23 If F ⊆ P(I) is a filter, then there is an ultrafilter U ⊇ F .

Proof Let I = {F ′ : F ⊆ F ′ ⊆ P(I) is a filter}.
If (X,<) is a linearly ordered set, Fx ∈ I for x ∈ X and Fx ⊆ Fy for x < y,

then F∗ =
⋃
x∈X Fx is a filter. Thus we can apply Zorn’s Lemma to find U ∈ I

maximal. Suppose A ⊆ I. If I \A 6∈ U , then, by the Lemma and the maximality
of U , A ∈ U .

Corollary 5.24 There are non-principal ultrafilters.

Proof Let U ⊇ Cof be an ultrafilter. Then U contains no finite sets.

Our proof of the existence of non-priniciple ultrafilters is non-constructive as
it depends heavily on the Axiom of Choice. Unfortunately, some use of choice
is unavoidable.

36

We will use ultrafilters to give a new construction of models. Let L be a first
order language. Suppose that Mi is an L-structure for all i ∈ I with universe
Mi. Let U ⊆ P(I) be an ultrafilter.

We define ∼ on
∏
i∈IMi by

f ∼ g ⇔ {i ∈ I : f(i) = g(i)} ∈ U .

Lemma 5.25 ∼ is an equivalence relation

Proof Let f, g, h ∈
∏
i∈IMi. Clearly f ∼ f and if f ∼ g, then g ∼ f .

Suppose f ∼ g and g ∼ h. Since

{i : f(i) = h(i)} ⊇ {i : f(i) = g(i)} ∩ {i : g(i) = h(i)} ∈ U ,

f ∼ h.
For f ∈

∏
i∈I , let [f] be the ∼-equivalence class of f and let

M =

{
[f] : f ∈

∏
i∈I

Mi

}
.

We will interpret the symbols of L in M to construct an L-structureM, which
we also denote

∏
Mi/U .

If c is a constant symbol of L, let f ∈
∏
Mi be the function f(i) = cMi and

let cM = [f].
Let R be an n-ary relation symbol of L.

Lemma 5.26 f1, . . . , fn, g1, . . . , gn ∈
∏
Mi such that fj ∼ gj for all j =

1, . . . , n. Then

{i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U ⇔ {i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ U .

Proof Suppose {i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U . Then {i ∈ I :
(g1(i), . . . , gn(i)) ∈ RMi} contains

{i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi}∩{i ∈ I : g1(i) = f1(i)}∩. . .∩{i ∈ I : gn(i) = fn(i)}.

Since U is a filter this later set is in U .
The other direction is symmetric.

We define

RM = {([f1], . . . , [fn]) : {i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U}.

By the Lemma, this is well-defined and does not depend on the choice of repre-
sentatives for the equivalence classes.

Let F be an n-ary function symbol of L. Let f1, . . . , fn, g1, . . . , gn ∈
∏
Mi

with fj ∼ gj for j = 1, . . . , n. Define fn+1, gn+1 ∈
∏
Mi by

fn+1(i) = F (f1(i), . . . , fn(i)) and gn+1(i) = F (g1(i), . . . , gn(i)).

37

Exercise 5.27 Argue as in Lemma 5.26 that fn+1 ∼ gn+1.

We define FM : Mn →M by

F ([f1], . . . , [fn]) = [g]

where g(i) = F (f1(i), . . . , fn(i)). By Exercise 5.27 this is well defined and does
not depend on choice of representatives.

We have now completely defined the structure M =
∏
Mi/U . We call M

an ultraproduct of (Mi : i ∈ I)
The following exercise is an easy induction on terms.

Exercise 5.28 If t is an L-term, then tM(f1, . . . , fn) = [g] where g(i) =
tMi(f1(i), . . . , fn(i)).

We can now state the Fundamental Theorem of Ultraproducts.

Theorem 5.29 (los’s Theorem) Let φ(v1, . . . , vn) be any L-formula Then

M |= φ([f1], . . . , [fn])⇔ {i :Mi |= φ(f1(i), . . . , fn(i))} ∈ U .

Proof We prove this by induction on complexity of formulas
1) Suppose φ is t1 = t2 where t1 and t2 are terms.

Define gj(i) = tMi
j (f1(i), . . . , fn(i)). Then

M |= t1([f1], . . . , [fn]) = t2([f1], . . . , [fn])⇔ [g1] = [g2]

⇔ {i : tMi
1 (f1(i), . . . , fn(i)) = tMi

2 (f1(i), . . . , fn(i)} ∈ U

as desired.
2) Suppose φ is R(t1, . . . , tm).

For j = 1, . . . ,m let gj(i) = tMi
i (f1(i), . . . , fn(i)). Then

M |= φ([f1], . . . , [fn]) ⇔ {i : (g1(i), . . . , gn(i)) ∈ RMi} ∈ U
⇔ {i :Mi |= φ(f1(i), . . . , fn(i))} ∈ U

3) Suppose the theorem is true for θ and ψ, and φ is θ ∧ ψ. (We suppress the
parameters [f1], . . . , [fn])

Then

M |= φ ⇔ M |= ψ and M |= θ
⇔ {i :Mi |= ψ} ∈ U and {i :Mi |= ψ} ∈ U
⇔ {i :Mi |= ψ ∧ θ} ∈ U

4) Suppose the theorem is true for ψ and φ is ¬ψ Then

M |= φ ⇔ M 6|= ψ
⇔ {i :Mi |= ψ} 6∈ U
⇔ {i :Mi |= ¬ψ} ∈ U

38

5) Suppose the theorem is true for ψ(v) and φ is ∃v ψ(v).
If M |= ∃v ψ(v), then there is g such that M |= ψ([g]). But then

{i :Mi |= ∃v ψ(v)} ⊇ {i :Mi |= ψ(g(i))} ∈ U

On the other hand if A = {i : Mi |= ∃v ψ(v)} ∈ U define g ∈
∏
Mi such

that Mi |= ψ(g(i)) for all i ∈ A. Then M |= ψ([g]), so M |= φ.

Note that step 4) is the only place in the construction that we used that U
is an ultrafilter rather than just a filter.

Exercise 5.30 Let U be a non-princpal ultrafilter on the set of prime numbers.
For each prime p, let Falg

p be the algebraic closure of Fp the field with p elements.
Prove that

∏
Fp/U is an algebraically closed field of characteristic 0.

Another Proof of Compactness

We can use los’s Theorem to give a proof of the Compactness Theorem that
avoids Henkin arguments and the Completeness Theorem.

Let Γ be an L-theory such that every finite ∆ ⊆ Γ has a model. Let I be
the collection of finite subsets of Γ.

For φ ∈ Γ let
Xφ = {∆ ∈ I : ∆ |= φ}

and let
F = {Y ⊆ I : Xφ ⊆ Y for some φ ∈ Γ}.

We claim that F is a filter. It is easy to see that I ∈ F , ∅ 6∈ F and F is
closed under superset. Also if Y1, Y2 ∈ F there are φ1, φ2 such that Xφi ⊆ Yi.
Then Xφ1∧φ2 = Xφ1 ∩Xφ2 , so

Xφ1∧φ2 ⊆ Y1 ∩ Y2

and Y1 ∩ Y2 ∈ F
Let U ⊇ F be an ultrafilter. For ∆ ∈ I, letM∆ |= ∆ and letM =

∏
M∆/U .

Since Xφ ∈ U for all φ ∈ Γ, by los’s Theorem M |= Γ.

Ultrapowers and Elementary Extensions

Fix M and L structure and let U be an ultrafilter on an infinite set I. An
interesting special case of the ultraproduct construction is when we take all of
the Mi =M. In this case we let M∗ =MI/U .

Exercise 5.31 Prove that if M is finite or U is principal, then M∼=M∗.

For each a ∈M , let fa : I →M be the constant function fa(i) = a. If a 6= b,
then [fa] 6= [fb]. By los’s Theorem if a1, . . . , an ∈ M and φ is an L-formula,
then

M |= φ(a1, . . . , an)⇔M∗ |= φ([fa1], . . . , [fan])

39

IdentifyingM and it’s image under the embedding a 7→ [fa] we can think of
M as substructure of M∗. Then for a1, . . . , an ∈M .

M |= φ(a1, . . . , an)⇔M∗ |= φ(a1, . . . , an).

Definition 5.32 If M ⊆ N we say that N is an elementary extension of M
and write M eeN if

M |= φ(a)⇔ N |= φ(a)

for all a ∈M .

We have argued that M∗ is an elementary extension of M. This is only
interesting if we can also prove M∗ properly extends M.

Proposition 5.33 If |I| ≤ |M| and U is a non-principal ultrafilter, then M∗
is a proper extension of M.

Proof Let f : I →M be injective. Then for all a ∈M , |{i : f(i) = fa(i)}| ≤ 1.
Since U is non-principal, f 6∼ fa. Thus [f] ∈M∗ \M .

Cardinalities of Ultraproducts

Suppose we have (Mi : i ∈ I) and an ultrafilter U ⊆ P(I).

Exercise 5.34 Suppose {i ∈ I : |Mi| = n} ∈ U , then |
∏
Mi/U| = n

Exercise 5.35 If we also have (Ni : i ∈ I) and {i : |Mi| = |Ni|} ∈ U , then
|
∏
Mi/U | = |

∏
Ni/U |.

Exercise 5.36 If λ ≤ |Mi| ≤ κ for all i ∈ I, then

λ ≤
∏
Mi/U ≤ κ|I|.

For the rest of these Exercises we will assume I = N.

Exercise 5.37 Suppose that for all n ∈ N, {i : |Mi| = n} 6∈ U and U is
non-principal.
a) Show there is a family X of functions f : N→ N such that:

i) |X| = 2ℵ0

ii) for each f ∈ X f(n) < 2n

iii)f 6= g ∈ X, then {n : f(n) = g(n)} is finite.
[Hint: For α : N→ {0, 1} let fα(n) =

∑n−1
i=0 α(i)2i].

b) Show there is a partition I =
⋃∞
n=0An such that

i) each An 6∈ U
ii) if i ∈ An, then |Mi| ≥ 2i.

[Hint: Let An = {i : 2n ≤ |Mi| < 2n+1 or i = n and |Mi| ≥ ℵ0}.]
For i ∈ I let n(i) be unique such that i ∈ An(i). For i ∈ I choose (mi,j :

0 ≤ j < 2n(i)) distinct elements of Mi. For f ∈ X, let αf ∈
∏
Mi such that

αf (i) = mi,f(n(i)).

c) Prove that if f 6= g ∈ X, then αf 6∼ αg. Conclude that |
∏
Mi/U | ≥ 2ℵ0 .

40

Corollary 5.38 Suppose that U is a non-prinicple ultrafilter on N, |Mn| ≤ ℵ0

for all n, and {n : |Mn| = m} 6∈ U for any m, Then |
∏
Mi/U | = 2ℵ0 .

Exercise 5.39 Let U be a non-principal ultrafilter on the set of primes. Prove∏
Falg
p /U is isomorphic to C the field of complex numbers.

41

Part II

Computability

6 Models of Computation

What is a computable function? Our modern intuition is that a function f :
N→ N is computable if there is a a program in a computer language like C++,
PASCAL or LISP such that if we had an idealized computer, with unlimited
memory, and we ran the program on input n it would eventually halt and output
f(n).

While this definition could be made precise, it is rather unwieldy to try to
analyze a complex modern programming language and an idealized computer.
We begin this section by presenting two possible candidates for the class of com-
putable functions. The first will be based on register machines, a very primitive
version of a computer. The second class will be defined more mathematically.
We will then prove that these two classes of functions are the same. Church’s
Thesis will assert that this class of functions is exactly the class of all computable
functions.

Church’s Thesis should be though of as a statement of philosophy or physics
rather than a mathematical conjecture. It asserts that the definitions we have
given completely capture our intuition of what can be computed. There is a
great deal of evidence for Church’s Thesis. In particular, there is no know notion
of deterministic computation, including C++-computable or the modern notion
of quantum computable, that gives rise to computable functions that are not
included in our simple classes. On the other hand issues like time and space
complexity or feasability may vary as we change the model.

Register Machines

We will take register machines as our basic model of computations. The pro-
gramming language for register machines will be a simple type of assembly
language. This choice is something of a compromise. Register machines are not
as simple as Turing machines, but they are much easier to program. It is not as
easy to write complicated programs as it would be in a modern programming
language like C++ or PASCAL, but it will be much easier to analyze the basic
steps of a computation.

In our model of computation we have infinitely many registers R1, R2,
At any stage of the computation register Ri will store a nonnegative integer ri.

Definition 6.1 A register machine program is a finite sequence I1, . . . , In where
each Ij is one of the following:

i) Z(n): set Rn to zero; rn ← 0;
ii) S(n): increment Rn by one; rn ← rn + 1;
iii) T(n,m): transfer contents of Rn to Rm; rm ← rn;

42

iv) J(n,m,s), where 1 ≤ s ≤ n: if rn = rm, then go to Is otherwise go to the
next instruction;

v) HALT
and In is HALT.

A register machine must be provided with both a program and an initial
configuration of the registers. A computation procedes by sequentially following
the instructions. Note that for any program P there is a number N such, no
matter what the initial configuration of the registers is, any computation with
P will use at most registers R1, . . . , RN .

Example 6.2 We give a program which, if we start with n in R1, ends with
R1 containing n− 1 if n > 0 and 0 if n = 0.

