Vaught's Conjecture for Differentially Closed Fields: Part II

David Marker

http://www.math.uic.edu/~marker/vcdcf-slides2.pdf

Our Main Goal

Theorem 1 (Hrushovski-Sokolović 1992) There are $2^{\mathcal{N}_{0}}$ countable differentially closed fields of characteristic zero.

What are we looking for?

For our method of coding graphs using dimensions to work, we will need:

- large family of types $\left(p_{a}: a \in A\right), p_{a} \in S(a)$, to which we can assign different countable dimensions.
- good notion of independence in A with lots of elements $a, b, c \in A$, pairwise independent but not independent (non-triviality)
- the ability to realize one type in the family while omitting others (orthogonality)

The types p_{a} will be generic types of strongly minimal sets. Recall

- Hrushovski and Sokolović showed that if X is a nonmodular strongly minimal set then there is a definable finite-to-one $f: X \rightarrow C$, where C is the field of constants.
- We can find many trivial strongly minimal sets. For example, if A is a δ-independent set, and

$$
X_{a}=\left\{x: x^{\prime}=\frac{a x}{x+1}\right\}
$$

then X_{a} is an infinite set of indiscernibles and $X_{a} \perp X_{b}$ for $a \neq b \in A$.

But all known trivial strongly minimal sets are infinite dimensional.

If this is to work we will need to find nontrivial modular strongly minimal sets.

Abelian Varieties

Let K be an algebraically closed field. An Abelian variety is a subvariety $A \subseteq \mathbb{P}^{n}(K)$, such that there is a rational map $\mu: A \times A \rightarrow A$ making A into a group.

The simplest example is an elliptic curve

$$
Y^{2}=X^{3}+a X+b
$$

together with a point O at infinity.

Proposition 2 Every Abelian variety is a divisible commutative group.

If A has dimension d, then there are $n^{2 d}$ points of order n.

Definition 3 We say A is simple if A has no proper infinite Abelian subvarieties.

Definition 4 Abelian varieties A and B are isogenous if there is a rational group homomorphism $f: A \rightarrow B$ with finite kernel.

j-invariants

Consider the elliptic curve E

$$
Y^{2}=X^{3}+a X+b
$$

The j-invariant of the curve $j(E)$ is $\frac{6912 a^{3}}{4 a^{3}+27 b^{2}}$.

Theorem 5 i) Let L be an algebraically closed field. For $j \in L$ there is E with $j(E)=j$.
ii) $E \cong E_{1}$ if and only if $j(E)=j\left(E_{1}\right)$.
iii) If E and E_{1} are isogenous, then $j(E)$ and $j\left(E_{1}\right)$ are interalgebraic over \mathbb{Q}.

Manin Kernels

Theorem 6 (Manin-Buium) Let K be a differentially closed field. If A is an Abelian variety defined over K, there is a δ-definable homomorphism $\mu: A \rightarrow K^{n}$ such that the kernel of μ is the Kolchin closure of the torsion of A.

For example, if E is the elliptic curve

$$
Y^{2}=X^{3}+a X+b
$$

where $a, b \in C$ then $\mu(x, y)=\frac{x^{\prime}}{y}$.
Let A^{\sharp} be the Kolchin closure of the torsion.

If A is defined over C, then $A^{\sharp}=A(C)$.

Theorem 7 (Hrushovski-Sokolović) If A is a simple Abelian variety that is not isomorphic to an Abelian variety defined over the constants, then A^{\sharp} is a modular strongly minimal set.

If A and B are nonisogenous A^{\sharp} and B^{\sharp} are orthogonal.

Moreover, if X is any nontrivial modular strongly minimal set, then X is nonorthogonal to A^{\sharp} for some simple Abelian variety A.

