ERGODIC THEORY OF TRANSLATION SURFACES

HOWARD MASUR

1. THREE DEFINITIONS OF TRANSLATION SURFACE OR FLAT
SURFACE AND EXAMPLES

In this survey article we describe the ergodic theory of flows on trans-
lation surfaces. We relate this theory to the dynamics of the SL(2, R)-
action on the moduli space of translation surfaces. We describe recent
results on the diagonal subgroup also known as the Teichmiiller geo-
desic flow and results on the unipotent flow.

There is considerable overlap of material here with the survey article
[22] as well as with the survey article of T.Schmidt and P.Hubert in
this volume. ([11]).

We are going to give three (equivalent) definitions of translation
surface. Equivalently, these will be called flat surfaces with trivial
linear holonomy or just flat surfaces. The first definition is via charts.
The second definition is the most geometric and is by glued polygons.
The third definition is complex analytic. They arise as the flat structure
associated to a holomorphic 1-form on a Riemann surface. We will
indicate (but not provide a complete proof) their equivalence.

Let M be a closed topological surface, of genus g > 1.

Definition 1. A translation surface consists of a a finite set of points
(the singularity set) ¥ = {z1, 2, ..., Zn} and an open cover of M — X
by sets {U,} together with charts ¢, : U, — R? such that for all o, 3,
with U, N Uy # 0,

baty () =v+c.
At each singular point the surface has a 27c cone singularity.

Specifically, since the Euclidean metric on the plane is preserved by
translations, the notion of direction and parallel lines makes sense on
the complement of the singularity set. In fact we get a metric ds, by
pulling back the Euclidean metric on the plane via these coordinate
charts. In this metric geodesics that do not go through singularities
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are straight lines in a fixed direction, and such geodesics never intersect
themselves, except possibly to close up.

Definition 2. For each direction # and each non-singular point p define
the flow ¢;(p) to be the point obtained after moving in the direction 6
for time ¢, starting at p.

The flow ¢; : X — X preserves the natural Euclidean measure
(normalized to have total area one) on the surface. It is defined for all
time only on the set of full measure of points that do not run into a
singularity either in forwards or backwards time. A major part of these
notes will be devoted to describing ergodic properties of this flow.

At each singular point we write ds? = dr? + (crdf)?, a conical sin-
gularity written in polar co-ordinates. We require ¢ to be a positive
integer. For ¢ = 1, we simply recover the Euclidean metric. If ¢ > 1,
we have a 27c cone angle. We can think of a point with a 27c¢ cone
angle as 2c Euclidean half discs glued together along half lines — For
the case ¢ = 2 see figure 1.

The total angle around each vertex is required to be 27c, ¢ a positive
integer.

Geodesics can change direction if they go through a singular point.
A pair of straight lines through the singular point form a geodesic if
the angle between them is at least 2.

LD ..
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FiGure 1. Flat surface near a singularity

Metrically we can also describe these as flat surfaces with conical
singularities of the above type and trivial linear holonomy. The latter
means that parallel transport of a vector around a path missing the
singularities comes back to the same vector. This explains why these
surfaces are also called flat surfaces with trivial linear holonomy.
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Definition 3. A saddle connection is a geodesic joining two of the
singularities with no singularities in its interior.

In each coordinate chart it is a straight line in the Euclidean metric.
An oriented saddle conection determines a vector called the holonomy
vector of the saddle connection.

It is a standard fact (see [26]) that between any two points there
is a unique geodesic in any homotopy class. In particular, there is a
unique geodesic joining any two singularities in each homotopy class.
The geodesic is a union of saddle connections. We sketch an argument
which says that the set of holonomy vectors of saddle connections is a
discrete subset of R?. This fact is used in the proof of Veech dichotomy
and is implicit in any discussion of counting problems. (See the articles
of Hubert-Schmidt and Eskin in this volume). Another sketch is given
in [11].

Lift the metric to the universal cover, to give a complete metric
on the hyperbolic plane. Fix a Dirichlet fundamental domain F for
the action of the covering group. Let D be its diameter. A ball of
radius R + D about a base point in F intersects only a finite number
of translates of F. Any saddle connection of length at most R must
lift to a saddle connection joining a singularity in F to a singularity in
a ball of radius R + D. There are only finitely many such points and
hence only finitely many such saddle connections.

As mentioned in the article of P.Hubert and T.Schmidt ([11]), the
SL(2, R action on flat surfaces can be defined as postcomposition with
charts- we discuss this action in more detail later.

Our next definition of a flat surface is the most geometric and often
useful when we need to visualize these objects.

Definition 4. A translation surface is a finite union of Euclidean poly-
gons {Aq, Ay, ..., Ay} such that

e the boundary of every polygon is oriented so that the polygon
lies to the left

e for every 1 < j < n, for every oriented side s; of A; there is
al <k <n and an oriented side s, of Ay so that s; and si
are parallel and of the same length. They are glued together in
the opposite orientation by a parallel translation. (Note that
this means that as one moves along a glued edge, one polygon
appears to the left, the other to the right.