1) Z(2)
2) J(1,2,10)
3) Z(3)
4) S(2)
5) J(1,2,9)
6) S(2)
7) S(3)
8) J(1,1,4)
9) T(3,1)
10) HALT

We first test to see if R1 contains 0. If it does
we halt. If not, we make r2 = 1 and r3 = 0 and
test to see if r1 = r2 have the same contents. If
they do, we move r3 to R1 and halt. Otherwise,
we increment r2 and r3 until r1 = r2. Since r3

will always be one less than r2, this produces the
desired result.

Example 6.3 We give a program which adds the contents of R1 and R2 and
leaves the sum in R1.

1) Z(3)
2) J(2,3,6)
3) S(1)
4) S(3)
5) J(1,1,2)
6) HALT

We set r3 ← 0. We increment R3 and R1 until
r3 = r2.

Example 6.4 We give a program to multiply the contents of R1 and R2 and
leave the product in R1.

1) Z(3)
2) Z(4)
3) J(2,4,11)
4) Z(5)
5) J(1,5,9)
6) S(3)
7) S(5)
8) J(1,1,5)
9) S(4)
10) J(1,1,3)
11) T(3,1)
12) HALT

The main idea is that we will add r1 to itself r2

times using R3 to store the intermediate results.
R4 will be a counter to tell us how many times we
have already added r1 to itself. We add r1 to r3

by incrementing R3, r1 times. We use R5 to count
how many times we have incremented R3.

43

Note that lines 4)–8) are just a slightly modified version of Example 6.3. We
add r1 to r3 storing the result in R3. We can think of this as a “subroutine”.
It is easy to see that we could add a command to our language A(n,m,s) that
does:

rs ← rn + rm.

Any program written with this additional command could be rewritten in our
original language. Similarly, using Example 6.2 we could add a command D(n)
that decrements Rn if rn > 0 and leaves Rn unchange if rn = 0.

We give one more example of a program that, on some initial configurations,
runs for ever.

Example 6.5 We give a program such that if r1 is even halts with r1/2 in R1

and otherwise never halts.

1) Z(2)
2) Z(3)
3) J(1,2,8)
4) S(2)
5) S(2)
6) S(3)
7) J(1,1,3)
8) T(3,1)
9) HALT

We next define what it means for a function f : Nk → N to be computable
by a register machine. The last example shows that we need to take partial
functions into account.

Suppose P is a register machine program. If x = (x1, . . . , xk) we consider
the computation where we begin with initial configuration r1 = x1, . . . , rk = xk
and rn = 0 for n > k. If this computation halts we say that P halts on input x.

Definition 6.6 Suppose A ⊆ Nk. We say f : A → N is an RM-computable
partial function if there is a register machine program P such that:

i) if x 6∈ A, then P does not halt on input x;
ii) if x ∈ A, then P halts on input x with f(x) in register R1.

Alternatively, we could think of a register machine as computing f : Nk →
N ∪ {↑} where f(x) =↑ means the machine does not halt on input x.

We could start showing more and more functions are RM-computable by
writing more complicated programs. Instead we will give mathematically define
an interesting class of fuctions and prove it is exactly the class of RM-computable
functions.

Primitive Recursive Functions

Definition 6.7 The class of primitive recursive functions is the smallest class
C of functions such that:

44

i) the zero function, z(x) = 0 is in C,
ii) the sucessor function s(x) = x+ 1 is in C,
iii) for all n and all i ≤ n the projection function πni (x1 . . . xn) = xi, is in C

(in particular the identity function on N is in C),
iv) (Composition Rule) If g1 . . . gm, h ∈ C, where gi : Nn → N and h : Nm →

N, then
f(x) = h(g1(x) . . . gm(x))

is in C,
v) (Primitive Recursion) If g, h ∈ C where g : Nn−1 → N and h : Nn+1 → N,

then f ∈ C where:

f(x, 0) = g(x)
f(x, y + 1) = h(x, y, f(x, y)).

We now give a large number of examples of primitive recursive functions with
derivations showing that they are primitive recursive. A derivation is a sequence
of functions f1 . . . fm such that each fi is either z, s or πni or is obtained from
earlier functions by compostion or primitive recursion.

1) the n-ary zero function: (x1 . . . xn) 7→ 0
f1 = πni , f2 = z, f3 = f2 ◦ f1.

2) the constant function x 7→ 2
f1 = s, f2 = z, f3 = s ◦ z, f4 = s ◦ f3.

3) (x, y) 7→ x+ y
f1 = π1

1 , f2 = π3
3 , f3 = s, f4 = f3 ◦ f2 is (x, y, z) 7→ z + 1, and f5 is

(x, y) 7→ x+ y (by primitive recursion using g = f1 and h = f4).
The formal derivations are not very inlightening so we give an informal prim-

itive recursive defintion of addition (and henceforth only give informal defin-
tions):

x+ 0 = x
x+ (y + 1) = s(x+ y).

4) multiplication
x · 0 = 0
x · (y + 1) = xy + x.

5) exponentiation
x0 = 1
xy+1 = xy · x.

6) predecesor:

pr(x) =
{

0, if x = 0;
x− 1, otherwise.

pr(0) = 0
pr(y + 1) = y.

45

7) sign

sgn(x) =
{

0, if x = 0;
1, otherwise.

sgn(0) = 0
sgn(y + 1) = 1

8) −·

x −· y =
{

0, if x ≤ y;
x− y, otherwise.

x −· 0 = x
x −· (y + 1) = pr(x −· y)

9) Factorials
0! = 1
(n+ 1)! = n!(n+ 1)

If f(x, y) is primitive recursive then so is

(x, n) 7→
∑
y≤n

f(x, y).

F (x, 0) = f(x, 0)
F (x, y + 1) = F (x, y) + f(x, y + 1).

Similary (x, n) 7→
∏
y≤n f(x, y) is primitive recursive.

We say that R(x) is a primitive recursive predicate if it is a 0-1 valued
primitive recursive function. If P and Q are primitive recursive predicates then
so are:

P ∧Q(x) = P (x) ·Q(x)
P ∨Q(x) = sgn(P (x) +Q(x))
¬P (x) = 1 −· P (x)

10) x = y is a primitive recursive relation.
The characteristic function of x = y is 1 −· (sgn(x −· y) + sgn(y −· x))

Also if P (x, y) is a primitive recursive relation and g(x) is primitive recursive,
then

∃y ≤ g(x)P (x, y) = sgn

 ∑
y≤g(x)

P (x, y)

 , and

∀y ≤ g(x)P (x, y) = sgn

 ∏
y≤g(x)

P (x, y)


are primitive recursive relations.

For example:

46

11) x|y = ∃z ≤ y xz = y is primitive recursive.

Exercise 6.8 Show that x ≤ y and x < y are primitive recursive relations.

Exercise 6.9 (Definition by cases): Suppose g and h are primitive recursive
functions and P is a primitive recursive predcate. Then f is primitive recursive
where:

f(x) =
{
g(x), if P (x);
h(x) otherwise.

Exercise 6.10 Suppose f(x, y) is primitive recursive. Let g(x, z) = max{f(x, y) :
y ≤ z} and h(x, z) = min{f(x, y) : y ≤ z}. Show that g and h are primitive
recursive.

If P (x, y) is a primitive recursive function define µy P (x, y) to be the least
y such that P (x, y) if such a y exists and otherwise µy P (x, y) is undefined. In
general x 7→ µy P (x, y) is only a partial function. Even if it is total, it will not
in general be primitive recursive. The next excercise gives the best we can do
primitive recursively.

Exercise 6.11 Let P (x, y) be a primitive recursive predicate and g(x) a prim-
itive recursive function. Let

f(x) =
{

0, if ∀y ≤ g(x) ¬P (x, y);
µy P (x, y), otherwise.

Then f is primitive recursive.

We next show that coding and decoding of sequences is primitive recursive.

12) “x is prime” is a primitive recursive predicate.
x is prime if and only if x 6= 0 ∧ x 6= 1 ∧ ∀y ≤ pr(x) ¬(y|x).

13) We next show that the function n 7→ pn is primitive recursive, where pn is
the nth prime number (note we set p0 = 2, p1 = 3, . . .). To show this we use the
following consequence of Euclid’s proof that there are infinitely many primes.
For any number n ≥ 1 there is a prime number p wich that n < p ≤ n! + 1.
Thus:

p0 = 1
pn+1 = µx ≤ pn! Prime(x).

We code the sequence (n1, . . . , nm) by x =
∏n
i=1 p

ni+1
i . We say that 1 codes

the empty sequence.

14) x codes a sequence is a primitive recursive predicate.
Seq(x) if and only if x 6= 0∧ ∀p ≤ x∀q ≤ p [(Prime(p)∧Prime(q)∧ p|x)→

q|x].

15) Define l(x) to be 0 if x does not code a sequence, otherwise let l(x) be the
length of the sequence coded by x.

47

l(x) =
{

0, ¬Seq(x),
max m(pm|x), otherwise.

16) Define (x)i to be the ith element of the sequence coded by x if x codes a
sequence of length at least i, otherwise it is zero.

(x)i =
{
max n(pn+1

i |x), Seq(x) ∧ i ≤ l(x),
0, otherwise.

We next show that we can simultaneously define several functions by primitive

recursion.

Lemma 6.12 Suppose g1, . . . , gn : Nk → N , h1, . . . , hn : Nk+n+1 → N are
primitive recursive and we define f1, . . . , fn : Nk+1 → N by

fi(x, 0) = gi(x)
fi(x,m+ 1) = hi(x,m, f1(x,m), . . . , fn(x,m)).

Then f1, . . . , fn are primitive recursive.

Proof We define a primitive recursive function F : Nk+1 → N such that
F (x,m) =

∏n
i=1 p

fi(x,m)
i . Then we will have fi(x,m) = v(pi, F (x,m)). Let

F (x, 0) =
n∏
i=1

p
gi(x)
i

F (x,m+ 1) =
n∏
i=1

p
hi(x,m,v(p1,F (x,m)),...,v(pn,F (x,m)))
i .

Then F is primitive recursive and f1, . . . , fm are primitive recursive.

The primitive recursive functions do not exhaust the functions computable
by algorithms. Each primitive recursive function has a derivation. As usual
we can code each derivation by a natural number. We give a listing of all the
primitive recursive functions. Define Fn to be z if n is does not code a derivation,
otherwise Fn is the function with derivation coded by n. Intuitively we can do
this on such a way that if G(n, x) = Fn(x) is “computable”. If this function is
primitive recurive, then so is the function f(x) = G(x, x) + 1. But f can not be
primitive recursive, for if f = Fn, then

f(n) = G(n, n) + 1 = Fn(n) + 1 = f(n) + 1,

a contradiction. Thus G is “computable”, but not primitive recursive.
This argument shows that for any class of total computable functions, we

can not give an exhaustive listing H1, H2, . . . such that the function (x, y) 7→
Hx(y) is computable. We will see later this is possible when we consider partial
computable functions.

48

Exercise 6.13 We can give a more concrete example of a “computable” non-
primitive recursive function. For any function F we define the nth iterate of F
as follows:

F (0)(x) = x
F (n+1)(x) = F (F (n)(x))

We now define a sequence of functions f0, f1
f0(x) = x+ 1
fn+1(x) = f

(x)
n (x).

Define the Ackermann function, A(x) = fx(x).
a) Show that each fi is primitive recursive.
b) We say f � g if there is a number n such that for all m > n, f(m) < g(m).

Show that for any primitive recursive function g there is an n such that g � fn.
c) Show that for all n, fn � A. Thus the Ackermann function is not primitive

recursive.

The Recursive Funcitons

We add on more construction to expand th

Definition 6.14 The class of recursive functions is the smallest class C of
partial functions, containing the the zero function, succesor, and all projection
functions and closed under composition, primitive recursion and

vi) (Unboundend Search) If f(x, y) is in C, then so is F where F (x) is the
least y such that f(x, y) = 0 and for all z < yf(x, z) is defined. As above we
denote F as µy f(x, y) = 0.

We use ↑ to denote “undefined”. We need to be careful about composition
and primitive recursion for partial functions. If f = h(g1, . . . , gn), then if any
gi(x) ↑, then f(x) ↑.

Similarly, if f is defined by primitive recursion, then then f(x, s) ↑ if f(x, t) ↑
for some t < s.

Our intuition tells us that every partial recursive function is computable. We
will prove that the RM-computable functions are exactly the partial recursive
functions.

Theorem 6.15 Every recursive function is RM-computable.

Proof Clearly the basic functions z, s and πni are RM-computable. Thus we
need only show that the RM-computable functions are closed under composition,
primitive recursion and unbounded search.

claim 1 Suppose f1, . . . , fn : Nm → N and g : Nn → N are RM-computable.
Let h(x) = g(f1(x), . . . , fn(x)), then h is RM-computable.

Suppose the computation of Pi is a program to compute fi. By modifying
the program slightly we may assume that:
• Pi does not destroy the input (i.e,. does not alter registers R1, . . . , Rm)

49

• uses only registers Rn+i+1, Rn+i+2, . . .
• halts with fi(x) in Rn+i.

[If necessary we modify Pi to P ∗i which starts by copying Rj into Rn+ij for
j ≤ n, and then is identical to Pi except that for all j the role of Rj is played
by Rn+i+j .]

The program for computing h begins by running the programs P1, . . . , Pm
(except that HALTS are replaced by jumping to the begining of the next pro-
gram). Once we run these programs the registers contain a1, . . . , an, f1(a), . . . , fm(a).

