Vaught's Conjecture for Differentially Closed Fields: Part II

David Marker

http://www.math.uic.edu/~marker/vcdcf-slides2.pdf

Our Main Goal

Theorem 1 (Hrushovski–Sokolović 1992) There are 2^{\aleph_0} countable differentially closed fields of characteristic zero.

What are we looking for?

For our method of coding graphs using dimensions to work, we will need:

- large family of types $(p_a : a \in A)$, $p_a \in S(a)$, to which we can assign different countable dimensions.
- good notion of independence in A with lots of elements a, b, c ∈ A, pairwise independent but not independent (non-triviality)
- the ability to realize one type in the family while omitting others (orthogonality)

The types p_a will be generic types of strongly minimal sets. Recall

- Hrushovski and Sokolović showed that if X is a nonmodular strongly minimal set then there is a definable finite-to-one $f: X \to C$, where C is the field of constants.
- We can find many trivial strongly minimal sets. For example, if A is a δ -independent set, and

$$X_a = \left\{ x : x' = \frac{ax}{x+1} \right\}$$

then X_a is an infinite set of indiscernibles and $X_a \perp X_b$ for $a \neq b \in A$.

But all known trivial strongly minimal sets are infinite dimensional.

If this is to work we will need to find nontrivial modular strongly minimal sets.

Abelian Varieties

Let K be an algebraically closed field. An Abelian variety is a subvariety $A \subseteq \mathbb{P}^n(K)$, such that there is a rational map $\mu : A \times A \to A$ making A into a group.

The simplest example is an elliptic curve

$$Y^2 = X^3 + aX + b$$

together with a point O at infinity.

Proposition 2 Every Abelian variety is a divisible commutative group.

If A has dimension d, then there are n^{2d} points of order n.

Definition 3 We say A is *simple* if A has no proper infinite Abelian subvarieties.

Definition 4 Abelian varieties A and B are *isogenous* if there is a rational group homomorphism $f : A \rightarrow B$ with finite kernel.

j-invariants

Consider the elliptic curve E

$$Y^{2} = X^{3} + aX + b.$$

The *j-invariant* of the curve $j(E)$ is $\frac{6912a^{3}}{4a^{3} + 27b^{2}}$.

Theorem 5 i) Let L be an algebraically closed field. For $j \in L$ there is E with j(E) = j.

ii) $E \cong E_1$ if and only if $j(E) = j(E_1)$.

iii) If E and E_1 are isogenous, then j(E) and $j(E_1)$ are interalgebraic over \mathbb{Q} .

Manin Kernels

Theorem 6 (Manin-Buium) Let K be a differentially closed field. If A is an Abelian variety defined over K, there is a δ -definable homomorphism $\mu : A \to K^n$ such that the kernel of μ is the Kolchin closure of the torsion of A.

For example, if E is the elliptic curve

$$Y^2 = X^3 + aX + b$$
 where $a, b \in C$ then $\mu(x, y) = \frac{x'}{y}$.

Let A^{\sharp} be the Kolchin closure of the torsion.

If A is defined over C, then $A^{\sharp} = A(C)$.

Theorem 7 (Hrushovski–Sokolović) If A is a simple Abelian variety that is not isomorphic to an Abelian variety defined over the constants, then A^{\sharp} is a modular strongly minimal set.

If A and B are nonisogenous A^{\sharp} and B^{\sharp} are orthogonal.

Moreover, if X is any nontrivial modular strongly minimal set, then X is nonorthogonal to A^{\sharp} for some simple Abelian variety A.

Independence

Definition 8 We say that \overline{a} is *independent* from *B* over *A* if

$$\mathsf{RM}(\overline{a}/A \cup B) = \mathsf{RM}(\overline{a}/A).$$

We write $\overline{a} \, \bigcup_A B$.

Example If a_0, \ldots, a_n are δ -independent over k, then a_0 is δ -transcendental over $k\langle a_1, \ldots, a_n \rangle$ (the differential field generated by $k(a_1, \ldots, a_n)$). Thus

$$\mathsf{RM}(a_0/k) = \omega = \mathsf{RM}(a_0/k, a_1, \dots, a_n)$$

and $a_0 \bigcup_k a_1, \ldots, a_n$.

Example Let a be δ -transcendental over k. Then $a \not \downarrow_k a'$, since over $k \langle a' \rangle$, a satisfies the rank 1 formula X' = a'.

Theorem 9 (Symmetry) If $\overline{a} \, \bigcup_A \overline{b}$, then $\overline{b} \, \bigcup_A \overline{a}$.

Algebraic Characterization of Independence in DCF

Definition 10 Let $k \subseteq l_1, l_2$ be fields. l_1 and l_2 are free over k if any $a_1, \ldots, a_n \in l_1$ algebraically dependent over l_2 are already algebraically dependent over k.

Theorem 11 If k is a differential field and $\overline{a}, B \subseteq \mathbb{K} \models$ DCF, then the following are equivalent

i) $\overline{a} \, {\displaystyle igcup_k} B$

ii) $k\langle \overline{a} \rangle$ and $k\langle B \rangle$ are free over k.

