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Introduction

In algebraic topology, one studies topological spaces through algebraic invariants such as groups :
for instance, the homotopy groups πn(X,x0) of a pointed topological space (X,x0). The homol-
ogy theories (and cohomology theories) provide other algebraic invariants on topological spaces.
The reader might be familiar with the notion of fibration where one of the main properties is
the long exact sequence of homotopy groups. Whence, fibrations can relate homotopy groups
of different topological spaces, but what about homology groups ? What is the relationship
between the homology groups of the total space, the base space, and the fiber of a fibration ?

The aim of this paper is to present these relationships through the notion of spectral se-
quence : a powerful algebraic object from homological algebra. Every fibration (or more gen-
erally every Serre fibration) gives rise to a spectral sequence called the Serre spectral sequence.
It will describe a very particular relation between the homology groups. It will induce many
different general results in homology theory, and we will present some of them in this paper.

In the first chapter, we present the algebraic concept and construction of a spectral sequence.
In the second chapter, we construct the Serre spectral sequence of a fibration following the
article [4] by the mathematician Andreas Dress. We will also present in details the notion
of homology with local coefficients. In the third chapter, we introduce some applications of the
Serre spectral sequence. In appendix A, we will present the singular homology with integer
coefficients which is the homology theory that we use for our description of the Serre spectral
sequence. We will sketch briefly some useful results.

Convention

• We write I for [0, 1] ⊆ R.

• We will always omit the composition of maps, namely, we write fg instead of f ◦ g.

• For any topological space X, we write Hn(X) = Hn(X;Z) for the n-th singular homology
group of X (with integer coefficients) defined in appendix A.

• We write Map(X,Y ) for the function space Y X together with the compact-open topology.

• We label the vertices of the n-standard simplex ∆n by (0, 1, . . . , n), defined in appendix
A.

• For each n > 0, and 0 ≤ i ≤ n− 1, we write εi = εni : ∆n−1 → ∆n for the i-th face map,
defined in appendix A.
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Chapter 1

The General Notion of Spectral
Sequences

In this chapter, we present the algebraic notion of spectral sequence. Frank Adams said that
«a spectral sequence is an algebraic object, like an exact sequence, but more complicated».
It was first invented by the French mathematician Jean Leray from 1940 to 1945 as prisoner
of war, in a concentration camp, during World War II. He was an applied mathematician, but
because he did not want the Nazis to exploit his expertise, he did abstract work in algebraic
topology. He invented spectral sequences in order to compute the homology (or cohomology)
of a chain complex, in his work of sheaf theory. They were made algebraic by Jean-Louis
Koszul in 1945.
Most of the work in this chapter will be based on [11], and [14].

1.1 Definitions and Basic Properties
Bigraded Abelian Groups A bigraded abelian group is a doubly indexed family of abelian
groups A•• = {Ap,q}(p,q)∈Z×Z. Subsequently, we will often write A•• as A. Let A and B
be bigraded abelian groups, and let (a, b) ∈ Z × Z. A bigraded map of bidegree (a, b), denoted
f : A→ B, is a family of (abelian) group homomorphisms f = {fp,q : Ap,q → Bp+a,q+b}(p,q)∈Z×Z.
The bidegree of f is (a, b). The kernel is defined as : ker f = {ker fp,q} ⊆ {Ap,q}, and the image
is defined by : im f = {im fp−a,q−b} ⊆ {Bp,q}.

Definition 1.1.1. A differential bigraded abelian group (E, d) is a bigraded abelian group E••,
together with a bigraded map d : E → E, called the differential, such that dd = 0.

Definition 1.1.2. The homology H••(E, d) of a differential bigraded abelian group (E, d) is
defined by :

Hp,q(E, d) = ker dp,q
im dp−a,q−b

,

where (a, b) is the bidegree of the differential d.

Combining these notions, we can give the definition.

Definition 1.1.3. A spectral sequence (of homological type) is a collection of differential bi-
graded group {Er••, dr}, r = 1, 2, . . ., where the differentials are all of bidegree (−r, r − 1), such
that Er+1

p,q
∼= Hp,q(Er, dr). The bigraded abelian group Er is called the Er-term, or the Er-page,

of the spectral sequence.
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The isomorphisms are fixed as part of the structure of the spectral sequence, so henceforth we
will fudge the distinction between «∼=» and «=» in the above context.