We next write f1(a), . . . , fm(a) into the first m-registers and erase all of the
other registers which were used in the earlier computations. We now run the
program to compute g.

claim 2 Suppose g : Nm → N and h : Nm+2 → N are RM-computatble (possibly
partial) functions. Let f be defined from g and h by primitive recursion. Then
f is RM-computable.
step 0:

We start with x, y in the first m+ 1-registers.
• let rm+2 ← 0; this will be a counter
• copy x into Rm+3, . . . , R2m+2

• run the program for g suitably modified such that we end with the config-
uration

(x, y, 0, g(x), 0, 0, . . .).

In general at the end of step s we will have (x, y, s, f(x, s), 0, 0, . . .).
step s+ 1
• if rm+2 = rm+1 we are done, fiddle with things so that the configuration

is
(f(x, s), 0, 0, . . .)

and halt, otherwise;
• increment rm+2. Move things around so that we have configuration

(x, y, s+ 1, x, y, f(x, s), 0, 0, . . .).

Run the program for h suitably modified so that we end with configuration

(x, y, s+ 1, f(x, s+ 1), 0, 0, . . .).

• Go to next step.

This program computes f

claim 3 If f(x, y) is RM-computable, then µy f(x, y) = 0 is RM-computable.
Consider the following program:
• Start with configuration (x, 0, 0, 0, . . .).

stage s:
• At the beging of stage s we will have configuration.

(x, s, 0, 0, . . .)

50

• Change configuration to (x, s, x, s, 0, . . .).
• Run modified version of program for f if this halts we will have configu-

ration
(x, s, f(x, s), 0, 0 . . .).

• If f(x, s) = 0 halt with configuration (s, 0, 0, . . .). If not change to config-
uration (x, s+ 1, 0, 0, . . .) and go to next stage.

If there is an s such that f(x, s) = 0 and for all t < s, f(t, s) ↓6= 0, then we
will eventually halt and output s. Otherwise the search will continue forever.

Thus every recursive function is RM-computable.

Theorem 6.16 Every RM-computable function is recursive.

Proof Let f : Nm → N be RM-computable (possibly partial). Let I1, . . . , Im
be a program which computes f . Suppose this program uses only registers
R1, . . . , RN . We define primitive recursive functions g1, . . . , gN : Nm+1 → N
and j : Nm+1 → N such that:

gi(x, s) = contents of Ri at stage s on input x

and

j(x, s) =
{

0 if the machine on input x has halted by stage s
j if Ij is the next instruction to be executed.

Let h(x) = µs j(x, s) = 0. Then f(x) = g1(x, h(x)).

The construction of gi and j are routine but tedious primitive recursions.
We define them simultaneously and use Lemma 6.12.

We give one example. Consider the program to compute

f(x, y) =
{
x− y y ≤ x
↑ y > x.

1) Z(3)
2) J(1,2,6)
3) S(2)
4) S(3)
5) J(1,1,2)
6) T(3,1)
7) HALT

j(x, y, s) =



1 s = 0
2 s = 1 or j(x, y, s− 1) = 5
3 j(x, y, s− 1) = 2
4 j(x, y, s− 1) = 3
5 j(x, y, s− 1) = 4
6 j(x, y, s− 1) = 2 and g2(x, y, s− 1) = g1(x, y, s− 1)
7 j(x, y, s− 1) = 6
0 j(x, y, s− 1) ≥ 7 or j(x, y, s− 1) = 0.

51

g1(x, y, 0) = x

g1(x, y, s+ 1) =
{
g1(x, y, s) j(x, y, s) 6= 6
g3(x, y, s) j(x, y, z) = 6

g2(x, y, 0) = y

g2(x, y, s+ 1) =
{
g2(x, y, s) j(x, y, s) 6= 3
g2(x, y, s) + 1 otherwise.

g3(x, y, 0) = 0

g3(x, y, s+ 1) =
{
g3(x, y, s) j(x, y, s) 6= 4
g3(x, y, s) + 1 otherwise.

These functions are clearly primitive recursive.

Church’s Thesis

Church’s Thesis A partial function is computable if and only if it is partial
recursive

Church’s Thesis asserts that the partial recursive functions, or the RM-
computable functions, completely capture our intuitve notion of computability.

We will use Church’s Thesis frequently in arguments by giving an intuitive
argument that a function is computable and then asserting that therefore it
is recursive or RM-computable. Whenever we make such an argument, we are
asserting that, if challenged, we could produce the RM-machine code that would
compute the function.

There is a great deal of evidence for Church’s Thesis. Any reasonable notion
of “computabile function” has been shown to be equivalent to “partial recursive”
or “RM-computable”. Indeed, Church first stated the conjecture for functions
definable in λ-calculus, an ancestor of the LISP programming language.

Random Access Machines

We give one more argument towards the plausibility of Church’s thesis. One
aspect of modern computing that is missing in register machines is dynamic
access to memory. In a modern computer language we can compute a number
n and then store another number in memory cell n. We will describe a general-
ization of register machines that allows this kind of dynamic access and prove
that they do not allow us to compute new functions.

Definition 6.17 A Random Access Machine is one where we have memory
locations M0,M1,M2,M3, Let mi be the contents of Mi. A program for

52

a random access machine is a finite sequence of instructions I1, . . . , Im. Where
the allowable instructions are:

i) Z(n); set mn to zero
ii) S(n); increment mn

iii) J(i,j,l); if mi = mj , go to instruction l.
iv) T(i,j); transfer the contents of Mmi to Mmj

v) HALT

The key difference is that we are allowed to specifiy in the program what
address we want to store something in.

A function f is said to be RAM-computable if there is a random access
machine program which given initial configuration (x, 0, 0, . . .) halts with f(x)
in M0 if x ∈ dom(f) and does not halt if x 6∈ dom(f).

Exercise 6.18 Every RM-computable function is RAM-compuable.

We next out line the proof that every RAM-computable function is RM-
computable. The key idea is to code configurations of the RAM as a single
number. Suppose at some stage s, n is the largest memory location that we
have used. Then the configuration of the machine is given by the sequence
(m1, . . . ,mn, 0, 0, 0, . . .).

We code this configuration with the number
∏
pmii . All of the operations

of the machine correspond to simple arithmetic operations on the code. Let
v(p, x) = largest power of p dividing x. Note that v(pi, x) extracts the contents
of Mi from the code x.

For example: • Z(n): corresponds to the operation

x 7→ x

p
v(pn,x)
n

.

• S(n): corresponds to
x 7→ xpn.

• T(i,j): Let l = v(pj , x) and k = v(pi, x). The new configuration is coded
by

x

p
v(pl,x)
l

p
v(pk,x)
l

Exercise 6.19 Using the above idea show that any RAM computable function
is RM computable.

Henceforth we will usually use Church’s thesis blindly. We will say that a
partial function is computable if it is RM-computable with full confidence that
anything which is intuitively computable can be done with a register machine.

53

7 Universal Machines and Undecidability

Our main goal in this section is to prove that there is a computable partial
function Ψ : N2 → N such that if φn is the function

φn(x) = Ψ(n, x)

then φ0, φ1, . . . is an enumeration of all computable partial functions. This is
in sharp contrast with the observation in the previous section, that there is no
such enumeration of the total recursive functions.

We will code register machine programs by natural numbers and we will
arange the coding so that each number codes a program. If Pn is the program
with code n, then φn(x) will be the result of running Pn on input x.

The register machine computing Ψ is a universal register machine. It behaves
like a modern compiler. If f is a computable function we find e such that f = φe
and compute f(x) by computing Ψ(e, x).

Our first task is to code register machine programs. We will use a more
subtle coding than the one of §6 to insure that every natural number codes a
program.

Let π : N× N→ N by π(m,n) = 2m(2n+ 1)− 1.

Lemma 7.1 π is a bijection and both π and π−1 are computable (indeed prim-
itive recursive).

Proof Clearly π is primitive recursive. To calculate π−1(x), factor x+ 1 = yz
where y is a power of 2 and z is odd. Then m = log2 y and n = z−1

2 .

Once we can code pairs it is easy to code triples. We view (a, b, c) as ((a, b), c).
Let ψ : N3 → N by

ψ(p, q, r) = π(π(p, q), r).

Let I be the set of all instructions for register machines. There is β : I → N
a computable bijections.

β(HALT) = 0
β(Z(n)) = 4(n− 1) + 1
β(S(n)) = 4(n− 1) + 2
β(T(m,n)) = 4(π(m− 1, n− 1)) + 3
β(J(m,n, r)) = 4(ψ(m− 1, n− 1, r − 1)) + 4

β is easy to decode. For example for what i is β(i) = 47? Since 47 ≡
3(mod 4), i must code T(m,n) for some m and n, where π(m − 1, n − 1) =
47−3

4 = 11. Since 11 + 1 = 22(2 · 1 + 1), π(2, 1) = 11. Thus i codes the
instruction T (3, 2).

We also want
τ :
⋃
k>0

Nk → N

54

a computable bijection with computable inverse. We let

τ(a1, . . . , ak) = 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 . . .+ 2a1+...+ak+k−1 − 1.

Given x we calculate τ−1(x) as follows:
i) find the binary expansion of x+ 1 = 2b1 + . . .+ 2bk where b1 < . . . < bk
ii) Let a1 = b1 and ai+1 = bi+1 − bi − 1 for 1 ≤ i < k.

For example we calculate τ−1(45): 45 + 1 = 2 + 22 + 23 + 25. Thus a1 = 1,
a2 = 0, a3 = 0,and a4 = 1. Thus τ−1(45) = (1, 0, 0, 1) [note: 46 = 21 +21+0+1 +
21+0+0+2 + 21+0+0+1+3 − 1]

We now give a method for coding all register machine programs. 3 Let P
be the program I1, . . . , Im by

γ(P) = τ(β(I1), . . . , β(Im)).

For m ∈ N, let Pm = γ−1(m). Let φ(n)
m be the n-ary function computed by

program Pm. Clearly φ
(n)
0 , φ

(n)
1 , . . . is a list of all partial recursive functions in

n-variables. [We will supress the superscript if it is clear]
If f is computable we say that n is an index for f if f = φn. There will

usually be many indicies for f .

Consider the partial function Ψ(n) : Nn+1 → N by Ψ(n)(e, x) = φ
(n)
e (x).

Theorem 7.2 The functions Ψ(n) are computable.

Proof For notational simplicity we will consider only the case n = 1.
Informally we compute Ψ(e, x) by decoding e to obtain the program Pe =

I1, . . . , IN . Simulate program Pe on input x.
We use one number to store the register configuration in the simulation.

Suppose we are using registers R1, . . . , Rm and Ri contains ri. We will code
this configuration by

c =
m∏
i=1

prii .

We call c the configuration code of the machine. The current state of the machine
will be σ = π(c, j) where j is the next instruction to be executed (and if we
have halted j = 0) [here π is the pairing function].

Define c(e, x, t) = configuration after t steps of program Pe on input x if we
have not yet halted. If we have halted let c(e, x, t) be the final configuration.

Let j(e, x, t) = number of the next instruction if the computation of Pe on
input x has not halted by step t and let it be 0 otherwise.

Let σ(e, x, t) = π(c(e, x, t), j(e, x, t)).

3We will also code up some nonsense programs that contain J(i, j, n) where n is greater
than the number of instructions. By convention, whenever we reach such an instruction we
halt.

55

claim c, j and σ are computable (indeed they are primitive recursive).
• c(e, x, 0) = 2x and j(e, x, 0) = 1.

• Given c = c(e, x, t) and j = j(e, x, t), we compute j(e, x, t+1) and c(e, x, t+
1).

• If j = 0, then c(e, x, t+ 1) = c and j(e, x, t+ 1) = j.

• If N ≤ j > 0, then decode e to find Ij .

• If Ij is I(m) then c(e, x, t+ 1) = c · pm and j(e, x, t+ 1) = j + 1.

• If Ij is Z(m) then c(e, x, t + 1) = c
plm

where l is the largest such that plm
divides c, and j(e, x, t+ 1) = j + 1.

• If Ij is T (n,m) then c(e, x, t+ 1) = c · pl−km where l is largest such that pln
divides c and k is largest such that plm divides c. Let j(e, x, t+ 1) = j + 1.

• If Ij is J(n,m, i) then c(e, x, t+ 1) = c and j(e, x, t+ 1) = i if the largest
k such that pm divides c is equal to the largest l such that pn divides c, and
otherwise j(e, x, t+ 1) = j + 1.

• If Ij is HALT or j > N , then c(e, x, t+ 1) = c and j(e, x, t) = 0.

Once we know that c and j are computable (indeed primitive recursive), we
obtain a general recursive h(e, x) = µ tj(e, x, t) = 0. Then Ψ(e, x) is the largest
n such that 2n divides c(e, x, h(e, x)). Clearly Ψ is computable.

The machine that computes Ψ is called the Universal Register Machine.

Definition 7.3 Let T = {(e, x, s) : Pe on input x halts by stage s}. This
is called Kleene’s T-predicate. The arguments above show that T is primitive
recursive as (e, x, s) ∈ T if and only if j(e, x, s) = 0.

The following theorem is often useful. (For some reason it is often refered
to as the s-m-n theorem).

Lemma 7.4 (Parameterization Lemma) If f(x, y) is a computable partial
function then there is a total computable function k(x) such that for all x, k(x)
is an index for the function y 7→ f(x, y). Indeed the function k(x) can be choosen
one to one.

Proof Let P be a program computing f(x, y) [starting with x in R1 and y in
R2. Consider the following program Qn. Start with y in register 1.

1) T(2,1) r2 ← r1

2) Z(1) r1 ← 0
3) S(1) r1 ← 1
4) S(1) r1 ← 2
...

...
n+2) S(1) r1 ← n

P

If we start with input y, after step n+ 2 we will have n in R1 and y in R2.
Running the program P will compute f(n, y).