It follows that the total angle around each vertex is 27c, ¢ a positive
integer. Note that when we speak of Euclidean polygons we fix their
embedding into a standard Euclidean plane up to a parallel translation.
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In particular we distinguish two polygons obtained one from the other
by a nontrivial rotation. Another way to say the same thing is that we
equip a translation surface with a choice of vertical direction.

The rational billiard table examples (see [11]) yield surfaces of this
form. However, note that in general we do not require the angles of
the polygons to be rational, as is the case for the billiards. The best
way to see this definition is by considering a few examples:

The first example is a regular octagon with opposite sides identified.
This gives rise to a surface of genus two with one singularity of angle
67 (all the vertices collapse to one point, yielding an angle 8(37/4)).
This is an example of a Veech surface which satisfies the Veech di-
chotomy (see [11]). Namely for any direction, either all the orbits in
that direction are closed or equally distributed.

Another example also gives a surface in genus two but which turns
out to have very different ergodic properties.

Consider a 1 x 1/2 rectangle with a barrier of length «/2 hanging
down from the top of the rectangle at its midpoint: that is, a vertical
line segment from (1/2,1/2) to (1/2,1/2 — «/2). Billiards in this poly-
gon gives rise ([11]) to a surface with opposite sides identified (of side
length two), with two slits of length « inside it (see Figure 2). The
left side of the left slit is identified with the right side of the right slit,
and the right side of the left slit is identified with the left side of the
right one. The rectangle with slits yields a torus with two holes, when
opposite sides are identified, and when the slits are glued, the result is
a genus two surface. There are two singularities, each with a 47 cone
angle coming from the endpoints of the glued slit.

In fact this example illustrates the definition by polygons. There are
four generalized 7-gons, each of which has six vertex angles of 7/2 and
one angle 27.

When « is rational, the surface is a Veech surface and the Veech
group is a finite index subgroup of SL(2,Z). These are particular ex-
amples of arithmetic Veech surfaces.

Now in general, since the gluings of the polygons are realized by
parallel translations, it is clear that a surface satisfying the definition
by polygons satisfies the definition by charts. Conversely, one can show
that a translation surface has a triangulation by geodesic triangles so
a surface satisfying the first definition satisfies the second.

The third definition is complex-analytic.

Definition 5. A translation surface is given by a pair (X,w) where
X is a Riemann surface and w is a holomorphic 1-form (Abelian differ-
ential) on X.
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FIGURE 2. Slit torus example

Recall that this means that to each holomorphic chart z is assigned
a holomorphic function f(z) such that in an overlapping chart ¢ with
function g(¢), the relation is

d¢
9(¢ )@ = f(2).

In the article of P.Hubert and T.Schmidt ([11]) they show how to go
from a pair (X, w) to a collection of charts where the transition maps are
translations, i.e., our first definition (zeroes of the 1-form correspond to

singularities, etc.). Specifically in a neighborhood of a point py which
is not a zero of w there are holomorphic coordinates z defined by

)= [

which give w = dz. In an overlapping neighborhood similarly defined
coordinates 2z’ will satisfy

Z=z+c
so that the change of coordinates is a translation. At a zero of order k£
in appropriate coordinates

zk—i—l

k+1)

and so the surface is locally a k£ + 1 fold cover over the complex plane.
This means that the zero of order k gives rise to a singularity with cone
angle 27 (k + 1).

In this language the (affine) holonomy of a saddle connection 3 coin-
cides with [ pw = f 5 dz, where we have identified the complex numbers

w=2rdz = d(
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with R?, and so we can consider the holonomy to be a complex number
(with real and imaginary parts) or as a vector.

To get from the first definition to this one, simply pull back the
natural 1-form dz via the charts. This defines a holomorphic 1-form w
on the surface. The cone singularity gives rise to a zero of w.

2. SPACES OF TRANSLATIONS SURFACES AND RIEMANN SURFACES

For the rest of this article we will use the notation (X, w) to refer to
a translation surface.

A translation surface has three pieces of topological data: the genus,
the set of zeros, and the multiplicity of the singularities. We can repre-
sent the topological data by a = (aq, @y, . .., ), where «; denotes the
order of the 7th zero. It is classical and in any case follows from either
an Euler characteristic argument or from the Gauss-Bonnet theorem

that
k
Y ai=29-2.
=1

For example, given the data o = (2), the surface has genus two with
one singularity with cone angle 67. Given a = (1,1), the genus is still
two, but with two singularities, each of cone angle 47.

We want to consider the space of all translation surfaces with fixed
topological data. For this, we need to define an equivalence relation on
such surfaces.

We say that two surfaces are equivalent, if there is an orientation
preserving isometry from one to the other preserving the given preferred
direction. This definition distinguishes between polygons that differ by
rotations. In the complex analytic definition, it distinguishes between
(X,w) and (X, e?w).

Definition 6. Given topological data o, we define the moduli space
H(«) as the space of translation surfaces with topological data « to-
gether with a choice of direction under the above equivalence relation.
If we add the condition that the surfaces have area 1 we denote the
resulting space by #H;(«). These moduli spaces are also called strata.