Independence

Definition 8 We say that \bar{a} is independent from B over A if

$$
\mathrm{RM}(\bar{a} / A \cup B)=\operatorname{RM}(\bar{a} / A)
$$

We write $\bar{a} \perp_{A} B$.
Example If a_{0}, \ldots, a_{n} are δ-independent over k, then a_{0} is δ-transcendental over $k\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (the differential field generated by $k\left(a_{1}, \ldots, a_{n}\right)$). Thus

$$
\operatorname{RM}\left(a_{0} / k\right)=\omega=\operatorname{RM}\left(a_{0} / k, a_{1}, \ldots, a_{n}\right)
$$

and $a_{0} \perp_{k} a_{1}, \ldots, a_{n}$.
Example Let a be δ-transcendental over k. Then $a \chi_{k} a^{\prime}$, since over $k\left\langle a^{\prime}\right\rangle$, a satisfies the rank 1 formula $X^{\prime}=a^{\prime}$.

Theorem 9 (Symmetry) If $\bar{a} \perp_{A} \bar{b}$, then $\bar{b} \perp_{A} \bar{a}$.

Algebraic Characterization of Independence in DCF

Definition 10 Let $k \subseteq l_{1}, l_{2}$ be fields. l_{1} and l_{2} are free over k if any $a_{1}, \ldots, a_{n} \in l_{1}$ algebraically dependent over l_{2} are already algebraically dependent over k.

Theorem 11 If k is a differential field and $\bar{a}, B \subseteq \mathbb{K} \models$ DCF, then the following are equivalent
i) $\bar{a} \downarrow_{k} B$
ii) $k\langle\bar{a}\rangle$ and $k\langle B\rangle$ are free over k.

Fact 12 i) $\operatorname{If} \operatorname{td}(k\langle\bar{a}\rangle / k)$ is finite, then $\operatorname{RM}(\bar{a} / k) \leq \operatorname{td}(k\langle\bar{a}\rangle / k)$.
ii) If $\operatorname{td}(k\langle\bar{a}\rangle / k)$ is infinite, then $\operatorname{RM}(\bar{a} / k) \geq \omega$.

Lemma 13 If a is δ-transcendental over k and $\operatorname{RM}(\bar{b} / k)<\omega$, then $a \perp_{k} \bar{b}$.

Proof If $a \chi_{k} \bar{b}$, then $k\langle a, \bar{b}\rangle$ has finite transcendence degree over $k\langle\bar{b}\rangle$. But then $k\langle a, \bar{b}\rangle$ has finite transcendence degree over k, a contradiction.

Orthogonality

Definition 14 Let $p \in S(A), q \in S(B)$. We say $p \perp q$ if $\bar{a} \perp_{M} \bar{b}$ for any $M \supseteq A \cup B, a$ realizing p and b realizing q with $a \perp_{A} M$ and $b \perp_{B} M$.

Lemma 15 Suppose X is a strongly minimal set defined over $K \models$ DCF, p is the generic type of X over K and $p \perp q$. Let \bar{b} realize q. Then p is omitted in $K\langle\bar{b}\rangle^{\text {dif }}$.

Proof Suppose $\bar{a} \in K\langle\bar{b}\rangle^{\text {dif }}$ realizes p. There is $\phi(\bar{v})$ isolating $\operatorname{tp}(\bar{a} / K\langle\bar{b}\rangle)$. Since $p \perp q, \operatorname{RM}(\phi)=1$. Since X is strongly minimal, ϕ holds of some elements of $X(K)$, a contradiction.

What are we looking for?

For our method of coding graphs using dimensions to work, we will need:

- large family of types $\left(p_{a}: a \in A\right), p_{a} \in S(a)$, to which we can assign different countable dimensions.
- good notion of independence in A with lots of elements $a, b, c \in A$, pairwise independent but not independent (non-triviality)
- the ability to realize one type in the family while omitting others (orthogonality)

For $a \in \mathbb{K}$, let $E(a)$ be the elliptic curve with j-invariant a, let $E(a)^{\sharp}$ be the δ-closure of the torsion points and let $p_{a} \in S(a)$ be the generic type of $E(a)^{\sharp}$.