56

Thus the program Qn is a program to compute λy[f(n, y)]. The function k
is the function which takes us from n to a code for the program Pm. k is easily
seen to be one to one.

Definition 7.5 We say that a set A ⊆ Nm is recursive if it’s characteristic
function

χA(x) =
{

1 x ∈ A
0 x 6∈ A

is computable.

Since there are 2ℵ0 subsets of N and only ℵ0 possible algorithms, most subsets
of N are not computable. Turing gave an important natural example.

Let H = {(e, x) : φe(x) ↓}. We call H the halting problem.
Let K = {e : φe(e) ↓}.

Theorem 7.6 (Unsolvability of the Halting Problem) Neither H nor K
is not recursive.

Proof If H were recursive then K would be recursive so it suffices to show that
K is not recursive. Suppose K is recursive. Let P be a program computing the
characteristic function of K. Consider the following program P̂ .
• On input x, run program P . If P outputs 0, then halt. If P outputs 1,

then go into an infinite loop.
Suppose I1, . . . , Im is the program P . Let Î1, . . . Îm be the same program

where every HALT has been replaced by J(1,1,m+ 1), then P̂ is
1) Î1
...

...
m) Îm
m+1) Z(2)
m+2) J(1,2,m+ 4)
m+3) J(1,1,m+ 2)
m+4) HALT

For some e, P̂ = Pe. Then

φe(x) =
{

0 x 6∈ K
↑ x ∈ K.

Is e ∈ K?
e ∈ K ⇔ φe(e) ↓⇔ e 6∈ K

a contradiction. Thus K is not recursive.

Definition 7.7 Let Tot = {e : φe is total}.
We argue that Tot is not recursive. Suppose it were, let g be the character-

istic function of Tot. Let

f(x) =
{
φx(x) + 1 if g(x) = 1
0 if g(x) = 0.

57

If g is computable, then f is computable. In fact

f(x) =
{
ψ(x, x) + 1 if g(x) = 1
0 otherwise

.

Thus for some e, f = φe. Also f is easily seen to be total. But then φe(e) ↓ and
f(e) = φe(e) + 1, a contradiction.

We will give other natural examples in §8.
We will finish this section with an application to logic.

Theorem 7.8 (Church) The set of valid sentences of first order logic is not
recursive.4

Proof For any P and any natural number n we will give a sentence θPn such
that θPn is valid if and only if P halts on input n. If we had a program to decide
if a sentence is valid, then we would have an algorithm to decide the halting
problem.

Suppose P uses registers R1, . . . , Rm. Let P = I1, . . . , Is. Let L = {0, s, R}
where s is a unary function symbol and R is an m + 1-ary predicate. We use
sn(x) to denote

s(s(. . . (x) . . .))︸ ︷︷ ︸
n times

.

The intended interpretation is that sn(0) = n and R(sn1(0), . . . , snm(0), sj(0))
holds iff and only if one possible configuration of the machine is that Ri is ni
and the next instruction is j.

For each instruction Ii we write down an axiom τi where:
i) If Ii is Z(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, 0, xl+1, . . . , xm, s

i+1(0))).

ii) If Ii is S(l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, s(xl), xl+1, . . . , xm, s

i+1(0))).

iii) If Ii is T (i, l), then τi is

∀x1, . . . , xm (R(x1, . . . , xm, s
i(0))→ R(x1, . . . , xl−1, xi, xl+1, . . . , xm, s

i+1(0))).

iv) If Ii is J(i, l, j), then τi is

∀x1, . . . , xm (R(x, si(0))→ ((xi = xl → R(x, sj(0)) ∧ ((xi 6= xl → R(x, si+1(0))

v) If Ii is HALT, then τi is

∀x R(x, si(0))→ R(x, 0).

4To make this precise we need the machinery of Gödel codes from §11.

58

The sentence
R(sn(0), 0, . . . , 0, s(0))

corresponds to the initial configuration on input n.

Let θPn be

(R(sn(0), 0, . . . , 0, s(0)) ∧
s∧
i=1

τi)→ ∃x R(x, 0)

Suppose P halts on input n. Suppose

M |= R(sn(0), 0, . . . , 0, s(0)) ∧
s∧
i=1

τi.

An easy induction shows that if at some stage in the computation of P on input
n our register machine has configuration (k1, . . . , km) and the next instruction
is Ij then

M |= R(sk1(0), . . . , skm(0), sj(0).

In particular, we reach the HALT instruction so M |= R(sl1 , . . . , slm , 0) where
(l1, . . . , lm) are the contents of the registers when P halts. Thus M |= θPn . It
follows that θPn is valid.

On the other hand, suppose θPn is valid. Let M be the L-structure with
universe N where sM(n) = n + 1 and R(k1, . . . , km, j) if and only j > 0 and
at some stage in the computation the registers hold (k1, . . . , km) and the next
instruction is j or j = 0 and the halting configuration is (k1, . . . , km). Then

M |= R(sn(0), 0, . . . , 0, s(0)) ∧
s∧
i=1

τi.

So
M |= ∃x R(x, 0)

and P halts on input n. Thus P halts on input n.
Thus P halts on input n if and only if θPn is valid. If validity were recursive

then we could decide the halting problem.

8 Recursively Enumerable and Arithmetic Sets

Definition 8.1 A set X ⊆ N is recursively enumerable if X is the domain of a
partial recursive function.

The next proposition gives equivalent characterizations of recursively enu-
merable. The second justifies the intuition behind the name. A nonempty
set is recursively enumerable if there is a total recursive function f such that
f(0), f(1), . . . enumerates f .

59

Proposition 8.2 Let X ⊆ N. The following are equivalent:
i) X is recursively enumerable;
ii) X = ∅ or X is the range of a total recursive function.
iii) there is a recursive Y ⊆ Nm+1 such that X = {y : ∃x (x, y) ∈ Y };
iii) X is the domain of a partial recursive function;

Proof
i)⇒ii) Suppose X 6= ∅ is the range of the partial recursive function f . Let

x0 ∈ X. Let g : N2 → N by

g(x, s) =
{
f(x) if T (e, x, s)
x0 otherwise

where T (e, x, s) is the Kleene T -predicate asserting Pe halts on input x by stage
s. Then g is total recursive and the range of X is equal to the range of g. If
σ : N→ N2 is a recursive bijection, then ĝ = g ◦ σ is the desired function.

ii)⇒iii) Let X be the range of f . Let Y = {(x, y) : f(x) = y}. Then Y is
recursive and X = {y : ∃x f(x) = y}.

iii)⇒v) Let Y ⊂ Nm+1. Let σ : N → Nm be a recursive bijection. Let
f : N → N, by f(n) = µx (σ(x), n) ∈ Y . f is partial recursive and X is the
domain of f .

iii)⇒iv) Let X be the domain of f . Let

g(x) =
{
x f(x) ↓
↑ otherwise.

Then g is partial recursive and the range of g is the domain of f .

We next fix an enumeration of the recursively enumerable sets.

Definition 8.3 Let We = {x : φe(x) ↓} = dom φe. Then W0,W1,W2, . . . is an
enumeration of the recursively enumerable sets.

The Halting set H = {(e, x) : φe(x) ↓} is the domain of the universal function
Ψ. Thus H is recursively enumerable. Similarly K = {e : φe(e) ↓} is the domain
of e 7→ ψ(e, e) and hence recursively enumerable. Thus there are recursively
enumerable sets which are not recursive.

Recursively enumerable sets arise naturally in logic when we take the set of
logical consequences of a theory. For the moment this will be informal (since
we are talking about sets of sentences rather than natural numbers). They will
me made precise in §11 when we talk about coding formulas.

Suppose T is a recusive set of sentences. Then Cn(T) = {φ : T ` φ} is
recursively enumerable as Cn(T) = {φ : ∃p p is a proof of φ from T}. By ii)
Cn(T) is recursively enumerable.

Proposition 8.4 If A and B are recursively enumerable, then A∪B and A∩B
are recursively enumerable.

60

Proof We give intuitive arguments which can easily be made precise.
Suppose we have programs enumerating A and B. To enumerate A∪B, we

enumerate x whenever we see x appear in either the enumeration of A or the
enumeration of B.

To enumerate A∩B, we enumerate x once we see x appear in the enumeration
of both A and B.

Proposition 8.5 Every recursive set is recursively enumerable.

Proof Let f be the characteristic function for A and let

g(x) =
{

1 f(x) = 1
↑ f(x) 6= 0.

Then A = dom g.

Proposition 8.6 A is recursive if and only if A and N \ A are recursively
enumerable.

Proof If A is recusive, then ¬A is recursive. Thus, by Proposition 8.5 both A
and ¬A are recursively enumerable.

If A and ¬A are recursively enumerable, then we can decide if x ∈ A as
follows: start enumerating A and ¬A. We will eventually find x in one of the
two lists. If x is enumerated into A, then output x. If x is enumerated into ¬A,
output no.

Corollary 8.7 ¬K and ¬H are not recursively enumerable.

Proof Otherwise K and H are recursive by 8.6.

Definition 8.8 A ≤m B (A is many-one reducible to B) if there is a total
recursive f : N→ N such that x ∈ A⇔ f(x) ∈ A.

If A ≤m B then B is at least as complicated as A. We can reduce problems
about A to probelms about B. We next show that the Halting Problem is the
most complicated recursively enumerable set.

Lemma 8.9 Suppose A ≤m B. If B is recursive, then so is A. Also if B is
recursively enumerable so is A.

Proof If B is recursive this is clear. Suppose B is recursively enumerable.
Suppose g is partial recursive and B = domg. Suppose f is total recursive and
n ∈ A iff f(n) ∈ B. Then A = {n : g(f(n)) ↓} a recursively enumerable set.

Lemma 8.10 If A is recursively enumerable, then A ≤m H.

Proof Suppose A is the domain of φe. Let f(n) = (e, n). Then

n ∈ A ⇔ φe(n) ↓
⇔ Ψ(e, n) ↓
⇔ f(e, n) ∈ H.

61

Lemma 8.11 If A is recursively enumerable A ≤m K.

Proof If suffices to show H ≤m K. There is a total recursive function g such
that for all e, x, y, φg(e,x)(y) = φe(x). Intuitively g is a function which on input
e and x outputs a program P , such that on any input y, P runs Pe on input x.

More formally let G(e, x, y) = Ψ(e, x). Apply the Parameterization Lemma
to obtain a total recursive g(e, x) such that φg(e,x)(y) = G(e, x, y) = φe(x). Then
(e, x) ∈ H if and only if for all y, φg(e,x)(y) ↓ if and only if φg(e,x)(g(e, x)) ↓.

Thus (e, x) ∈ H if and only if g(e, x) ∈ K, so H ≤m K.

Thus A is recursively enumerable if and only if A ≤m H if and only if
A ≤m K.

Recall that Tot = {e : φe is total}. We will show that

Lemma 8.12 i) K ≤m Tot
ii) ¬K ≤m Tot
iii) Neither Tot nor N \ Tot is recursively enumerable.

Proof
i) Define a total recursive function f(x) such that for all e, φf(e)(y) = φe(e).

(The existence of such an f follows from the parameterization lemma.) Then
e ∈ K ⇔ f(e) ∈ Tot.

ii) Define a total recursive function f(x) such that

φf(e)(s) =
{

1 φe(e) has not halted by stage s
↑ otherwise.

Let

G(e, s) =
{

1 ¬T (e, e, s)
↑ otherwise

and apply the paramterization lemma to obtain a total recursive g such that
φg(e)(s) = G(e, s). Then e 6∈ K if and only if there is an s such that T (e, e, s) if
and only if there is an s such that φg(e)(s) ↑. Thus e ∈ ¬K ⇔ g(e) ∈ K.

iii) If Tot were recursively enumerable, then since ¬K ≤m Tot, ¬K would
be recursively enumerable and K would be recursive.

Note that if x ∈ A ⇔ f(x) ∈ B, then x 6∈ A ⇔ f(x) 6∈ B. So A ≤m B ⇔
¬A ≤m ¬B. Thus since K ≤m Tot, ¬K ≤m ¬Tot. If ¬Tot were recursively
enumerable then ¬K would be recursively enumerable, a contradiction.

Definition 8.13 We say that X ⊆ Nm is Σ0
1 if and only if there is a recursive

Y ⊆ Nm+n such that

X = {x ∈ Nm : ∃y (x, y) ∈ Y }.

We say that X ⊆ Nm is Π0
n if and only if N \X is Σ0

n. X is Σ0
n+1 if and only

if there is a Π0
n set Y ⊂ Nm+k such that

X = {x : ∃y (x, y) ∈ Y }.

62

We say that X is ∆n if and only if X is Σ0
n and X is Π0

n.
By 8.2 the Σ0

1 sets are exactly the recursively enumerable sets. Note that
the ∆1 sets are the recursive sets. It is easy to see that Σ0

n ∪Π0
n ⊆ ∆n+1.

Definition 8.14 We say that X is arithmetic if X ∈ ∪nΣ0
n.

Proposition 8.15 i) If A0 and A1 are Σ0
n (respectively, Π0

n), then A0∩A1 and
A0 ∪A1 are Σ0

n (Π0
n).

ii) If A ⊂ Nm+1 is Σ0
n, then {x : ∃y (x, y) ∈ A} is Σ0

n.
iii) If A ⊂ Nm+1 is Π0

n, then {x : ∀y (x, y) ∈ A} is Π0
n.

iv) If A ⊂ Nm+1 is Σ0
n and f : Nm → N is total recursive, then {x : ∀y <

f(x) (x, y) ∈ A} is Σ0
n.

v) If A ⊂ Nm+1 is Π0
n and f : Nm → N is total recursive, then {x : ∃y <

f(x) (x, y) ∈ A} is Π0
n.

vi) If A is Σ0
n (respectiely Π0

n) and B ≤m A, then B is Σ0
n (Π0

n).

