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Our Main Goal

Theorem 1 (Hrushovski–Sokolović 1992) There are 2ℵ0

countable differentially closed fields of characteristic zero.



What are we looking for?

For our method of coding graphs using dimensions to work,

we will need:

• large family of types (pa : a ∈ A), pa ∈ S(a), to which

we can assign different countable dimensions.

• good notion of independence in A with lots of elements

a, b, c ∈ A, pairwise independent but not independent

(non-triviality)

• the ability to realize one type in the family while omit-

ting others (orthogonality)



The types pa will be generic types of strongly minimal sets.
Recall

• Hrushovski and Sokolović showed that if X is a nonmod-
ular strongly minimal set then there is a definable finite-
to-one f : X → C, where C is the field of constants.

• We can find many trivial strongly minimal sets. For
example, if A is a δ-independent set, and

Xa =
{
x : x′ =

ax

x + 1

}

then Xa is an infinite set of indiscernibles and Xa ⊥ Xb for
a 6= b ∈ A.

But all known trivial strongly minimal sets are infinite di-
mensional.

If this is to work we will need to find nontrivial modular
strongly minimal sets.



Abelian Varieties

Let K be an algebraically closed field. An Abelian variety

is a subvariety A ⊆ Pn(K), such that there is a rational

map µ : A × A → A making A into a group.

The simplest example is an elliptic curve

Y 2 = X3 + aX + b

together with a point O at infinity.



Proposition 2 Every Abelian variety is a divisible commu-

tative group.

If A has dimension d, then there are n2d points of order n.

Definition 3 We say A is simple if A has no proper infinite

Abelian subvarieties.

Definition 4 Abelian varieties A and B are isogenous if

there is a rational group homomorphism f : A → B with

finite kernel.



j-invariants

Consider the elliptic curve E

Y 2 = X3 + aX + b.

The j-invariant of the curve j(E) is
6912a3

4a3 + 27b2
.

Theorem 5 i) Let L be an algebraically closed field. For

j ∈ L there is E with j(E) = j.

ii) E ∼= E1 if and only if j(E) = j(E1).

iii) If E and E1 are isogenous, then j(E) and j(E1) are

interalgebraic over Q.



Manin Kernels

Theorem 6 (Manin-Buium) Let K be a differentially closed

field. If A is an Abelian variety defined over K, there is

a δ-definable homomorphism µ : A → Kn such that the

kernel of µ is the Kolchin closure of the torsion of A.

For example, if E is the elliptic curve

Y 2 = X3 + aX + b

where a, b ∈ C then µ(x, y) =
x′

y
.

Let A] be the Kolchin closure of the torsion.

If A is defined over C, then A] = A(C).



Theorem 7 (Hrushovski–Sokolović) If A is a simple Abelian

variety that is not isomorphic to an Abelian variety defined

over the constants, then A] is a modular strongly minimal

set.

If A and B are nonisogenous A] and B] are orthogonal.

Moreover, if X is any nontrivial modular strongly minimal

set, then X is nonorthogonal to A] for some simple Abelian

variety A.



Independence

Definition 8 We say that a is independent from B over
A if

RM(a/A ∪ B) = RM(a/A).

We write a |̂
A

B.

Example If a0, . . . , an are δ-independent over k, then a0
is δ-transcendental over k〈a1, . . . , an〉 (the differential field
generated by k(a1, . . . , an)). Thus

RM(a0/k) = ω = RM(a0/k, a1, . . . , an)

and a0 |̂
k
a1, . . . , an.

Example Let a be δ-transcendental over k. Then a |/̂
k
a′,

since over k〈a′〉, a satisfies the rank 1 formula X ′ = a′.

Theorem 9 (Symmetry) If a |̂
A

b, then b |̂
A

a.



Algebraic Characterization of Independence in DCF

Definition 10 Let k ⊆ l1, l2 be fields. l1 and l2 are free

over k if any a1, . . . , an ∈ l1 algebraically dependent over l2
are already algebraically dependent over k.