- $E(a)^{\#}$ is strongly minimal
- p_{a} is determine by $\bar{x} \in E(a)^{\sharp}, \bar{x} \notin \mathbb{Q}\langle a\rangle^{\text {alg }}$.
- $E(a)^{\sharp} \cap \mathbb{Q}(a)^{\text {alg }}$ contains the torsion points of $E(a)$ so is infinite.
- $p_{a} \not \perp p_{b}$ if and only if $E(a)$ and $E(b)$ are isogenous, in this case $\mathbb{Q}(a)^{\text {alg }}=\mathbb{Q}(b)^{\text {alg }}$.
- $p_{a} \perp r$ where r is the type of a δ-transcendental

Lemma $16 p_{a}$ is not realized in $\mathbb{Q}\langle a\rangle^{\text {dif }}$.
Proof Suppose $\bar{b} \in \mathbb{Q}\langle a\rangle^{\text {dif }}$ realizes p_{a}. Let $\phi(v)$ isolate $\operatorname{tp}(b / \mathbb{Q}\langle a\rangle)$. Since $\bar{b} \notin \mathbb{Q}\langle a\rangle^{\text {alg }}, \phi(v)$ defines an infinite subset of $E(a)^{\sharp}$, but then it must contain a torsion point of $E(a)$. But the torsion points are in $\mathbb{Q}(a)^{\text {alg }}$, a contradiction.

Coding Graphs in DCF

Let G be an infinite graph with vertex set A such that for all $a \in A$ there are $b \neq c$ with $(a, b),(a, c) \in G$.

Let K_{0} be the differential closure of $\mathbb{Q}\langle A\rangle$ where the elements of A are independent δ-transcendentals.

Let $B=\{a+b: a, b \in A,(a, b) \in G\}$. Note that the elements of B are also δ-transcendental.

Theorem 17 There is $K(G) \models$ DCF with $K(G) \supset K_{0}$, $|K(G)|=|G|$ where if $c \in A \cup B, \operatorname{dim}\left(p_{c} / K(G)\right)=0$ while if c is δ-transcendental and $p_{c} \perp p_{a}$ for all $a \in A \cup B$, then $\operatorname{dim}\left(p_{a}, K(G)\right)=\aleph_{0}$.

Constructing $K(G)$

Proposition 18 If $a \in A \cup B$, then p_{a} is omitted in K_{0}.
Suppose $a \in A$ (the other case is similar).

- p_{a} is omitted in $\mathbb{Q}\langle a\rangle^{\text {dif }}$.
- p_{a} is omitted in $\left.K_{0} \cong\left(\mathbb{Q}\langle a\rangle^{\text {dif }}\right)\langle A \backslash\{a\}\rangle\right)^{\text {dif }}$, since $r \perp p_{a}$.

We build $K_{0} \subset K_{1} \subset K_{2} \ldots$. Suppose $c \in K_{n}$ and $p_{c} \perp p_{a}$ for all $a \in A \cup B$. We can build $K_{n+1} \supseteq K_{n}$ realizing p_{c} and adding no new realizations of p_{a} for $a \in A \cup B$. With careful bookkeeping we construct $K(G)=\cup K_{i}$.

Recovering G from $K(G)$

- $\not \subset$ is an equivalence relation on realizations of r.

For a, b realizing $r, a \not \subset b$ if a is differentially algebraic over $k\langle b\rangle$. If $a \nless b$ and $b \not \subset a, \mathbb{Q}\langle a, b, c\rangle$ is differentially algebraic over $\mathbb{Q}\langle a, b\rangle$ which is differentially algebraic over $\mathbb{Q}\langle a\rangle$. Thus $a \not \subset c$.

Let $[a]$ be the \nless-class of a.

Let $S=\left\{[a]: a\right.$ realizes $\left.r, \operatorname{dim}\left(p_{a}, K(G)\right)=0\right\}$.

- For each $[a] \in S$ there is a unique $c \in A \cup B$ such that $[c]=[a]$.

If $p_{c} \not \perp p_{a}$ for some $a \in A \cup B$, then $E(c)$ and $E(a)$ are isogenous and $c \not \subset a$.

We say that $\{[a],[b],[c]\} \in S^{3}$ is a triangle if a, b, c are pairwise independent but not independent.