Proof
i) Let Ai = {x : ∃y (x, y) ∈ Bi} where Bi is Π0

n−1 (or recursive if n = 1.
Then A0 ∪ A1 = {x : ∃y ((x, y) ∈ B0 ∪ B1)}. By induction B0 ∪ B1 is Π0

n−1.
Thus A0 ∪A1 is Σ0

n.
Similarly A0 ∩A1 = {x : ∃y0∃y1 ((x, y0) ∈ B0 ∧ (x, y1) ∈ B1}.

ii) and iii) are similar.

iv) Suppose A = {(x, y) : ∃z(x, y, z) ∈ B}. Then ∀y < f(x)∃z(x, y, z) ∈ B
iff and only if ∃σ(x, y, σ) ∈ B∗, where we think of σ as coding a finite sequence
(z0, . . . , zf(x)−1) and B∗ asserts that forall y < f(x), (x, y, zy) ∈ B. Since Π0

n−1

sets are closed under ∀y, B∗ is Π0
n−1. Thus our set is Σ0

n.

v) is similar

vi) Suppose A is Σ0
n. Let f be a total recursive function such that

x ∈ B ⇔ f(x) ∈ A.

Let
Y = {(x, y) : y ∈ A ∧ f(x) = y}.

Then Y ∈ Σ0
n and B = {x : ∃y (x, y) ∈ A} is Σ0

n.

Exercise 8.16 Show that every subset of Nk definable in the language of arith-
metic L = {+, ·, <, 0, 1} is arithmetic. We will see in §10 that the converse is
true.

Examples

Below let W s
e = {x : φe(x) ↓ by stage s}. Clearly W s

e is recursive.

• Tot = {e : φe is total} is Π0
2 as

e ∈ Tot⇔ ∀n∃sx ∈W s
e .

63

• Fin = {e : We is finite} is Σ0
2 as

e ∈ Fin⇔ ∃n∀y∀s (y < x ∨ y 6∈W s
e).

• {(a, b, c, d, e) : ∃x, y∀z az3 − bxz = cx2 − dxy2 + ey3} is Σ0
2.

• {e : We is recursive} is Σ0
3 as We is recursive if and only there is an i such

that ¬We = Wi. Thus We is recursive iff and only if

∃i∀x ((x ∈We ∨ x ∈Wi) ∧ (x 6∈We ∨ x 6∈Wi)).

This is equivalent to

∃i∀x(∃s(x ∈W s
e ∨ x ∈W s

i)︸ ︷︷ ︸
Σ0

1

∧∀s(x 6∈W s
e ∨ x 6∈W s

i)︸ ︷︷ ︸
Π0

1︸ ︷︷ ︸
Π0

2

).

Thus {e : We is recursive} is Σ0
3.

Complete Sets

Definition 8.17 For Γ be Σ0
n or Π0

n. We say that X is Γ-complete if X ∈ Γ
and for all Y ∈ Γ, Y ≤m X.

By 8.11 K and H are Σ0
1-complete.

Proposition 8.18 Tot is Π0
2-complete.

Proof Let X be Π0
2. Then there is a recurisve R(x, y, z) such that

x ∈ X ⇔ ∀y∃z R(x, y, z).

Let f(x, y) =
{

1 ∃z R(x, y, z)
↑ otherwise

. Clearly f as computable as on input x, y

we search for a z such that R(x, y, z). If there is one we will evenutally find it
and halt. If not we will search forever.

By the parameterization theorem there is a recursive function k(x) such that

φk(x)(y) = f(x, y).

But then x ∈ X if and only if φk(x) is total.

Proposition 8.19 Fin is Σ0
2-complete.

Proof
Let X ∈ Σ0

2. Suppose x ∈ X if and only if ∃y∀z R(x, y, z) where R is
recursive.

64

Let

f(x, y) =
{

1 ∀w ≤ y∃z ¬R(x,w, z)
↑ otherwise.

By the parameterization theorem there is a total recursive g such that φg(x)(y) =
f(x, y).

Then Wg(x) = {y : ∀w < y∃z ¬R(x,w, z)}. Thus x ∈ X if and only if
g(x) ∈ Fin.

Definition 8.20 Let U ⊂ N2. For e ∈ N, let Ue = {x : (e, x) ∈ U}. We
say that U is Γ-universal if U ∈ Γ and for any X ∈ Γ, there is an e such that
X = Ue.

Clearly every Γ-universal set is Γ-complete

Lemma 8.21 For Γ = Σ0
n or Π0

n, there is UΓ which is Γ-universal.

Proof Let UΣ0
1

= {(e, n) : n ∈ We} = {(e, n) : Ψ(e, n) ↓} is Σ0
1 and clealy

universal.
If UΣ0

n
is universal for Σ0

n then N \ UΣ0
n

is universal for Π0
n.

Let UΠ0
n

be universal Π0
n. Let π : N2 → N be a recursive bijection. Then

{(e, n) : ∃y(e, π(x, y)) ∈ UΠ0
n
}.

is universal Σ0
n+1.

Proposition 8.22 The universal Σ0
n set is not Π0

n.

Proof Let U be the universal Σ0
n set. Let V = {e : (e, e) 6∈ U}. If U were Π0

n

then V would be Σ0
n. In that case there would be an e0 such that V = Ue0 . But

then
e0 ∈ V ⇔ (e0, e0) 6∈ U ⇔ e0 6∈ Ue0 ⇔ e0 6∈ V.

Thus Σ0
n ⊃ ∆n and Π0

n ⊃ ∆n. This gives the following picture of the
arithemtic hierarchy.

��
�
��

�
��

�
��
�HH

HHHH
HHH

HHH

�
��

�
��

�
��

�
��HH

HHH
HHH

HHHH

...

∆1

Σ0
1 Π0

1

∆2

Σ0
2 Π0

2

65

9 Further Topics in Computability Theory

In this section we will take a quick look at several other important ideas in
computability theory.

Rice’s Theorem

Definition 9.1 We say that X ⊂ N is an index set if whenever φi = φj ,
i ∈ X ⇔ j ∈ X.

Tot is an index set. We will show below that K is not an index set.

Theorem 9.2 (Rice’s Theorem) If X is an index set then either X = ∅,
X = N, K ≤m X or N \K ≤m X. In particular the only recursive index sets
are N and ∅.

Proof Suppose X 6= ∅ and X 6= N. Choose e0 such that for all x, φe0(x) ↑.
case 1 e0 6∈ X.

Let e1 ∈ X. Then φe1 6= φe0 . There is a total recursive f such that forall
x, y,

φf(x)(y) =
{
φe1(y) x ∈ K
↑ x 6∈ K.

Let G(x, y) be the partial function computed as follows, enumerate K until
we see that x ∈ K (if x 6∈ K, this search will never terminate), once we see that
x ∈ K start computing φe1(y). Apply the Parameterization Lemma to G to get
g such that φg(x)(y) = G(x, y).

If x ∈ K, then φg(x) = φe1 while if x 6∈ K, then φg(x) = φe0 , the everywhere
undefined function. Since X is an index set if φg(x) = φei , then g(x) ∈ X ⇔
ei ∈ X. Thus x ∈ K ⇔ g(x) ∈ X.

case 2: e0 6∈ X.
Use the fact that N \ X is an index set. By case 1, K ≤m N \ X. Thus

N \K ≤m X.

The Recursion Theorem

Suppose you are given the task of writing a computer program Q which we will
call a “modifier”. The program Q will compute a total recursive function f .
The goal of Q is to insure that for φe 6= φf(e) for any input e. Intuitively Q
takes as input a program Pe and outputs a modified program Pf(e) and Q’s
goal is to insure that these programs do not compute the same partial recursive
function. Is there such a program Q?

One at first might think this is easy as Q could do something like output
Pf(e) where we first run Pe and then add one to the output. This almost works.
If there is any x such that Pe halts on input x, then φe(x) 6= φf(e)(x). However
suppose we choose e an index for the everywhere divergent function. Then Pf(e)

is also the everywhere divergent function. Perhaps you would expect that if one

66

were a little more clever one could avoid this problem. The Recursion Theorem
says that this is not the case.

Theorem 9.3 (Kleene’s Recursion Theorem) Suppose f : N → N is a to-
tal recurstive function. There is a number e such that φe = φf(e). In particular
there is an e such We = Wf(e).

Proof Consider the partial recursive function

F (x, y) =
{
φφx(x)(y) if φx(x) ↓
↑ otherwise.

By the Parameterization Lemma there is a total recursive function d such that

φd(x)(y) = F (x, y).

Choose n such that φn = f ◦ d. Let e = d(n). Since d and f are total, φn is
total. Thus φn(n) converges and φd(n) = φφn(n). Hence

φn = φd(n) = φφn(n) = φf(d(n)) = φf(e)

as desired.

The following is typical of the many odd corollaries of the recursion theorem.

Corollary 9.4 There is an e such that We = {e}.

Proof By the Parameterization Lemma there is a total recursive function f
such that

φf(x)(y) =
{

1 y = x
↑ otherwise.

Thus Wf(x) = {x} for all x. By the Recursion Theorem there is an e such that

We = Wf(e) = {e}.

Thus there is a program Pe which on input x checks “Is x a code for my own
program?” and halts if and only if it is. Such a program can be written in any
programming language.

We can now answer a question raised above.

Corollary 9.5 K is not an index set.

Proof Suppose e as in Corollary 9.4. Since We = {e}, e ∈ K. On the other
hand if φi = φe and i 6= e, then φi(i) ↑. Thus i 6∈ K.

67

Recursively Inseparable r.e. Sets

Definition 9.6 Suppose A and B are recursively enumerable and A ∩ B = ∅.
We say that A and B are recursively inseparable if there is no recursive set C
such that A ⊆ C and B ∩ C = ∅.

Theorem 9.7 There is a pair of recursively inseparable recursively enumerable
sets.

Proof Let A = {e : φe(e) = 0} and let B = {e : φe(e) = 1}. Suppose C is
recursive, A ⊆ C and C ∩ B = ∅. Let φn be the characteristic function of C.
Then

n ∈ C ⇒ φn(n) = 1⇒ n ∈ B ⇒ n 6∈ C.

On the other hand

n 6∈ C ⇒ φn(n) = 0⇒ n ∈ A⇒ n ∈ C.

Thus we have a contradiction.

Simple Sets

We will give an example of a non-recursive recursively enumerable set which is
not Σ1-complete.

Definition 9.8 We say that a recursively enumerable set A is simple if
i) N \A is infinite but
ii) N \ A contains no infinite recusively enumerable set. Thus A is simple

if and only if N \ A is infinite and for any e if We is infinite, then A ∩We is
nonempty.

Theorem 9.9 (Post) There is a simple recusively enumerable set.

Proof Let B = {(e, s, x) : x ∈ W s
e ∧ x > 2e}. Let f be a partial recursive

function
f(e, s) = µx (e, s, x) ∈ B

ie. f(e, s) is the least x such that (e, s, x) ∈ b and f(e, s) ↑ if no such x exists.
Note that if f(e, s) ↓ and t > s, then f(e, s) = f(e, t). We call this common
value me.

Let A be the range of f . Then A is recursively enumerable and A = {me :
f(e, s) ↓ for some s}. If n ∈ A and n ≤ N , then n = me for some e < N/2.
Thus N \A is infinite.

Suppose We is infinite. There is x ∈We such that x > 2e, thus f(e, s) ↓ for
large enough s. But f(e, s) ∈ We ∩ A. Thus We 6⊆ A. So N \ A contains no
infinite recursively enumerable sets.

Definition 9.10 A recursively enumerable set A is creative if and only if there
is a total recursive F such that F (e) ∈ A if and only if F (e) ∈We for all e.

68

Proposition 9.11 i) If A is creative, then A is not recursive.
ii) K is creative.
iii) Any complete recursively enumerable set is creative.

Proof
i) If We = N \A, then

F (e) ∈ A⇔ F (e) ∈We ⇔ F (e) 6∈ A

a contradiction.
ii) Let F (e) = e. Then F (e) ∈ K if and only if e ∈We.
iii) Since K ≤m A, there is a total recursive f such that e ∈ K if and only

if f(e) ∈ A. By the Parameterization Lemma, there is a total recursive g such
that

φg(e)(x) = φe(f(x))

for all e and x. Then

f(g(e)) ∈ A ⇔ g(e) ∈ K
⇔ φg(e)(g(e)) ↓
⇔ φe(f(g(e)) ↓
⇔ f(g(e)) ∈We.

Thus F = f ◦ g shows that A is creative.

Proposition 9.12 If A is creative, then N \ A contains an infinite recursively
enumerable set.

Proof Suppose F is a total recursive function such that F (e) ∈ A if and only
if F (e) ∈We. There is a total recursive function f such that

Wf(n) = Wn ∪ {F (n)}

for all n.
Suppose We ⊆ N \ A. Since F (e) ∈ We if and only if F (e) ∈ A, F (e) 6∈ We

and Wf(e) ⊆ N \A. Thus We ⊂Wf(e) ⊆ N \A.
Choose e0 such that We0 = ∅. Let

h(0) = e0

h(n+ 1) = f(hn)

Then
Wh0 ⊂Wh1 ⊂Wh2 ⊂ . . .N \A

and
∞⋃
n=0

Wh(n) = {x : ∃n x ∈Wh(n)}

is an infinite recursively enumerable subset of N \A.