Theorem 11 If k is a differential field and a, B ⊆ K |=
DCF, then the following are equivalent

i) a |̂
k
B

ii) k〈a〉 and k〈B〉 are free over k.



Fact 12 i) If td(k〈a〉/k) is finite, then RM(a/k) ≤ td(k〈a〉/k).

ii) If td(k〈a〉/k) is infinite, then RM(a/k) ≥ ω.

Lemma 13 If a is δ-transcendental over k and

RM(b/k) < ω, then a |̂
k
b.

Proof If a |/̂
k
b, then k〈a, b〉 has finite transcendence de-

gree over k〈b〉. But then k〈a, b〉 has finite transcendence

degree over k, a contradiction.



Orthogonality

Definition 14 Let p ∈ S(A), q ∈ S(B). We say p ⊥ q if

a |̂
M

b for any M ⊇ A ∪ B, a realizing p and b realizing q

with a |̂
A

M and b |̂
B

M .

Lemma 15 Suppose X is a strongly minimal set defined

over K |= DCF, p is the generic type of X over K and

p ⊥ q. Let b realize q. Then p is omitted in K〈b〉dif.

Proof Suppose a ∈ K〈b〉dif realizes p. There is φ(v) iso-

lating tp(a/K〈b〉). Since p ⊥ q, RM(φ) = 1. Since X is

strongly minimal, φ holds of some elements of X(K), a

contradiction.



What are we looking for?

For our method of coding graphs using dimensions to work,

we will need:

• large family of types (pa : a ∈ A), pa ∈ S(a), to which

we can assign different countable dimensions.

• good notion of independence in A with lots of elements

a, b, c ∈ A, pairwise independent but not independent

(non-triviality)

• the ability to realize one type in the family while omit-

ting others (orthogonality)



For a ∈ K, let E(a) be the elliptic curve with j-invariant

a, let E(a)] be the δ-closure of the torsion points and let

pa ∈ S(a) be the generic type of E(a)].

• E(a)] is strongly minimal

• pa is determine by x ∈ E(a)], x 6∈ Q〈a〉alg.

• E(a)] ∩ Q(a)alg contains the torsion points of E(a) so is

infinite.

• pa 6⊥ pb if and only if E(a) and E(b) are isogenous, in this

case Q(a)alg = Q(b)alg.

• pa ⊥ r where r is the type of a δ-transcendental



Lemma 16 pa is not realized in Q〈a〉dif.

Proof Suppose b ∈ Q〈a〉dif realizes pa. Let φ(v) isolate

tp(b/Q〈a〉). Since b 6∈ Q〈a〉alg, φ(v) defines an infinite subset

of E(a)], but then it must contain a torsion point of E(a).

But the torsion points are in Q(a)alg, a contradiction.



Coding Graphs in DCF

Let G be an infinite graph with vertex set A such that for

all a ∈ A there are b 6= c with (a, b), (a, c) ∈ G.

Let K0 be the differential closure of Q〈A〉 where the ele-

ments of A are independent δ-transcendentals.

Let B = {a+b : a, b ∈ A, (a, b) ∈ G}. Note that the elements

of B are also δ-transcendental.

Theorem 17 There is K(G) |= DCF with K(G) ⊃ K0,

|K(G)| = |G| where if c ∈ A ∪ B, dim(pc/K(G)) = 0 while

if c is δ-transcendental and pc ⊥ pa for all a ∈ A ∪ B, then

dim(pa, K(G)) = ℵ0.



Constructing K(G)

Proposition 18 If a ∈ A ∪ B, then pa is omitted in K0.

Suppose a ∈ A (the other case is similar).

• pa is omitted in Q〈a〉dif.

• pa is omitted in K0
∼= (Q〈a〉dif)〈A \ {a}〉)dif, since r ⊥ pa.

We build K0 ⊂ K1 ⊂ K2 . . .. Suppose c ∈ Kn and pc ⊥ pa

for all a ∈ A ∪ B. We can build Kn+1 ⊇ Kn realizing pc

and adding no new realizations of pa for a ∈ A ∪ B. With

careful bookkeeping we construct K(G) =
⋃

Ki.