On the other hand for any genus g we may define the Riemann
moduli space M, as the space of Riemann surfaces of genus g up to
conformal equivalence. Every closed Riemann surface of genus g > 1
carries a metric of constant curvature —1 in its conformal class, so M,
is also the space of hyperbolic metrics on a surface up to equivalence
by isometries.
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For each a = (au,. .., q4), define g by 29 —2 = 3% | o;. There is
then a map

7 H(a) = M,

which sends (X, w) to X. The map only remembers the complex struc-
ture on the surface defined by the Abelian differential.

As a main motivating example, let us consider the space of tori with
specified directions, i.e., H((). Recall that while two tori differing
by a rotation are identical as metric spaces, the vertical direction on
each torus is distinct, so we do not consider them the same point— as
opposed to the moduli space of Riemann surfaces M; where these are
the same point.

The space of tori H () can also be viewed as the space of unit volume
lattices in R? (together with a specified direction), which is identified
with the symmetric space SL(2,R)/SL(2,Z) (if one ignores the direc-
tion, we get instead H? /SL(2,Z), the moduli space of tori M,).

In general the moduli spaces #H(«) are not necessarily connected,
though each has no more than three connected components. The com-
ponents have been classified by Kontsevich and Zorich [16].

If we allow reflections as well as translations in gluings (or equiva-
lently, allow transitions to be of the form z +— £z + ¢, we get quadratic
differentials and the classification is different.

3. SL(2,R)-ACTION AND INVARIANT MEASURES

Recall from the survey paper of Hubert and Schmidt ([11]) the
SL(2, R)-action. In the language of polygons, we can define the action
as follows. Given a translation surface (X, w) (i.e., a finite collection of
polygons {A;}) and a matrix A € SL(2,R), we define the translation
surface A - (X,w) by the collection of polygons {AA;}. The gluing
pattern is preserved since linear maps preserve parallel lines. One can
check that the definition does not depend on how one represents the
surface as a union of polygons.

In the language of complex analysis, the action of the rotation

o — cosf) sind
=\ —sinf cosf
is the same as multiplying the Abelian differential w by e®.
The action of a matrix in SL(2,R) does not change the topologi-
cal data of a flat surface. Thus, for each stratum #(«), we have an

SL(2,R)-action. We are interested in defining a measure p on H; (o)
which is invariant under this action.
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We do this by defining co-ordinates for this space, and then pulling
back natural Lebesgue measure on the co-ordinate space. Our first
co-ordinates will arise from our ”visual” definition of the moduli space
using polygons.

Suppose {A;}, a collection of polygons, represents a point in H(«).
It is obvious that there is some finite collection of sides vy, v, ..., VN
which determine the surface. For example, for a flat torus, the surface
is determined by two sides vy, v9 of a parallelogram. For the surface to
be in H; (M) one has the further condition that the area determined by
the polygon is one, which we denote by v; Av, = 1. Another example is
the octagon, for which we need four vectors (once a side is determined,
so is its opposite).

These v; yield local co-ordinates for H(«) giving a map ¢ : H(a) —
(R?)N. We consider Lebesgue A measure on (R?)V| restricted to the
hypersurface corresponding to the area 1 surfaces and define u = ¢*\.
This measure is independent of the choice of co-ordinates and the way
the surface is cut into polygons (in particular the number of polygons
may change, but the number of sides neccessary to determine the sur-
face does not).

A more formal way to see this definition, is by starting with the sur-
face (X, w), and its set of singularities ¥. Consider the relative homol-
ogy group Hi(X,;Z). This is an N = 2¢g +n — 1 dimensional space,
where n is the number of singularities. Fix a basis {81, 82, .- -, On}-
Define coordinates for (X,w) by {f, w} € R*¥. Once again consider
Lebesgue measure on the image of this map, and pull it back to get a
measure on #(«). This is more easily seen to be invariant of choices—
in particular, any change of basis is a determinant one matrix. For the
same reason it is invariant under the SL(2, R)-action

Returning to the torus, recall that the space of tori

H.(0) = SL(2,R)/SL(2,Z).

It has finite volume because SL(2,Z) is a lattice in SL(2,R). We can
see this directly because the space of tori (without normalization) is
simply the set of all pairs of non-colinear vectors vi,vs € R%?. This
space clearly has infinite Lebesgue measure. When restricting to the
area one tori, the space is non-compact, since the vector v; can be
arbitrarily short. However the space H; () has finite volume because
of the easily proven fact:

p{(vi,v2) ERZ X R? : vy Awg| <1} < 0.
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A similar computation explains the finite measure in general. We will
sketch this explanation. In A.Eskin’s survey article ([8]) he explains
how to actually compute the measures of these spaces.

On any flat surface (X,w), consider a closed geodesic in some di-
rection which doesn’t hit any singularities. Then there is a cylinder,
containing this curve, which is filled with closed curves, parallel of the
same length. If we make it as large as possible, it is called a metric
cylinder. If ¢ > 1, the boundary of the metric cylinder is a union of
saddle connections. It turns out that for each genus g, there is a uni-
versal constant C'(g) such that if diam(X,w) > C(g), there is a metric
cylinder on the surface such that the distance h across the cylinder
satisfies h ~ diam (X, w); that is, they are comparable up to a definite
factor.