Corollary 9.13 If A is simple, then A is not complete.

Proof A is not creative and, hence, not complete.

69

Kolmogorov Randomness

For x ∈ N let |x| be the length of the binary expansion of x. Then |x| =
dlog2(x+ 1)e.

We say that 〈n,m〉 is a description of x if φn(m) = x. We say that k codes
a description of x if π(n,m) = k where π(n,m) = 2n(2m + 1) − 1 is our usual
pairing function π : N2 → N.

Definition 9.14 The Kolmogorov complexity of x is

K(x) = min{|k| : k codes a description of x}.

We say that x is random if K(x) ≥ |x|.

Proposition 9.15 {x : x is not random } is recursively enumerable.

Proof x is not random if and only if

∃n,m (|π(n,m)| < |x| ∧ φn(m) = x}.

Proposition 9.16 There are random x.

Proof The key observation is that

|{x : |x| ≤M}| = 2M

for any M . Thus for any M ∈ N, there are at most 2M−1 descriptions with
codes k where |k| < M . Thus

{x : |x| ≤M and K(x) < M}| ≤ 2M−1

and at least half the numbers of length at most M are random!

Proposition 9.17 {x : x is not random} is simple.

Proof Suppose A is an infinite recursively enumerable set of random numbers.
Let f : N→ A be the function f(m) = first x enumerated into A with |x| ≥ m.
Let f = φn. Pick m > 2n.

m ≤ |f(m)| ≤ K(f(m)) ≤ |π(n,m)| ≤ |2n(2m+ 1)| ≈ n+ |m| < 2|m|

a contradiction.

The simplicity of the set of non-random elements has an amazing metamath-
ematical consequence. We know there are infinitely many random numbers.
Consider

{n ∈ N : we can prove in set theory that n is random}.

This is a recursively enumerable subset of the complement of a simple set. Hence
must be finite! Thus for most random numbers there is no proof that they are
random.

70

Part III

Incompleteness

10 Gödel’s Incompleteness Theorem

The following three problems can be considered the basic problems in the foun-
dations of mathematics.

1) Does every mathematical truth about the natural numbers have a meaningful
finitistic proof? While it is arguable what a “finitistic proof” is, one precise way
of saying this is that there is a natural set of axioms from which we can derive all
truths about the natural numbers. For example Peano Arithmetic (PA) would
be a good candidate. Is every sentence that is true in N provable in PA?
2) Hilbert’s Conservation Program: If a mathematical truth can be proved
by strong methods (say using set theoretic methods), then it can be proved by
finitistic methods.
3) Hilbert’s Consistency Program: We should be able to give a finitistic
proof of the consistency of our methods.

Gödel showed that all of this is impossible.

Theorem 10.1 (First Incompleteness Theorem) There is a sentence φ such
that N |= φ and PA 6` φ. Indeed, if T is a recursive theory such that T ⊇ PA
and N |= T , then there is a sentence φ such that T 6` φ and T 6` ¬φ.5

(Second Incompleteness Theorem) Let T be as above. Then T does not
prove the consistency of T .

The First Incompleteness theorem shows that i) will fail. The Second In-
completeness theorem shows that iii) fails. Since using set theory we can show
that Peano Arithmetic is consistent, iii) shows that the conservation program
fails as well.

Let L = {+, ·, <, 0, 1} be the language of arithmetic.
For n ∈ N, let n̂ denote the L-term 1 + . . .+ 1︸ ︷︷ ︸

n−times

.

Definition 10.2 We say that an L- theory T represents A ⊆ Nk if there is an
L-formula φA(v1, . . . , vk) such that:

i) if (n1, . . . , nk) ∈ A, then T ` φ(n̂1, . . . , n̂k);
and

ii) if (n1, . . . , nk) 6∈ A, then T ` ¬φ(n̂1, . . . , n̂k).

5There is an issue here of what we mean for a set of sentences to be recursive (or later in
this section, recursively enumerable or arithmetic). To make these precise we need the idea
of Gödel codes from §11, but for the moment, as we have done in earlier sections, we use the
informal notion that there is an algorithm that decides if φ ∈ T .

71

Further we say that T represents f : Nk → N if there is an L-formula φf (v1, . . . , vk, w)
such that:

i) if f(n1, . . . , nk) = m then T ` φf (n̂1, . . . , n̂k, m̂)
and

ii) if f(n1, . . . , nk) 6= m then T ` ¬φf (n̂1, . . . , n̂k, m̂)

The key step is to show that Peano Arithmetic represents all primitive re-
cursive functions–indeed, all recursive functions. In fact, we need only a very
weak fragment of Peano arithmetic, that we will call PA−. Let PA− be the
L-theory asserting the following basic properties of the natural numbers:
• addition and multiplication are commutative and associative;
• the distributive law;
• ∀x (x+ 0 = x ∧ x · 0 = 0 ∧ x · 1 = x);
• < is a linear order;
• ∀x (x = 0 ∨ 0 < x);
• ∀x¬(0 < x ∧ x < 1);
• ∀x∀y∀z (x < y → (x+ z < y + z);
• ∀x∀y∀z [(x < y ∧ 0 < z)→ x · z < y · z].

Models of PA− are the nonnegative parts of discrete ordered rings.

Lemma 10.3 (Representation Lemma) PA− represents every primitive re-
cursive function.

If f : Nk → {0, 1} is the characteristic function of A ⊆ Nk and φf (v, w)
represents f , then φf (v, 1̂) represents A. Thus PA− also represents all primitive
recursive relations.

For some applications, we can get by with a simpler corollary.

Corollary 10.4 (Weak Representation Lemma) The graph of every prim-
itive recursive function is definable in N .

Proof If φ represents f , then

f(m) = n⇔ N |= φ(m,n).

So, φ defines the graph of f .
We will postpone the proof of the Representation Lemma for the moment

and first show how we can apply it and the results of §7 to prove the First
Incompleteness Theorem.

Suppose A ⊆ N is Σ0
n. Say

x ∈ A⇔ ∃y1∀y2 . . . Qyn R(x, y)

where R is recursive and Q is ∃ if n is odd and ∀ if n is even. Let R = We.
Then

x ∈ R⇔ ∃s T (e, x, s)

72

where T Kleene’s T-predicate. Then

x ∈ A⇔ ∃y1∀y2 . . . Qyn∃s T (e, x, y, s)

Let ψA(v) be the formula

∃y1∀y2 . . . Qyn∃s φT (ê, v, y, s)

where φT is the formula which represents T .
It is clear that

n ∈ A⇔ N |= ψA(n̂),

i.e., ψA defines A. We have proved that every arithmetic set is definable. Note
that we proved the converse in Exercise 8.16.

Proposition 10.5 A ⊆ Nk is arithmetic if and only if it is definable in N.

Recall that Th(N) = {ψ : N |= ψ}. The function

n 7→ ψA(n̂)

gives a many-one reduction of A to Th(N).
We can now deduce a strong form of the First Incompleteness Theorem.

Theorem 10.6 Th(N) is not arithmetic

Proof Suppose Th(N) were Σ0
n. By Proposition 8.22, there is a Σ0

n+1 set A
which is not Σ0

n. By the above arguments, A ≤m Th(N) and by Proposition
8.15 vi), A ∈ Σ0

n, a contradiction.

Corollary 10.7 If T ⊇ PA− is a recursive L-theory such that N |= T , there is
φ such that N |= φ and T 6` φ. In particular, PA is incomplete.

Proof If T is recursive, then {φ : T ` φ} is a recursively enumerable subset of
Th(N). Since Th(N) is not recursively enumerable, there is a sentence φ such
that N |= φ but T 6` φ.

Note that these results needed only the Weak Representation Lemma. The
next version of the Incompleteness Theorem weakens the assumption that N |=
T , but assumes T ⊇ PA and uses more of the force of the Representation Lemma.

Let T ⊇ PA be recursively axiomatized. Let

P (T) = {φ : T ` φ} and R(T) = {φ : T ` ¬φ}

be the sentences provable and refutable from T . Note that since T is recursively
axiomatized, P (T) and R(T) are recursively enumerable. Moreover, if T is
consistent, then P (T) and R(T) are disjoint.

Theorem 10.8 (Rosser’s Incompleteness Theorem) If T ⊇ PA is consis-
tent and recursively axiomatizable, then P (T) and R(T) are recursively insepa-
rable. It follows that T is incomplete.

73

Proof We argue that later point first. If T is complete and φ is a sentence,
then

φ 6∈ P (T)⇔ φ ∈ R(T).

Thus P (T) is co-recursively enumerable and hence recursive. But this contra-
dicts the recursive inseparability of P (T) and R(T).

Note that to prove the recursive inseparability of P (T) and R(T) it suffices
to show that P (PA) and R(PA) are recursively inseparable since

P (PA) ⊆ P (T), R(PA) ⊆ R(T) and P (T) ∩R(T) = ∅.

Thus any set that separates P (T) and R(T) also separates P (PA) and R(PA).
For i = 0, 1 let Ai(e, x, s) be the primitive recursive predicate asserting that

“φe(x) halts in at most s steps with output i” and let ψi(u, v, w) be an L-formula
representing Ai in PA−.

Let θ0(x) be the formula

∃y (ψ0(x, x, y) ∧ ∀z < y¬ψ1(x, x, z))

and let θ1(x) be the formula

∃y (ψ1(x, x, y) ∧ ∀z ≤ y¬ψ0(x, x, z)) .

Intuitively, θ0(e) says that we find a witness that φe(e) = 0 at least as soon
as we find a witness that φe(e) = 1 and θ1(e) says that we see φe(e) = 1 before
we see φe(e) = 0.6

Note that PA− ` ∀¬(θ0(x) ∧ θ1(x)).
Claim PA ` ∀x [∃y (ψ0(x, x, y) ∨ ψ1(x, x, y))→ (θ0(x) ∨ θ1(x))]

If ∃y (ψ0(x, x, y) ∨ ψ1(x, x, y)) then, using induction in PA, there is a least
y0 such that

ψ0(x, x, y0) ∨ ψ1(x, x, y0).

If ψ0(x, x, y0), then θ0(x). Otherwise θ1(x).
Let A = {e ∈ N : φe(e) = 0} and B = {e ∈ N : φe(e) = 1}. By Theorem 9.7

A and B are recursively inseparable.
Suppose for purposes contradiction that there is a recursive set of sentences

C such that P (PA) ⊆ C and C ∩R(PA) = ∅. Let

D = {e ∈ N : θ0(ê) ∈ C}.

Clearly D is recursive. We claim that D separates A and B.
6Note that if φe(e)does not halt it is possible that in a nonstandard model M we might

find nonstandard s and t with

M |= ψ0(e, e, s) ∧ ψ1(e, e, t).

74

Let e ∈ A. There is s ∈ N such that A0(e, e, s) and ¬A1(e, e, t) for all t ≤ s.
Since ψi represents Ai,

PA− ` ψ0(e, e, s) and for all t ≤ s PA− ` ψ1(e, e, t).

It follows that PA− ` θ0(e) and e ∈ D.
A similar argument shows that if e ∈ B, then PA− ` θ1(e). Hence PA 6`

θ0(e), so e 6∈ D. Thus D separates A and B, a contradiction since they are
recursively inseparable.

Σ1-Formulas

We now start doing the preparation we need to prove the Representation Lemma.

Definition 10.9 We say that an L-formula φ(v) is a ∆0-formula if it is in the
smallest collection of formulas C such that:

i) every atomic formula is in C;
ii) if φ ∈ C, then ¬φ ∈ C;
iii) if φ ∈ C and ψ ∈ C, then φ ∧ ψ ∈ C;
iv) if φ ∈ C ,v is variable and t is an L-term not involving v, then ∃v (v <

t ∧ φ) ∈ C and ∀v (v < t→ φ) ∈ C.
We abbreviate the later two formulas as ∃v < t φ and ∀v < t φ.

Exercise 10.10 Prove that if φ(v1, . . . , vk) ∈ ∆0, then

{(n1, . . . , nk) : N |= φ(n̂1, . . . , n̂k)}

is a primitive recursive predicate.

Definition 10.11 We say φ(x) is a Σ1-formula, if there is a ∆0-formula ψ(x, y)
such that φ(x) is ∃y ψ(x, y).

As a first step toward proving the Representation Lemma, we will prove
that for every primitive recursive function there is a Σ1-formula defining its
graph. That is for each primitive recursive f : N → N there is a Σ1 formula
φ(x1, . . . , xk, y) such that f(n1, . . . , nk) = m⇔ N |= φ(n1, . . . , nk,m).
This will be proved by induction. For the basic functions this is easy.

i) The graph of x 7→ 0 is defined by the formula y = 0.
ii) The graph of x 7→ x+ 1 is defined by the formula y = x+ 1.
iii) The graph of (x1, . . . , xm) 7→ xi is defined by y = xi.

Lemma 10.12 Suppose that the graphs of the functions the functions
g1, . . . , gm : Nk → N and h : N → N have Σ1-definable graphs and f : Nk → N
is defined by f(x) = h(g1(x), . . . , gm(x)). Then f has a Σ1-definable graph.

Proof Let ∃ziφi(x, y, zi) define the graph of gi and let ∃wψ(u, y, w) define the
graph of h. Then f(x) = y ⇔

∃z1 . . . ∃zm∃w1 . . . ∃wm∃u [φ1(x,w1, z1) ∧ . . . ∧ φm(x,wm, zm) ∧ ψ(w, y, u)] .

75

We have shown that the class of functions with Σ1-definable graphs is closed
under composition. We need to show it is closed under primitive recursion. To
do that we will need a new method of coding sequences where it is easy to show
the graph is ∆0.