Recovering G from K(G)

• |/̂ is an equivalence relation on realizations of r.

For a, b realizing r, a |/̂ b if a is differentially algebraic over

k〈b〉. If a |/̂ b and b |/̂ a, Q〈a, b, c〉 is differentially algebraic

over Q〈a, b〉 which is differentially algebraic over Q〈a〉. Thus

a |/̂ c.

Let [a] be the |/̂ -class of a.

Let S = {[a] : a realizes r,dim(pa, K(G)) = 0}.



• For each [a] ∈ S there is a unique c ∈ A ∪ B such that
[c] = [a].

If pc 6⊥ pa for some a ∈ A ∪ B, then E(c) and E(a) are
isogenous and c |/̂ a.

We say that {[a], [b], [c]} ∈ S3 is a triangle if a, b, c are pair-
wise independent but not independent.

• This does not depend on choice of representative. If say
a1 |/̂ b1, then a |/̂ a1 |/̂ b1 |/̂ b, and, since |/̂ is an equiva-
lence relation, a |/̂ b.

Since

Q〈a1, b1〉 ⊆ Q〈a1, b1, a, b〉 ⊆ Q〈a1, b1, a, b, c〉 ⊆ Q〈a1, b1, a, b, c, c1〉
and each of these extensions is of finite transcendence de-
gree, the transcendence degree of Q〈a1, b1, c1〉 over Q〈a1, b1〉
is finite and c1 |/̂ a1, b1. Hence a1, b1, c1 are pairwise inde-
pendent but not independent.



Proposition 19 Every triangle is of the form {[a], [b], [a +
b]} where a, b ∈ A.

• Any three elements of A are independent

• Any three elements of B are independent

For example a + b, a + c, b + c are interdefinable with a, b, c

(since 2b = (a + b) + (b + c)− (a + c)), thus they are inde-
pendent.

• If a ∈ A and x, y ∈ B then a, x, y are independent

For example a, a + b, a + c are interdefinable with a, b, c.

• If a, b ∈ A, x ∈ B and a, b, x are dependent, then x = a+b.

For example a, b, a + c are interdefinable with a, b, c.



Recall that every vertex of G has valance at least 2.

Let V = {[a] ∈ S : there are at least two triangles contain-

ing [a]}. Then V = {[a] : a ∈ A}.

Let E = {([a], [b]) : there is a triangle {[a], [b], [c]}.

Then (V, E) ∼= G.

Theorem 20 κ ≥ ℵ0. There are 2κ nonisomorphic DCF

of cardinality κ.

For κ > ℵ0, this was proved by Poizat using trivial strongly

minimal instead of E(a)].



DOP and ENI-DOP

Definition 21 A theory T has the Dimension Order

Property (DOP) if there are models M0 ⊆ M1,M2 ⊆ M
with M prime over M1 ∪ M2, p ∈ S(M) such that p ⊥ M1

and p ⊥ M2.

In our case we could take K0 differentially closed, a, b δ-

independent over K0, K1 = K0〈a〉dif , K2 = K0〈b〉dif, K =

K0〈a, b〉dif and p = pa+b.

We say that T has ENI-DOP if we can choose the type

p to be strongly regular, nonisolated (as in our case), or

more generally, nonisolated after adding finitely many pa-

rameters.



• In DCF, the type pa is nonisolated over a (since there

are infinitely many torsion points algebraic over a), so we

have ENI-DOP

• In T2 (where π−1(a) is a model of Th(Z, s), the generic

type is isolated over a, but once we have a realization b it

is nonisolated over a, b, so we have ENI-DOP.

• In T1 (where π−1(a) is an infinite set with no structure),

even if we add finitely many realizations b the type is iso-

lated. In this case we have DOP but not ENI-DOP.



Theorem 22 (Shelah) Let T be an ω-stable theory with

DOP. If κ ≥ ℵ1, there are 2κ nonisomorphic models of

cardinality κ.

Further, if T has ENI-DOP, then there are also 2ℵ0 count-

able models.