Since the measure is defined by the holonomy along saddle connec-
tions, the measure of the part of moduli space corresponding to surfaces
of diameter at most C(g) is finite. On the part of the moduli space
consisting of surfaces with large diameter, the above consideration says
that these (area 1) surfaces have cylinders with small circumference and
large distance across them. We can take as part of the basis for the
homology a curve parallel to the cylinder with holonomy v; and a curve
across the cylinder with holonomy vector v,. But recalling that

p{(v1,v2) ERZ X R? : vy Awg| < 1} < o0,

we have that the measures of these ”cusps” are finite, and thus we have
the following theorem. Complete proofs can be found in [28] and [21].

Theorem 1. For each stratum Hi(«), p(Hi(a)) < oo.

4. ERGODICITY OF FLOWS DEFINED BY TRANSLATION SURFACES

In this section we begin the discussion of the properties of the flow
¢, defined for each direction 6.

To avoid the problem of measures which are concentrated on the
singular set, we consider only measures supported on the punctured
surface X — 3.

The first notion is purely topological. We will say that the flow in
direction € is minimal if there are no closed curves in direction 6.
Equivalently, other than a finite number of saddle connections, every
orbit that does not run into a singularity is dense, and if an orbit runs
into a singularity in forward (resp. backwards) time then it is dense in
backward (resp. forward) time.
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Recall that a flow is ergodic if any invariant set has measure zero or
measure one. Let v be surface area. In this case the Birkhoff ergodic
theorem states that for f € L'(X,v), and for almost all p,

T
lim /0 F(@p)dt = [ fv.

If this convergence holds for every point p, and every continuous func-
tion f, the flow is said to be uniquely ergodic. This is equivalent to
saying that the measure v is the unique normalized flow-invariant mea-
sure on X \ X.

For motivation, we once again turn to the case of the torus R?/(Z &
Z). If the direction 6 has rational slope, then every orbit is closed. On
the other hand, if # has irrational slope, then the flow is minimal, and
moreover by the classical theorem of Weyl, the flow is uniquely ergodic.

However, even in the case of the torus there is a flow constructed
by Furstenberg [10], which is minimal, but not uniquely ergodic. For
a general treatment of the subject of nonunique ergodicity, see Section
14.5 of the book [13] and Sections 12.3 and 12.4 of [12].

We now want to exhibit a minimal non-uniquely ergodic example on
a translation surface of genus 2. Veech [27] considered the following
dynamical system. Take a pair of unit circles and mark off a segment
of length 8 on each circle in the counterclockwise direction with one
endpoint at (1,0). Start on one circle and rotate counterclockwise by
angle # until the point lands in the segment. Then switch to the corre-
sponding point on the other circle, rotate by # until the orbit lands in
the segment again, switch back to the first circle and so forth. Veech
showed that for any irrational # with unbounded partial quotients in
its continued fraction expansion, there are irrational 3 so that the dy-
namical system is minimal, but not uniquely ergodic. What happens is
that sets of orbits of positive measure spend asymptotically more than
half their time on one circle and less than half the time on the other.

This dynamical system can be seen to be equivalent to the billiard
flow on the billiard table with a slit described in Figure 2. Recall, it
was given by a rectangular 1 x 1/2 table with a slit of length /2 =
(1—3)/2 hanging down from the midpoint of the top side. The surface
(X, w) associated to has genus two, with two singular points, each with
angle 4r. It is formed from a 2 X 1 rectanagle with a pair of slits
and appropriate identifications. Now take two circles in the vertical
direction. The first follows one side of the slit and then a vertical
segment of length [ joining the two singularities and which passes
through the point (1/2,1) ~ (1/2,0). The second follows the other slit
and passes through (3/2,1) ~ (3/2,0). The first return map to those
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circles of a flow in direction #, gives the dynamical system described
by Veech.

In this section we show how to build these minimal nonergodic ex-
amples geometrically. Additional details can be found in [22].

Theorem 2. When 3 is irrational there are uncountably many direc-
tions 0 such that the flow in direction 6 is minimal and not ergodic.

In order to prove the theorem we will view the surface (X,w) dif-
ferently. Cut the surface along the pair of dotted vertical lines that
go from P to @) in Figure 2. The result is a pair of tori each with a
hole consisting of the pair of vertical lines. Each torus then can be
thought of as a standard square tori 7" slit along a segment w, going
from p; = (0,0) to po = (0,a). The surface (X,w) is reformed by
gluing the tori together pairwise along wy. The union of this pair of
slits partitions the surface (X, w) into two pieces A,,, and B,, of equal
area.

We will look for other slits w' defining (X,w). That is, we want
another pair of saddle connections w' joining p; to p, so that their
union also splits (X, w) into two pieces of equal area. The new slit w’
will cut the original slit, and so the new partition A, U B, of (X, w)
will differ from the original.

On the universal cover R? of the torus 7', the new slit w' is a line
from (0,0) to (m, a+n) for some integers m, n. The condition that the
pair of slits w' divide (X, w) is equivalent to the condition that m and
n are both even. Equivalently, on 7', w' intersects w an odd number
of times in its interior. It is also equivalent to saying that w and w’
are homologous mod(2) on T. Then the change in partition on (X,w)
measured by ¢ = (A, N By ) U (B, N Ay) is a union of an even number
of parallelograms with sides on w and w' (here thought of as vectors).
Thus the area of ¢ is bounded by 2|w x w'|. (See Figure 3).