Gödel’s β-function

Let Seq be the set of finite sequences of elements of N. We define β : N3 → Seq,
such that β(u, v, w) is the sequence (a0, . . . , aw−1) where

ai = u mod (i+ 1)v + 1 for i = 0, . . . , w − 1

and β(u, v, w) is the empty sequence for w = 0.
Let Ψ(u, v, w, i, x) be the formula

i < w ∧ 0 ≤ x < (i+ 1)v + 1 ∧ ∃y ≤ u y((i+ 1)v + 1) + x = u.

Then Ψ(u, v, w, i, x) expresses that x is the ith element in the sequence β(u, v, w).
Note that Ψ is ∆0. We will write

β(u, v, w)i = x

for Ψ(u, v, w, i, x). While it is easy to express that β(u, v, w)i = x, it is not so
easy to see that every sequence is coded in this way.

We need the following standard lemma from number theory.

Lemma 10.13 (Chinese Remainder Theorem) Suppose m1, . . . ,mn are rel-
atively prime. Then for any a1, . . . , an there is an x such that x ≡ ai(mod mi)
for i = 1, . . . , n.

Proof Let
Mi =

∏
j 6=i

mj .

SinceMi andmi are relatively prime, we can find bi such that biMi ≡ 1(mod mi).
Let

x =
n∑
i=1

aibiMi.

Since mi|Mj for j 6= i, x ≡ aibiMi(mod mi). Thus x ≡ ai(mod mi) for i =
1, . . . , n.

Lemma 10.14 For any sequence σ = (a0, . . . , aw−1) there are u and v such
that β(u, v, w) = σ.

76

Proof Let n = max(w, a0, . . . , aw−1) and let v = n!. We claim that

v + 1, 2v + 1, . . . , wv + 1

are relatively prime. Suppose p is prime and p|iv+1 and p|jv+1 where j > i > 0
Then p|(j− i)v Thus p|(j− i) or p|v and, since (j− i)|v, p|v. But then p 6 |iv+1.
Thus v + 1, . . . , wv + 1 are relatively prime.

By the Chinese Remainder Theorem there is a number u such that

u ≡ ai(mod (i+ 1)v + 1) for i = 0, . . . , w − 1.

Corollary 10.15 Suppose φ is a Σ1-formula, v is a variable and t is an L-term
not involving v. There is a Σ1-formula ψ such that

N |= ψ ↔ ∀v < t φ.

Proof Suppose ∀v < t φ is

∀v < t∃y1 . . . ∃yn θ(x, y, v)

where θ is ∆0. This is clearly equivalent to

∀v < t∃y∃y1 < y . . .∃yn < y θ(x, y, v).

Thus without loss of generality we may assume ∀v < tφ is

∀v < t∃yθ(x, y, v)

where θ is ∆0.
Also note that for any formula φ,

∀v < t φ⇔ ∃z (z = t ∧ ∀v < zφ).

Thus it will suffice to prove that if θ is ∆0, then ∀v < z∃y θ(x, y, v) is
equivalent in N to a Σ1-formula.

Informally,

∀v < z∃y θ(x, y, v)⇔ ∃σ ∈ Seq ∀v < z θ(x, σv, v)

We can make this formal using Gödel’s β-function. In ∀v < z∃y θ(x, y, v) is
equivalent to

∃u∃v∀v < z∃y < u (β(u, v, z)i = y ∧ θ(x, y, v)) .

Because β(u, v, z)i = y has a ∆0-definition, this is a Σ1-formula.

Corollary 10.16 Let C be the smallest class of formulas containing the ∆0

formulas and closed under ∧, ∨, bounded quantification (i.e., ∀v < t and ∃v <
t), and existential quantification. If φ ∈ C there is ψ ∈ Σ1 such that

N |= φ↔ ψ.

77

We can now complete the proof that primitive recursive functions have Σ1-
definable graphs.

Corollary 10.17 If f : Nk → N is primitive recursive, then the graph of f is
Σ1-definable.

Proof We have shown that the basic functions are Σ1-definable and that the
class of Σ1-definable functions is closed under composition. We need only show
that it is closed under primitive recursion.

Suppose g : Nk → N and h : Nk+2 → N have graphs defined by the Σ1-
formulas φ and ψ respectively and f : Nk+1 → N is defined by

f(x, 0) = g(x)
f(x, y + 1) = h(x, y, f(x, y)).

Then f(x, y) = z if and only if

∃σ ∈ Seq [g(x) = σ0 ∧ ∀i < yσi+1 = h(x, i, σi) ∧ σy = z] .

Using the β-function and the Σ1-definitions of g and h, this is equivalent in
N to
∃u∃v

[
(∃w < u(β(u, v, y + 1)0 = y ∧ φ(x,w)) ∧ ∀i ≤ y + 1(

∃w1 < u∃w2 < u(β(u, v, y+ 1)i = w1 ∧ β(u, v, y+ 1)i+1 = w2 ∧ψ(x, i, w1, w2)
)

∧β(u, v, y + 1)y = z
]
.

Using the ∆0-definition of the graph of the β-function and Corollary 10.16,
we see that the graph of f is Σ1-definable.

We can extend this result to all partial recursive functions.

Corollary 10.18 Suppose f : Nk → N is partial recursive. Then the graph of
f is Σ1-definable.

Proof Let f = φe. Then f(x) = y if and only if

∃s φe(x) halts at stage s with output y

Since “φe(x) halts at stage s with output y” is a primitive recursive predicate
it has a Σ1-definition. Thus so does f(x) = y.

The following exercise gives an alternative proof of the last corollary.

Exercise 10.19 Show that the collection of partial functions with Σ1-definable
graphs is closed under the minimization operator µ. Note that the arguments
above about closure under composition and primitive recursion work for partial
functions and conclude that every partial recursive function has a Σ1-definable
graph.

78

Σ1-completeness of PA−

We have shown that the graph of any primitive recursive f(x1, . . . , xk) has a
Σ1-definition φ(x, y). Suppose f(n1, . . . , nk) = m. Thus N |= φ(n̂1, . . . , n̂k, m̂).
To prove the Representation Lemma we will need to know that

PA− ` φ(n̂1, . . . , n̂k, m̂).

In fact, we will prove that any Σ1-sentence that is true in N is provable in PA−.
Suppose M |= PA−. There is a natural map j : N → N by n 7→ n̂M, i.e.,

j(n) is the interpretation of n̂ in M.
Using the fact that 0 < 1 and addition is order preserving we see that

M |= n̂ < n̂+ 1

for all n. Thus j is order preserving and hence injective.
We also argue that j preserves addition and multiplication.

Lemma 10.20 j(n+m) = j(n) + j(m) and j(nm) = j(n)j(m).

Proof j(n+m) = n̂+m andM |= n̂+m̂ = n̂+m. Similar for multiplication.

We have shown that j(N) is a substructure of M. We identify N and j(N)
and think of N as a substructure of M We next argue that j(N) is an initial
segment ofM. This is easy since the following argument shows that the ordering
of M is discrete.

Lemma 10.21 PA− ` ∀z¬∃x z < x < z + 1.

Proof Suppose M |= PA− and there are a, b ∈ M such that a < b < a + 1.
Since a < b there is a c ∈ M such that b = a + c. Since a 6= b we must have
c 6= 0. But then c ≥ 1 and b = a+ c ≥ a+ 1, a contradiction.

By the Completeness Theorem, PA− ` ∀z¬∃x z < x < z + 1.

It follows inductively that if a ∈ M and a < n̂M, then a = m̂ for some
m < n. Thus for any we can view N as an initial segment of any M |= PA−.

Lemma 10.22 Suppose M |= PA− and φ(v1, . . . , vk) is a ∆0-formula and
n1, . . . , nk ∈ N. Then

M |= φ(n1, . . . , nk)⇔ N |= φ(n1, . . . , nk).

Moreover, if φ is Σ1 and N |= φ(n1, . . . , nk), then so does M.

Proof We prove this by induction on the complexity of φ. If φ is atomic, this
follows as in Proposition 1.14. Also the proof that if the claim is true for φ and
for ψ, then it is true for φ ∧ ψ and ¬φ is exactly as in Proposition 1.14.

Suppose φ is ∀v < t ψ(x1, . . . , xk, v) where t is a term using the variables from
x but not v. Since {a ∈M : a < t(n1, . . . , nk)} = {n ∈ N : n < t(n1, . . . , nk),

M |= φ(n1, . . . , nk)⇔ N |= φ(n1, . . . , nk).

79

The argument is similar for bounded existential quantifiers–or follows from the
bounded universal case using negations.

Now assume φ is Σ1 say φ is

∃y θ(x, y)

where θ is ∆0. If N |= φ(n) then there are m ∈ N such that N |= θ(n,m). But
then M |= θ(n.m) and M |= ∃y θ(n, y), as desired.

Exercise 10.23 Given an example showing that it is possible to have φ is Σ1

and M |= PA− + φ(n1, . . . , nk) but N |= ¬φ(n1, . . . , nk).

Corollary 10.24 (Σ1-Completeness) If φ(v1, . . . , vm) is Σ1 and N |= φ(n1, . . . , nm),
then PA− ` φ(n̂1, . . . , n̂m).

Proof If N |= φ(n1, . . . , nk). Then M |= φ(n̂1, . . . , n̂k) for every M |= PA−.
By the Completeness Theorem, PA− ` φ(n̂1, . . . , n̂k).

The Representation Lemma

We can now finish the proof of the Representation Lemma. We restate it in a
more precise form.

Lemma 10.25 (Σ1-Representation Lemma) For any primitive recursive f :
Nk → N there is a Σ1-formula φf such that:

i) if f(n1, . . . nk) = m, then PA− ` φf (n̂1, . . . , n̂k, m̂);
and
ii) if f(n1, . . . , nk) 6= m, then PA− ` ¬φf (n̂1, . . . , n̂k, m̂).

Proof If we only wanted i) this would follow immediately from the fact that
primitive recursive functions have Σ1-definable graphs and the Σ1-Completeness
of PA−.

A little more care is needed to guarantee ii). Suppose the graph f(x) = y is
defined by ∃z1, . . . ,∃zs θ(x, y, z). Where θ is ∆0. It is easily seen that this is
equivalent to

∃z∃z1 < z . . .∃zm < z θ(x, y, z).

Thus, without loss of generality, we may assume that the graph of f is defined
by

∃z θ(x, y, z)

where θ is ∆0.
Next consider the formula φf asserting

∃z [θ(x, y, z) ∧ ∀u < z∀v < z¬θ(x, u, v)) .

Note that φf is Σ1.
If f(n) = m, then for all m1 < m and for all z, ¬θ(n,m1, z). Thus φf (n,m).

By Σ1-completeness PA− ` φf (n1, . . . , nk, m̂).

80

Suppose f(n) = s 6= m where n, s,m ∈ N. We need to show PA− `
¬φf (n̂1, . . . , n̂k, m̂). Suppose not. Then, by the Completeness Theorem, there
is M |= PA− and a ∈M such that

M |= θ(n,m, a) ∧ ∀u < a∀v < a ¬θ(n, u, v)

Since f(n) 6= m we must have a > n for all n ∈ N. But f(n) = s. Thus there
is t ∈ N such that N |= θ(n.s, t). Since θ is ∆0, M |= θ(n.s.t). But t ∈ N, so
s, t < a, a contradiction. Thus PA− ` ¬φf (n̂1, . . . , n̂k, m̂).

Exercise 10.26 Modify φf so that in addition PA− ` ∃!yφf (n̂1, . . . , n̂k, y) for
all n1, . . . , nk ∈ N

Exercise 10.27 Argue that we could replace “primitive recursive” by “total
recursive” in the Representation Lemma, but not by “partial recursive”.

For a deeper study of Peano Arithmetic–and indeed for complete proofs of
some of the results in the next section. We would need to have finer versions
of some of the technical results in this section. For example, we would need to
know that the Chinese Remainder Theorem is provable in PA. We also used the
fact that the we can code any sequence with the β-function. One consequence
of that that we use is that if we can code a sequence σ, then for any a we can
code the sequence σ, a obtained by adding a to then end of σ. We need to show
this is provable in PA. More formally, we need
PA ` ∀m∀n∀w∀a∃m′∃n′[∀i < wβ(m,n,w)i = β(m′, n′, w + 1)i∧

β(m′, n′, w + 1)w = a].
Using the above remarks we can prove sharper versions of the Representation

Lemma.

Exercise 10.28 Let f be a primitive recursive formula. Show that we can find
a Σ1 formula φf representing f such that

PA ` ∀x∃!y φf (x, y)

This says that the function f is provably total in PA. In fact not all total
recursive functions are provably total and there are interesting bounds on the
growth rates of provably total functions.

11 Arithmetization of Syntax

In §10 we gave a proof of the First Incompleteness Theorem based on basic
recursion theoretic ideas. In this section we give a second proof which follows
Gödel more closely. We will also sketch the ideas behind the proof of the Second
Incompleteness Theorem. The new idea of this section is the idea of Gödel codes
for formulas.

We will assign a number dφe to each formula φ. We call dφe the Gödel
code for φ. Gödel coding allows us to talk about properties of formulas in the

81

language of arithmetic. Gödel showed that there are amazing possibilities for
self reference. In particular he proved the following striking lemma.

Lemma 11.1 (Diagonalization Lemma) Let φ(v) be a formula in the lan-
guage of arithmetic with one free variable v. There is a sentence ψ such that

PA− ` ψ ↔ φ(dψe).

Intuitively the sentence ψ says “My code has property φ”. Strictly speaking
we should write PA ` ψ ↔ φ(d̂φe) but we will drop the ̂ when no confusion
arises.