Fact 12 *i*) If $td(k\langle \overline{a} \rangle/k)$ is finite, then $RM(\overline{a}/k) \leq td(k\langle \overline{a} \rangle/k)$.

ii) If $td(k\langle \overline{a} \rangle/k)$ is infinite, then $RM(\overline{a}/k) \geq \omega$.

Lemma 13 If a is δ -transcendental over k and $RM(\overline{b}/k) < \omega$, then $a \bigcup_k \overline{b}$.

Proof If $a \not \perp_k \overline{b}$, then $k \langle a, \overline{b} \rangle$ has finite transcendence degree over $k \langle \overline{b} \rangle$. But then $k \langle a, \overline{b} \rangle$ has finite transcendence degree over k, a contradiction.

Orthogonality

Definition 14 Let $p \in S(A)$, $q \in S(B)$. We say $p \perp q$ if $\overline{a} \bigcup_M \overline{b}$ for any $M \supseteq A \cup B$, *a* realizing *p* and *b* realizing *q* with $a \bigcup_A M$ and $b \bigcup_B M$.

Lemma 15 Suppose X is a strongly minimal set defined over $K \models \mathsf{DCF}$, p is the generic type of X over K and $p \perp q$. Let \overline{b} realize q. Then p is omitted in $K\langle \overline{b} \rangle^{\mathsf{dif}}$.

Proof Suppose $\overline{a} \in K\langle \overline{b} \rangle^{\text{dif}}$ realizes p. There is $\phi(\overline{v})$ isolating $\operatorname{tp}(\overline{a}/K\langle \overline{b} \rangle)$. Since $p \perp q$, $\operatorname{RM}(\phi) = 1$. Since X is strongly minimal, ϕ holds of some elements of X(K), a contradiction.

What are we looking for?

For our method of coding graphs using dimensions to work, we will need:

- large family of types $(p_a : a \in A)$, $p_a \in S(a)$, to which we can assign different countable dimensions.
- good notion of independence in A with lots of elements a, b, c ∈ A, pairwise independent but not independent (non-triviality)
- the ability to realize one type in the family while omitting others (orthogonality)

For $a \in \mathbb{K}$, let E(a) be the elliptic curve with *j*-invariant a, let $E(a)^{\sharp}$ be the δ -closure of the torsion points and let $p_a \in S(a)$ be the generic type of $E(a)^{\sharp}$.

- $E(a)^{\sharp}$ is strongly minimal
- p_a is determine by $\overline{x} \in E(a)^{\sharp}$, $\overline{x} \notin \mathbb{Q}\langle a \rangle^{\mathsf{alg}}$.
- $E(a)^{\sharp} \cap \mathbb{Q}(a)^{\text{alg}}$ contains the torsion points of E(a) so is infinite.
- $p_a \not\perp p_b$ if and only if E(a) and E(b) are isogenous, in this case $\mathbb{Q}(a)^{\text{alg}} = \mathbb{Q}(b)^{\text{alg}}$.
- $p_a \perp r$ where r is the type of a δ -transcendental

Lemma 16 p_a is not realized in $\mathbb{Q}\langle a \rangle^{\mathsf{dif}}$.

Proof Suppose $\overline{b} \in \mathbb{Q}\langle a \rangle^{\text{dif}}$ realizes p_a . Let $\phi(v)$ isolate $\operatorname{tp}(b/\mathbb{Q}\langle a \rangle)$. Since $\overline{b} \notin \mathbb{Q}\langle a \rangle^{\operatorname{alg}}$, $\phi(v)$ defines an infinite subset of $E(a)^{\sharp}$, but then it must contain a torsion point of E(a). But the torsion points are in $\mathbb{Q}(a)^{\operatorname{alg}}$, a contradiction.

Coding Graphs in DCF

Let G be an infinite graph with vertex set A such that for all $a \in A$ there are $b \neq c$ with $(a, b), (a, c) \in G$.

Let K_0 be the differential closure of $\mathbb{Q}\langle A \rangle$ where the elements of A are independent δ -transcendentals.

Let $B = \{a+b : a, b \in A, (a, b) \in G\}$. Note that the elements of *B* are also δ -transcendental.

Theorem 17 There is $K(G) \models \mathsf{DCF}$ with $K(G) \supset K_0$, |K(G)| = |G| where if $c \in A \cup B$, $\dim(p_c/K(G)) = 0$ while if c is δ -transcendental and $p_c \perp p_a$ for all $a \in A \cup B$, then $\dim(p_a, K(G)) = \aleph_0$.

Constructing K(G)

Proposition 18 If $a \in A \cup B$, then p_a is omitted in K_0 .

Suppose $a \in A$ (the other case is similar).

- p_a is omitted in $\mathbb{Q}\langle a \rangle^{\mathsf{dif}}$.
- p_a is omitted in $K_0 \cong (\mathbb{Q}\langle a \rangle^{\mathsf{dif}})\langle A \setminus \{a\}\rangle)^{\mathsf{dif}}$, since $r \perp p_a$.