Figure 3. Sheet Interchange.
The main step in the proof is to find uncountably many sequences
{w,} of vectors determining partitions {A,,, B,} such that

il/ n_|_1AA

n=1

Here v is area on the surface. The directions of any sequence of these
vectors will converge to a limiting direction #. Assuming that such
sequences can be found, we show first that the flow in direction 6 is
not ergodic.
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(0.0

Let
Ay =liminfA, ={z:3IN: 2 € 4,,Yn > N}
and let By, be defined similarly. The condition »  v(A,11AA,) < oo
and the Borel-Cantelli lemma imply

v{z :z € A, AA,y infinitely many n} =0

50 V((X,w)\(Axw U Bs) = 0. By symmetry, we get v(Ax) = v(By) =
1.

Now we claim that A, is a.e. invariant under the flow {¢;} in
direction 0, i.e.,

for all times ¢. Assume that the claim is false so that there is some
0 > 0 and ¢y such that

(1) V(o1 (As) AAs) > § > 0.

Without loss of generality we may assume that the limiting direction
is vertical. It follows from the summability condition on the areas that

h, — 0,

where h,, is the horizontal component of the holonomy of w,. (Recall
the holonomy is a vector). Pick n such that

(2) V(A AAy) < 6/8
and
(3) tohn < /8

The flow invariance of the measure, (2), (1) and the triangle inequality
imply
V(g (An)AA,) > 6 —20/8 =30/4.
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Thus at time ¢, at least 39/8 of the measure of A, flows to its com-
plement. However if a point crosses w,, the boundary of A,, at time ¢y
of the flow, its vertical distance to w, must be at most ¢,. The set of
points whose vertical distance to w,, is at most %, lie in a parallelogram
whose sides are w,, and a vertical segment of length ¢;. The area of a
such a parallelogram is h,ty < 6/8 by (3). We have a contradiction,
proving the claim.

From the claim there is an argument that says there is a set A’ with
V(A'AAx) = 0 such that A" is ¢; invariant. This implies that the flow
in direction # is not ergodic completing the first step.

Let us return to finding an uncountable number of sequences of w,
satisfying the condition ) v(A,+1AA,) < co. We wish to show that
the limiting directions are distinct for then we will have constructed
an uncountable number of nonergodic directions. This will guarantee
an uncountable number of minimal nonergodic directions, since in a
nonminimal direction there is a saddle connection, and there are only
countably many saddle connections.

Fix any sequence p,, such that Y p, < co. We will build an infinite
directed tree with each “parent” vertex w; leading to a pair of “child”
vertices w;;;. At level j there will be 27 vertices. Each vertex will
correspond to a pair (pj,g;) which will yield a slit joining (0,0) to
(pj, 45 + ). _

Let wy = (0, ) and suppose inductively we have found 2’ vectors
w; = (pj,q; + ) at stage j. For any pair (p;,q;) form the ratio qJ;a,
the slope of the slit. Define §; to be the minimum distance between
the slopes of any pair of distinct w; at level j. For any (p;,¢g;) we will
look for integer solutions r, s of

2lpjs — (¢j + a)r| < pj.

Since « is irrational, so is each

aqu,, and so there are infinitely many
¥

coprime solutions (r, s) of the above inequality. Choose any two sets
of solutions (r;, s;) so that

Pi < §.:/4
(g + a)(gj +a+2s) — i/

and for each, set p; 1 = p; + 2r;;¢;41 = g; + 2s; and then
Wjt1 = (Pj+1,Gj+1 + @).
A direct calculation also shows that
v(Aj1A4)) < 2wip X ws| < 4lpjs; — (g5 + a)rs| < 2p;j,

giving the desired summability condition.
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The proof will be complete when we show that the directions of a
sequence of w; converge and distinct sequences give distinct limiting
directions. A calculation shows

L P <5,
CZj‘i‘Oé Qj+1+04

that is, the distance between the slopes of a parent and child is at most
d;/4. The triangle inequality says that the distance between slopes of
children of the same parent is at most ¢;/2 and so 6,11 < §;/2.

Since the distance between the slopes of a parent and a child goes to
0, the slopes of the vertices w; of any geodesic in the tree converges.

We finally show that limits of slopes of w; along distinct geodesics
are different. For suppose two geodesics [y, s are different for the first
time at level j with vertices wjl-, w?- (thought of as parents). Let 6,0,
be the limiting slopes of the vertices along ;. Since the slope of each
child at level m+ 1 is within 6,,/4 of the slope of the parent at level m,
summing the geometric series says that the difference of the slope of 6;
and the slope of wé- is smaller than ¢;/2. Since the slopes of wjl-, wjz are
at least d; apart, we must have 6; # 0,.

5. FURTHER RESULTS ON UNIQUE ERGODICITY

The above construction was generalized recently [7] to show that on
any translation surface in genus 2 which is not a Veech surface there
is some direction for which the flow is minimal and not ergodic. A
natural question is which translation surfaces have minimal nonergodic
directions. Veech surfaces do not, due to the Veech Dichotomy (which
was proved in [11] ).