We will begin shortly the work needed to prove the Diagonalization Lemma
and deduce the Incompleteness Theorem from it, but first let us deduce one
simple and important corollary.

A formula Γ(v) is called a truth definition if and only if

N |= ψ if and only if N |= Γ(dψe).

for all sentences ψ

Corollary 11.2 (Tarski’s Undefinability of Truth) There are no truth def-
initions.

Proof Suppose Γ(v) is a truth definition. Apply the Diagonalization Lemma
to ¬Γ to obtain a sentence ψ such that PA ` ψ ↔ ¬Γ(dψe). Clearly ψ shows
that Γ is not a truth definition.

We now begin the mechanics of coding. We fix a primitive recursive method
of coding finite sequences. We let 〈a1, . . . , am〉 be the code for the sequence
(a1, . . . , am). We choose the coding so that:

i) every natural number codes a sequence,
ii) n 7→ l(n) is primitive recursive, where l(n) is the length of the sequence

coded by n, and
iii) (n, i) 7→ (n)i is primitive recursive, where (n)i is the ith-element of the

sequence coded by n if i ≤ l(n) and (n)i = 0 if i > l(n).

For example we could use the coding τ described in §7 or the β-function from
§10.

Let us assume that our language is L = {+, ·, <, 0, 1} and that we use only
the connectives ∧ and ¬, the quantifier ∃ and variables v0, v1, We assign
each symbol a code as follows.

d0e = 〈0, 0〉 d1e = 〈0, 1〉 dvie = 〈1, i〉
d+e = 〈2, 0〉 d·e = 〈2, 1〉 d<e = 〈3, 0〉
d=e = 〈3, 1〉 d∧e = 〈4, 0〉 d¬e = 〈4, 1〉
d∃e = 〈5, 0〉

We inductively define coding of terms as follows. If t1 and t2 are terms then
dt1 + t2e = 〈d+e, dt1e, dt2e〉 and
dt1 · t2e = 〈d·e, dt1e, dt2e〉.

82

If t1 and t2 are terms, we code atomic formulas as follows.
dt1 = t2e = 〈d=e, dt1e, dt2e〉 and
dt1 < t2e = 〈d<e, dt1e, dt2e〉.

Finally if φ and ψ are formulas then
d¬φe = 〈d¬e, dφe〉,
dφ ∧ ψe = 〈d∧e, dφe, dψe〉 and
d∃viφe = 〈d∧e, dvie, dφe〉.

We will see that all basic syntactic properties of formulas are primitive recur-
sive. It is easy to see for example that the maps dφe 7→ d¬φe and (dφe, dψe) 7→
dφ ∧ ψe are primitive recursive.

Lemma 11.3 The predicates “n codes a term” and “n codes a formula” are
primitive recursive.

Proof Let

T (x) =

{
1 x = d0e > or x = d1e
1 l(x) = 3, (x)1 = 〈2, 0〉 or 〈2, 1〉, T ((x)2) = 1 and T ((x)3) = 1
0 otherwise

.

Clearly T is primitive recursive and T (n) = 1 if and only if n codes a term.
Let

F (x) =


1 l(x) = 3, (x)1 = d=e or d<e, T ((x)1) = 1 and T ((x)2) = 1
1 l(x) = 2, (x)1 = d¬e and F ((x)2) = 1
1 l(x) = 3, (x)1 = d∧e and F ((x)2) = F ((x)3) = 1
1 l(x) = 3, (x)1 = d∃e, ∃i < x (x)2 = 〈1, i〉 and F ((x)3) = 1
0 otherwise

.

Then F is primitive recurisive and F (n) = 1 if and only if n is the code for a
formula

The next lemmas will be the key to proving the Diagonalization Lemma.

Lemma 11.4 There is a primitive recursive function s such that if t is a term
and i, y ∈ N, then s(dte, i, y) is the code for the term obtained by replacing all
occurences of vi in t by the term ŷ (where ŷ is the term 1 + . . .+ 1︸ ︷︷ ︸

y−times

).

Proof We define s by:

s(x, i, y) =


x x = d0e,x = d1e or x = dvje where i 6= j
dŷe x = dvie
〈+, s(t1, i, y), s(t2, i, y)〉 x = 〈+, t1, t2〉
〈·, s(t1, i, y), s(t2, i, y)〉 x = 〈·, t1, t2〉
0 otherwise

Clearly s is primitive recursive and s is the desired function.

83

Lemma 11.5 There is a primitive recursive function sub such that sub(dφe, i, y) =
dψe where ψ is the formula obtained by substituting ŷ for each free occurence of
vi in φ.

Proof We may define sub by

sub(x, i, y) =



〈d=e, s(t1, i, y), s(t2, i, y)〉 x = 〈d=e, t1, t2〉
〈d<e, s(t1, i, y), s(t2, i, y)〉 x = 〈d<e, t1, t2〉
〈d¬e, sub(dφe, i, y)〉 x = 〈d¬e, dφe〉
〈d∧e, sub(dφe, i, y), sub(dψe, i, y)〉 x = 〈d∧e, dφe, dψe〉
〈d∃e, dvje, sub(dφe, i, y)〉 x = 〈d∃e, dvje, dφe〉 and i 6= j
〈d∃e, dvie, dφe〉 x = 〈d∃e, dvie, dφe〉
0 otherwise.

We can now prove the Diagonalization Lemma.

Proof of 10.1 Let φ(v0) be an L-formula with one free variable v0. Let
S(x, y, z, w) be an L-formula representing the primitive function sub.

Let θ(v0) = ∃y (S(v0, 0, v0, y)∧φ(y)) That is, θ(v0) asserts φ(sub(v0, 0, v0)).
Let m = dθ(v0)e and let ψ = θ(m).

Then

PA− ` ψ ↔ θ(m)
↔ ∃y S(m, 0,m, y) ∧ φ(y)
↔ ∃y S(dθ(v0)e, 0,m, y) ∧ φ(y)
↔ ∃y y = dθ(m)e ∧ φ(y)
↔ φ(dθ(m)e)
↔ φ(dψe)

In some of the arguments below we will work with theories T ⊇ PA. While we
stated the First Incompleteness Theorem for recursively axiomatized theories.
It is technically easier to deal with primitively recursively axiomatized theories.
The next lemma shows this is no loss of generality.

Lemma 11.6 (Craig’s Trick) Suppose T is a L-theory with a recursively enu-
merable axiomatization. Then there is a primitive recursively axiomatized L-
theory T ∗ such that T and T ∗ have the same consequences (ie., T ` φ⇔ T ∗ ` φ
for every L-sentence φ).

Proof Suppose We = {dφe : φ ∈ T}. Let

T ∗ = {φ ∧ . . . ∧ φ︸ ︷︷ ︸
s−times

: dφe ∈W s
e }.

It is easy to see that T and T ∗ have the same logical consequences. On the
other hand, since “x ∈ W s

e ” is a primitive recursive predicate, {dψe : ψ ∈ T ∗}
is primitive recursive.

84

Lemma 11.7 Let T be a primitive recursive L-theory. Let ProvT (x, y) be the
predicate “x is a proof from T if the formula with Gödel code y”. The predicate
ProvT is primitive recursive.

Sketch of Proof Basicly, ProvT (x, y) if and only if ∀i ≤ l(x) (x)i ∈ T or (x)i
follows from previous (x)j be an inference rule.

This can be coded in a primitive recursive way. We leave the details to the
reader.

Let ψProvT (x, y) be an L-formula representing ProvT in PA and let

PrT (y)⇔ ∃x ψProvT (x, y)

Using PrT we can give Gödel’s proof of the First Incompleteness Theorem. Let
T be a consistent primitive recursive theory extending PA−. By the Diagonal-
ization Lemma there is a sentence φ such that PA− ` φ↔ ¬PrT (φ). We call φ
the Gödel sentence for T .

Theorem 11.8 (First Incompleteness Theorem) Let T ⊇ PA− be consis-
tent. Let φ be the Gödel sentence for T . Then T 6` φ. Moreover if N |= T , then
T 6` ¬φ.

Proof If T ` φ, then there is an n ∈ N such that ProvT (n, dφe). But then

PA− ` ψProvT (n, dφe)

and PA− ` PrT (dφe) and PA− ` ¬φ. Thus T ` ¬φ, contradicting the consis-
tency of T . Hence T 6` φ.

If N 6|= φ, then N |= PrT (dφe) and hence there is m ∈ N such that
N |= ψProvT (m, dφe) and m really is the code for a proof of φ from T . But
then T ` φ and N |= φ a contradiction, thus N |= φ. Hence if N |= T , then
T 6` ¬φ.

A slightly different diagonalization gives a second proof of Roesser’s Incom-
pleteness Theorem.

Theorem 11.9 Let T be a recursively axiomatized consistent extension of PA−,
then T is incomplete.

Proof Let θ(x, y) be an L-formula representing the primitive recursive relation
“x and y are Gödel codes for formulas and x codes the negation of the formula
coded by y”.

Let Pr∗T (v) be the formula

∃y (ProvT (y, v) ∧ ∀z (θ(z, v)→ ∀x < y ¬ProvT (x, z))).

Thus Pr∗T (dφe) asserts that there is x coding a proof of φ and no y < x codes
a proof of ¬φ.

85

By the Diagonalization Lemma there is a sentence φ such that

PA− ` φ↔ ¬Pr∗T (dφe).

We call φ a Rosser sentence. Intuitively, φ says “for any proof of me there is a
shorter proof of my negation”.

Suppose T ` φ. Then there is a natural number n coding a proof of φ and
since T is consistent if m < n, then m does not code a proof of ¬φ. But then if
M |= T , then M |= Pr∗T (dφe)) and M |= ¬φ a contradiction. Thus T 6` φ.

Suppose T ` ¬φ. Then there is a natural number n coding a proof of ¬φ
and if m < n, then m does not code a proof of φ. Thus if M |= T , then
M |= ¬Pr∗T (dφe), so M |= φ, a contradiction. Thus T 6` ¬φ.

The next Lemma summarized the facts about provability that one must
verify in PA to prove the Second Incompleteness Theorem.

Theorem 11.10 Let T ⊇ PA be a primitive recursive theory and let φ and ψ
be L-sentences. Then the following Derivability Conditions hold.
D1. If T ` φ, then PA ` PrT (dφe).
D2. If PA ` PrT (dφe), then PA ` PrT (dPrT (dφe)e).
D3. PA ` (PrT (dφe) ∧ PrT (dφ→ ψe))→ PrT (dψe)
D4. PA ` (PrT (dφe) ∧ PrT (dψe))→ PrT (dφ ∧ ψe)
D5. PA ` PrT+ψ(dφe)↔ PrT (dψ → φe).

We will not prove the Derivability Conditions in this course. Note that D1
follows from the Σ1-Completeness of PA−. D3-D5 are relatively routine and
follow like the remarks at the end of §10 by arguing in PA that certain primitive
recursive functions, like the one that take proofs of φ and ψ and gives a proof
of φ ∧ ψ do what we expect them to. D2 is a bit more subtle. It is a formal
version of Σ1-Completeness requiring us to redo that analysis in PA.

Theorem 11.11 (Second Incompleteness Theorem) Let T be a consistent
recursively axiomatized theory such that T ⊇ PA. Let Con(T) be the sentence
¬PrT (d0 = 1e). Then T 6` Con(T).

Proof
Let φ be the Gödel sentence such that PA ` φ↔ ¬PrT (dφe).
We will show that PA ` φ ↔ Con(T). Then, by ??0.8 , T 6` φ, so T 6`

Con(T).
Since we can derive anything from a contradiction, T ` 0 = 1→ φ. Thus by

D1,
PA ` PrT (d0 = 1→ φe).

Thus by D3, PA ` ¬Con(T)→ PrT (dφe). By choice of φ, we have

PA ` ¬Con(T)→ ¬φ

86

and taking the contrapositive

PA ` φ→ Con(T).

On the otherhand, by D2

PA ` PrT (dφe)→ PrT (dPrT (dφe)e).

By choice of φ, PA ` PrT (φ)→ ¬φ. Thus by D1 and D3

PA ` PrT (dPrT (dφe)e)→ PrT (d¬φe).

Thus
PA ` PrT (dφe)→ PrT (d¬φe).

Using D4 we see that

PA ` PrT (dφe)→ PrT (dφ ∧ ¬φe).

But then by D1 and D2

PA ` PrT (dφe)→ PrT (d0 = 1e).

So PA ` Con(T)→ φ, as desired.

By the Diagonalization Lemma there are sentences φ such that PA ` φ ↔
PrT (φ). Henkin asked if such a sentence is provable? The following result shows
that it is.

Corollary 11.12 (Löb’s Theorem) Let T be a consisitent recursively axiom-
atized theory extending PA and let φ be any sentence. Then

T ` PrT (dφe)→ φ ⇔ T ` φ.

Proof (⇐) This is clear since if T ` φ, then T ` ψ → φ for any sentence ψ.
(⇒). Suppose T 6` φ. Then T + ¬φ is consistent and by the second incom-

pleteness theorem
T + ¬φ 6` Con(T + ¬φ).

By D5,
T + ¬φ 6` ¬PrT (d¬φ→ 0 = 1e).

Since T ` (¬φ→ 0 = 1)→ φ, by D1,

T ` PrT (d(¬φ→ 0 = 1)→ φe).

Thus, by D3,
T ` PrT (d¬φ→ 0 = 1e)→ PrT (φ).

Thus, T + ¬φ 6` ¬PrT (φ). So T 6` PrT (φ)→ φ, as desired.

87