We build $K_0 \subset K_1 \subset K_2 \ldots$ Suppose $c \in K_n$ and $p_c \perp p_a$ for all $a \in A \cup B$. We can build $K_{n+1} \supseteq K_n$ realizing p_c and adding no new realizations of p_a for $a \in A \cup B$. With careful bookkeeping we construct $K(G) = \bigcup K_i$.

Recovering G from K(G)

• χ is an equivalence relation on realizations of r.

For a, b realizing r, $a \not \geq b$ if a is differentially algebraic over $k\langle b \rangle$. If $a \not \geq b$ and $b \not \geq a$, $\mathbb{Q}\langle a, b, c \rangle$ is differentially algebraic over $\mathbb{Q}\langle a, b \rangle$ which is differentially algebraic over $\mathbb{Q}\langle a \rangle$. Thus $a \not \geq c$.

Let [a] be the χ -class of a.

Let $S = \{[a] : a \text{ realizes } r, \dim(p_a, K(G)) = 0\}.$

• For each $[a] \in S$ there is a unique $c \in A \cup B$ such that [c] = [a].

If $p_c \not\perp p_a$ for some $a \in A \cup B$, then E(c) and E(a) are isogenous and $c \not\perp a$.

We say that $\{[a], [b], [c]\} \in S^3$ is a *triangle* if a, b, c are pairwise independent but not independent.

• This does not depend on choice of representative. If say $a_1 \not \perp b_1$, then $a \not \perp a_1 \not \perp b_1 \not \perp b_1$ and, since $\not \perp$ is an equivalence relation, $a \not \perp b$.

Since

 $\mathbb{Q}\langle a_1, b_1 \rangle \subseteq \mathbb{Q}\langle a_1, b_1, a, b \rangle \subseteq \mathbb{Q}\langle a_1, b_1, a, b, c \rangle \subseteq \mathbb{Q}\langle a_1, b_1, a, b, c, c_1 \rangle$ and each of these extensions is of finite transcendence degree, the transcendence degree of $\mathbb{Q}\langle a_1, b_1, c_1 \rangle$ over $\mathbb{Q}\langle a_1, b_1 \rangle$ is finite and $c_1 \swarrow a_1, b_1$. Hence a_1, b_1, c_1 are pairwise independent but not independent. **Proposition 19** Every triangle is of the form $\{[a], [b], [a + b]\}$ where $a, b \in A$.

- Any three elements of A are independent
- Any three elements of B are independent

For example a + b, a + c, b + c are interdefinable with a, b, c(since 2b = (a + b) + (b + c) - (a + c)), thus they are independent.

• If $a \in A$ and $x, y \in B$ then a, x, y are independent

For example a, a + b, a + c are interdefinable with a, b, c.

• If $a, b \in A$, $x \in B$ and a, b, x are dependent, then x = a + b.

For example a, b, a + c are interdefinable with a, b, c.

Recall that every vertex of G has valance at least 2.

Let $V = \{[a] \in S : \text{there are at least two triangles contain-ing } [a]\}$. Then $V = \{[a] : a \in A\}$.

Let $E = \{([a], [b]) : \text{there is a triangle } \{[a], [b], [c]\}.$

Then $(V, E) \cong G$.

Theorem 20 $\kappa \geq \aleph_0$. There are 2^{κ} nonisomorphic DCF of cardinality κ .

For $\kappa > \aleph_0$, this was proved by Poizat using trivial strongly minimal instead of $E(a)^{\sharp}$.

DOP and ENI-DOP

Definition 21 A theory *T* has the Dimension Order Property (DOP) if there are models $\mathcal{M}_0 \subseteq \mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{M}$ with \mathcal{M} prime over $M_1 \cup M_2$, $p \in S(M)$ such that $p \perp \mathcal{M}_1$ and $p \perp \mathcal{M}_2$.

In our case we could take K_0 differentially closed, $a, b \delta$ independent over K_0 , $K_1 = K_0 \langle a \rangle^{\text{dif}}$, $K_2 = K_0 \langle b \rangle^{\text{dif}}$, $K = K_0 \langle a, b \rangle^{\text{dif}}$ and $p = p_{a+b}$.

We say that T has ENI-DOP if we can choose the type p to be strongly regular, nonisolated (as in our case), or more generally, nonisolated after adding finitely many parameters.

• In DCF, the type p_a is nonisolated over a (since there are infinitely many torsion points algebraic over a), so we have ENI-DOP

• In T_2 (where $\pi^{-1}(a)$ is a model of $\mathsf{Th}(\mathbb{Z}, s)$, the generic type is isolated over a, but once we have a realization b it is nonisolated over a, b, so we have ENI-DOP.

• In T_1 (where $\pi^{-1}(a)$ is an infinite set with no structure), even if we add finitely many realizations \overline{b} the type is isolated. In this case we have DOP but not ENI-DOP. **Theorem 22 (Shelah)** Let T be an ω -stable theory with DOP. If $\kappa \geq \aleph_1$, there are 2^{κ} nonisomorphic models of cardinality κ .

Further, if T has ENI-DOP, then there are also 2^{\aleph_0} countable models.