The existence of minimal nonergodic directions led to work about
their prevalence. For each (X,w), define NE(X,w) to be the set of
6 € [0,27) such that the flow ¢; in the # direction is not ergodic.
Equivalently, NE(X,w) is the set of § such that the flow ¢; in the
vertical direction of e?w, is not ergodic. In [14] it was shown that
the Lebesgue measure of NE(X,w) is 0. The idea of the proof is the

following. Let
[ cos@ sinf
"6~ —sinf® cosd

be the rotation group in SL(2,R) and let

(e 0
gt = 0 e—t

be the diagonal group.
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The action of the diagonal subgroup is known as Teichmiiller geo-
desic flow, since images of these orbits under the projection 7 to the
Riemann moduli space M, are geodesics in the Teichmiiller metric on
M,.

One shows that for large ¢t most points on the circle g;79(X,w) are
not near the cusp in moduli space. This is combined with the following
Theorem ([19]) (whose proof is sketched in the next section).

Theorem 3. Suppose (X,w) is a translation surface. Suppose the flow
in the vertical direction is not uniquely ergodic. Then X; = wgy(X,w)
eventually leaves every compact set in My. That is, the Teichmiiller
geodesic associated to (X,w) is divergent.

We note that this theorem is also one of the ingredients in the proof
of the Veech dichotomy ([11]).

We continue with some remarks about Theorem 3. It is a basic fact
that the moduli space M, is non-compact. The reason is that one may
have a sequence of surfaces and curves on those surfaces whose lengths
in the hyperbolic metric (assume g > 1) go to zero. Such surfaces
cannot converge to a compact surface. On the other hand it is a basic
fact [24] that this is the only way to leave compact sets in M,. Namely,
if X, is a sequence that eventually leaves every compact set, then there
is a sequence of curves 7, such that the length of , (in the hyperbolic
metric on X,,) goes to zero.

It is easy to see that if there is a closed leaf in the vertical direction
(in particular, the flow is not minimal) of w, then X, eventually leaves
every compact set of M,. Namely, since g, shrinks lengths in the
vertical direction by a factor of €', the length in the flat metric of
g+(X,w) of any closed vertical leaf goes to 0. If there were a subsequence
of X; converging to a compact surface X,, there would be a further
subsequence of g;(X,w) converging to some (Xg,wq). This (Xo,wp)
would assign 0 length to a closed curve, which is impossible.

In the minimal case there are no closed vertical leaves. This means
that under the flow g; the length of any fized curve v must go to infinity
in the flat metric of ¢;(X,w) as t — co. What the Theorem 3 says is
that there is a sequence of distinct simple closed curves 7, such that
for any ¢ > 0, for sufficiently large ¢ there is a curve 7, = 7,(t) such
that the length of ~, in the flat metric of ¢;(X,w) is smaller than e.

The measure 0 result was generalized by Veech [29] to Borel proba-
bility measures on [0, 27) that satisfy certain growth conditions. Nor-
malized Cantor-Lebesgue measure on the Cantor middle third set is an
example of such a measure.
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Further work concerns the Hausdorff dimension of NE(X,w). In
[21] it was shown that for each component of each stratum (other than
several low dimensional exceptional cases covered by the Weyl theo-
rem) there is a 0 > 0 such that for y a.e. (X,w) in the component,
NE(X,w) has Hausdorff dimension §. The construction of these non-
ergodic directions on a generic surface uses a method similar to that
described in the Veech example.

In [19] it was shown that the Hausdorff dimension of NE(X,w) is
always bounded by 1/2. The proof of this result is also based on The-
orem 3 and estimates on counting saddle connections. As discussed
above, Theorem 3 says that for § € NE(X,w), for all large times there
is a short saddle connection. Typically there may be many such short
intersecting saddle connections at any given time, and this collection
of short saddle connections change with time. However one can make a
choice of a short saddle connection in this collection at any time so that
successive choices are disjoint. Thus the proof amounts to estimating
the size of the set of angles 6 such that along the orbit g;ry(X,w) there
is a sequence of saddle connections that become successively short,
and such that each is disjoint from its predecessor. This problem can
be reduced to counting problems for saddle connections. There is an
estimate [20], [9] which says that the number of saddle connections
of length T grows at most quadratically in 7', and another estimate
which says for fixed saddle connection of length [, the number of dis-
joint saddle connections of length at most L grows roughly linearly in
%. The comparison of linear growth and quadratic growth accounts for
the dimension 1/2.

Y. Cheung [4] has shown that this estimate is sharp. Specifically,
suppose an irrational « satisfies a Diophantine condition that for some
s > 0 there are no fractions p/q that satisfy

1
(4) la—p/q| < p

Then for the rectangular table with a slit of length «/2 described in
section 4, dimNFE(X,w) = 1/2.