- This does not depend on choice of representative. If say $a_{1} \not \chi^{b} b_{1}$, then $a \not \not a_{1} \not \chi^{b_{1}} \not \subset b$, and, since $\not \subset$ is an equivalence relation, $a \not \chi b$.

Since
$\mathbb{Q}\left\langle a_{1}, b_{1}\right\rangle \subseteq \mathbb{Q}\left\langle a_{1}, b_{1}, a, b\right\rangle \subseteq \mathbb{Q}\left\langle a_{1}, b_{1}, a, b, c\right\rangle \subseteq \mathbb{Q}\left\langle a_{1}, b_{1}, a, b, c, c_{1}\right\rangle$ and each of these extensions is of finite transcendence degree, the transcendence degree of $\mathbb{Q}\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ over $\mathbb{Q}\left\langle a_{1}, b_{1}\right\rangle$ is finite and $c_{1} \nless a_{1}, b_{1}$. Hence a_{1}, b_{1}, c_{1} are pairwise independent but not independent.

Proposition 19 Every triangle is of the form $\{[a],[b],[a+$ b]\} where $a, b \in A$.

- Any three elements of A are independent
- Any three elements of B are independent

For example $a+b, a+c, b+c$ are interdefinable with a, b, c (since $2 b=(a+b)+(b+c)-(a+c)$), thus they are independent.

- If $a \in A$ and $x, y \in B$ then a, x, y are independent

For example $a, a+b, a+c$ are interdefinable with a, b, c.

- If $a, b \in A, x \in B$ and a, b, x are dependent, then $x=a+b$.

For example $a, b, a+c$ are interdefinable with a, b, c.

Recall that every vertex of G has valance at least 2 .

Let $V=\{[a] \in S:$ there are at least two triangles containing $[a]\}$. Then $V=\{[a]: a \in A\}$.

Let $E=\{([a],[b]):$ there is a triangle $\{[a],[b],[c]\}$.

Then $(V, E) \cong G$.

Theorem $20 \kappa \geq \aleph_{0}$. There are 2^{κ} nonisomorphic DCF of cardinality κ.

For $\kappa>\aleph_{0}$, this was proved by Poizat using trivial strongly minimal instead of $E(a)^{\#}$.

DOP and ENI-DOP

Definition 21 A theory T has the Dimension Order Property (DOP) if there are models $\mathcal{M}_{0} \subseteq \mathcal{M}_{1}, \mathcal{M}_{2} \subseteq \mathcal{M}$ with \mathcal{M} prime over $M_{1} \cup M_{2}, p \in S(M)$ such that $p \perp \mathcal{M}_{1}$ and $p \perp \mathcal{M}_{2}$.

In our case we could take K_{0} differentially closed, $a, b \delta$ independent over $K_{0}, K_{1}=K_{0}\langle a\rangle^{\text {dif }}, K_{2}=K_{0}\langle b\rangle^{\text {dif }}, K=$ $K_{0}\langle a, b\rangle^{\text {dif }}$ and $p=p_{a+b}$.

We say that T has ENI-DOP if we can choose the type p to be strongly regular, nonisolated (as in our case), or more generally, nonisolated after adding finitely many parameters.

- In DCF, the type p_{a} is nonisolated over a (since there are infinitely many torsion points algebraic over a), so we have ENI-DOP
- In T_{2} (where $\pi^{-1}(a)$ is a model of $T h(\mathbb{Z}, s)$, the generic type is isolated over a, but once we have a realization b it is nonisolated over a, b, so we have ENI-DOP.
- In T_{1} (where $\pi^{-1}(a)$ is an infinite set with no structure), even if we add finitely many realizations \bar{b} the type is isolated. In this case we have DOP but not ENI-DOP.

Theorem 22 (Shelah) Let T be an ω-stable theory with DOP. If $\kappa \geq \aleph_{1}$, there are 2^{κ} nonisomorphic models of cardinality κ.

Further, if T has ENI-DOP, then there are also $2^{\aleph_{0}}$ countable models.