6. BOSHERNITZAN’S THEOREM AND SKETCH OF PROOF OF
THEOREM 3

Before we turn to the proof of the Theorem 3, we state an alternative
criterion for divergence, given by Boshernitzan [3], formulated in terms
of interval exchange maps.
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If we consider the flow in the vertical direction, then by considering
the first return to a piece of horizontal transversal I, we obtain an
interval exchange map 7', whose discontinuity points correspond to
leaves that run into singular points before returning to I. Suppose T
exchanges k intervals. Let T() be the nth iterate of T. It will be an
interval exchange on approximately kn intervals. Let m, denote the
length of the shortest of these intervals.

Theorem 4. [3] If T is not uniquely ergodic, then nm,, — 0.

This is slightly weaker than Theorem 3 as it only guarantees di-
vergence of the geodesic in a stratum, whereas Theorem 3 guarantees
divergence in moduli space.

To explain the difference, in a stratum (o, ..., ) where k > 1,
one may leave compact sets by a sequence of translation surfaces such
that a pair of singularities come close together. If no closed curve
becomes short then one stays in a compact set of M,.

Now the reason that the criterion nm, — 0 implies divergence in
the stratum is as follows. The discontinuity points on I of the interval
exchange T(™ are points of the form T(-)(x) for | < n, where 7 is a
discontinuity point of 7. Hence each interval yields a saddle connection
crossing it such that the vertical component of its holonomy has length
O(n). However, the short interval yields a saddle connection =, such
that in addition, the horizontal component of its holonomy is O(m,,).
Since nm,, — 0, for some interval of times ¢, the length of both the
vertical and horizontal component of 7, in the metric of ¢;(X,w) are
small. One can show that for any time ¢ there is such a ~,.

We are now ready to sketch the proof of Theorem 3. Let {¢;} denote
the vertical flow of w. As explained above, we can assume it is minimal
but not uniquely ergodic. The set of invariant probability measures
for ¢; is a finite dimensional convex set and the extreme points are
mutually singular ergodic measures. For sake of argument assume there
are exactly two vy, 5. (The general case is almost the same). Since v;
is invariant under the vertical flow, for any horizontal interval I, the
measure v; decomposes into

vi = Wi X dy
where y; is an ergodic measure on [ invariant under the first return

map % and y is the coordinate in the vertical direction. Since the v;
are mutually singular, so are the u; and I can be chosen so that

pi(l) # pa(I).
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Let x; be the indicator function of I. We say x is generic for p; if

lim L 3™ (" (@) = (1),

N—oo [V

Thus if z; is a generic point of u; then

| Nl | Nl
(5) Jim ZO xi(@"(21) # lim ; X1 (4" (z2))
It is a fact that y; almost all points of I are generic for p;.

We argue by contradiction. If the theorem is false, there is a sequence
of times ¢, — oc and Xj such that X;, — X, € M,. Since the part of
() that lies over a compact set of M, is also compact, by passing to
further subsequences, we can assume there is wg an Abelian differential
on Xy such that gy (X, w) — (X, wo).

Let z; € I be generic for p;,7 = 1,2. We follow the image of z;
under the flow g;, and denote its image by ¢;, (x;). Note that each
term in the sequence g, (z;) is a point on a different Riemann surface
X, that evolves over time. Since the surfaces in question are compact,
by passing to further subsequences we can assume that there exists
y; € Xo such that gy (z;) — ;- Since the surface Xj is connected,
and the set of generic points is of full measure for each p; and each
of these sets is invariant under ¢y, it is not hard to show that we can
pick z; generic for p; such that y;,y- lie on the same horizontal line
hy of the limiting translation surface (X, wy). We will show that this
contradicts (5).

Let [y, 1y short vertical lines of (X, wp) through 31,9, and let R be
the Euclidean rectangular box with vertical sides /; and l; and one
horizontal side hy. If [;,l, are chosen small enough, R will have no
singularities in its interior. Then the number of intersections of every
connected horizontal line of (X, wp) with /; will differ with the number
of its intersections with /5 by at most 1.

For ¢« = 1,2, let l;,, denote bounded segments of the vertical leaf
of g1, (X,w) through g, (z;) of equal length such that /;, — [;. Thus
for n sufficiently large, with small error, every horizontal segment of
g1, (X, w) intersecting [, ,, will intersect lo,. In particular, this is true
for the long horizontal segment g, (I). Pulling back by g;,, we see that
9z, 1(li,n) are very long vertical leaves of the same length with respect
to the original (X,w) through z; and xs, such that the ratio of the
number of their intersections with [ is approximately 1. But this is a
contradiction to (5).
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We describe how the Veech nonergodic example described earlier fits
into the above theorem. The theorem says that for all large enough
time ¢ there is a curve () on X; with small hyperbolic length; the
curve depends on the time. There is a sequence of dividing curves
formed from slits w; = (p;, ¢; + ) such that each w; becomes short in
hyperbolic length for a finite interval of time before it becomes long.
It is a standard fact in hyperbolic geometry [2] that intersecting curves
are never simultaneously short, so the intervals of times that different
slits are short in hyperbolic length are disjoint. The slit curves therefore
cannot account for all the short curves in the family X;. What happens
is that each slit divides the surface into a pair of tori, and before that
slit curve becomes long, a (r;, s;) curve on each torus becomes short,
where recall from the construction, p;11 = p; + 2rj,¢j41 = ¢; + 2s;.
This also occurs for a finite interval of time before becoming long. It
stays short until the next slit becomes short, defining a new pair of tori
and the process repeats.

One way to think about why such examples are impossible in genus
one, is that on a torus there are no disjoint nonhomotopic curves.

7. FURTHER RESULTS ON DYNAMICS OF ACTIONS OF SUBGROUPS
oF SL(2,R)

The first set of results have to do with the Teichmuller low. The
converse to Theorem 3 is not true. It is possible to construct examples
of divergent geodesics such that the flow ¢, in the vertical direction is
uniquely ergodic ([6]). Another interesting line of work has concerned
the rate of divergence of geodesics ¢;(X,w). Cheung [5] has recently
shown that one can find geodesics with arbitrarily slow rates of diver-
gence. Let (X,w) € H(1,1) be a surface which is a double cover over
the torus and which is not a Veech surface. (An example is given by the
slit torus considered in Section 4 with irrational ). Then given any
function R(t) — oo there is a direction 6 so that mg;(X, e?w) diverges
in moduli space in M, and such that

(1 (X, ew), m(X, e’w)) < R(t)

for all large ¢. Here 7(-,-) is the Teichmuller metric on M,.

He also showed that if « satisfies (4) and ey > max(2, s), then there
is a Hausdorff dimension 1/2 of directions § € NE(X,w) such that the
sublinear rate of divergence

1 X 0 X 10 1
T+(0) = lim sup OgT(ﬂ—gt( € U)),ﬂ'( , € UJ)) S 1— —
t—00 logt €o
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holds. It would be interesting to know if slow rates of divergence in
general implies unique ergodicity.

It is known [18], [28] that the flow g; is ergodic with respect to the
natural ” Lebesgue” measure p on each component of each stratum. For
the principal stratum (all simple zeroes) this implies in particular that
the projection to the Riemann moduli space of almost every geodesic
is dense. Thus the set of cobounded geodesics g;(X, w); those geodesics
whose projection to the moduli space remain in some compact set (de-
pending on the geodesic) has measure 0. One can then ask about the
Hausdorff dimension of the set of cobounded geodesics.

The case of g = 1 is classical. Suppose X is the standard square
torus and w is the 1-form e/™/2=®)dz. The lines in direction o are ver-
tical with respect to w. The behavior of ¢g;(X,w) in the moduli space
SL(2,R)/SL(2,Z) is determined by the continued fraction expansion
of a. In particular, the orbit is cobounded iff & has bounded par-
tial quotients. The set of these irrational numbers has measure 0 and
Hausdorff dimension 1.

The result for general (X, w) is recent work of Kleinbock and Weiss
([17]). They show that for any (X, w), the set of # € [0,27) such that
9:(X, e®w) is cobounded has Hausdorff dimension 1.

Other intersting and important recent work in the dynamics in mod-
uli space has been inspired by the dynamics of flows of subgroups of
G acting on G/T", where G is a Lie group and I is a lattice subgroup.
(See [15] for a survey).

The most important analogy is with the horocycle flow

1 s
h5_<01).

The Kleinbock-Weiss theorem is in turn based on work of Minsky and
Weiss [23] on the horocycle flow. Let H denote this subgroup. It is a
basic principle that g; orbits can be quite wild. For example, the closure
can be a Cantor set. On the other hand H orbits are constrained. In
SL(2,R)/SL(2,Z) every horocycle orbit is either closed or dense. It
is a basic question in the subject to find all H orbit closures of points
(X,w) and all measures invariant under the action of H. (See the
article by Eskin in these proceedings for more on this problem, which
one can call the Ratner problem in moduli space).

Veech [29] showed that horocycle orbits do not diverge in the stra-
tum. Minsky and Weiss gave a quantitative version of this result which
shows that horocycle orbits spend most of their time in a compact set.
To explain their result, introduce the terminology of I(vy, (X, w)) to rep-
resent the length of the saddle connection  with respect to the metric
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of (X,w), and K, the set of (X, w) such that for every saddle connection
7 Uy (X w)) > e

Theorem 5. There are positive constants C, «, py depending only on
the topology of the surface such that if (X,w), an interval I C R and
0 < p < po satisfy the condition

for any saddle connection vy there is s € I such that I(7y, hs(X,w)) > p,
then for any e > 0

{s€I:hy(X,w)¢ K.} < C(E)am.

Another recent result of Smillie and Weiss [25] classifies minimal sets
for the horocycle flow. A set is minimal if it is invariant, closed, and
there is no proper invariant closed subset. The authors first describe
examples of minimal sets and then show that every minimal set is given
by such an example. To describe the examples suppose in the horizontal
direction all leaves of (X, w) are closed so that (X,w) decomposes into
a union of cylinders each of which is swept out by closed horizontal

leaves. Let O = H(X,w). Then

e every (Y, 0) € O admits a cylinder decomposition C; U...UC,
where each C; is swept out by closed horizontal leaves.

e There is an isomorphism between O and a d dimensional torus
where d is the dimension of the @ linear subspace of R spanned
by the moduli of C1,...,C,. The isomorphism conjugates the
H-action on O with a one parameter translational flow.

e The restriction of the H-action to O is minimal.
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