One way to look at a spectral sequence is to imagine an infinite book, where each page is a
Cartesian plane with the integral lattice points (p, q) which are the abelian groups Ep,q. There
are homomorphisms (the differentials) between the groups forming «chain complexes». The
homology groups of these chain complexes are precisely the groups which appear on the next
page. One the first page, the differentials go one unit to the left, on the second page two units
to the left and one unit up, on the third page three units to the left and two units up, and so
on. The customary picture is shown below, where only parts of the pages are represented. Each
dot represents a group.

E1 E2 E3

It often happens that we do not look at the first page and we start at page 2 (it will be the case
of the Serre spectral sequence).

The Limit Page It is instructive to describe a spectral sequence {Er, dr} in terms of sub-
groups of E1. Denote Z1

p,q = ker d1
p,q, and B1

p,q = im d1
p+1,q. We get B1 ⊆ Z1 ⊆ E1 (from

d1d1 = 0). By definition : E2 ∼= Z1/B1. Write Z2 := ker d2, it as a subgroup of E2, whence,
by the correspondence theorem, it can be written as Z2/B1, where Z2 is a subgroup of Z1.
Similarly, write B2 := im d2, which is isomorphic to B2/B1, where B2 is a subgroup of Z2, and
so :

E3 ∼= Z2/B2 ∼=
Z2/B1

B2/B1
∼= Z2/B2,

by the third isomorphism theorem. This data can be presented as : B1 ⊆ B2 ⊆ Z2 ⊆ Z1 ⊆ E1.
Iterating this process, one can present the spectral sequence as an infinite sequence of subgroups
of E1 :

B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ . . . ⊆ Zn ⊆ . . . ⊆ Z2 ⊆ Z1 ⊆ E1,

with the property that : En+1 ∼= Zn/Bn. Denote Z∞p,q :=
⋂∞
r=1 Z

r
p,q, and B∞p,q :=

⋃∞
r=1B

r
p,q,

subgroups of E1. Clearly : B∞ ⊆ Z∞. Thus, we get the following definition.

Definition 1.1.4. A spectral sequence determines a bigraded abelian group :

E∞p,q :=
Z∞p,q
B∞p,q

, E∞•• := {E∞p,q},

called the limit page of the spectral sequence.
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One can regard the Er-pages as successive approximations of E∞. It is usually the E∞-page
that is the general goal of a computation.

Lemma 1.1.5. Let {Er, dr} be a spectral sequence.

(i) Er+1 = Er if and only if Zr+1 = Zr and Br+1 = Br.

(ii) If Er+1 = Er for all r ≥ s, then Es = E∞.

Proof. Let us prove (i). Suppose Er+1 = Er. We have : Br ⊆ Br+1 ⊆ Zr+1 ⊆ Zr, and
Er+1 = Zr+1/Br+1 = Er = Zr/Br. So Br+1 = {0} in Er = Zr/Br, that is Br+1 = Br. Hence,
we get Zr+1/Br = Zr/Br, so that Zr+1 = Zr. The converse follows directly.
For (ii), we get Zs = Zr for all r ≥ s, hence Zs =

⋂
r≥s Z

r = Z∞. Similarly, we obtain the
following : Bs =

⋃
r≥sB

r = B∞. Thus Es = Zs/Bs = Z∞/B∞ = E∞.

Definition 1.1.6. A first quadrant spectral sequence {Er, dr} is one with Erp,q = 0 when p < 0
or q < 0. This condition for r = 1 implies the same condition for higher r. We have Er+1

p,q = Erp,q,
for max(p, q+ 1) < r <∞. In words, for fixed degrees p and q, Erp,q is ultimately constant in r.

Definition 1.1.7. A filtration F• on an abelian group A, is a family of subgroups {FpA}p∈Z of
A, so that :

. . . ⊆ Fp−1A ⊆ FpA ⊆ Fp+1A ⊆ . . .

Each filtration F of A determines an associated graded abelian group E0
•(A) given by :

{E0
p(A) = FpA/Fp−1A}.

If A itself is graded, then the filtration is assumed to preserve the grading, which means :
FpAn ∩ An ⊆ Fp+1An ∩ An, for all p and n. Write n = p+ q, and define the associated graded
abelian group as :

E0
p,q(A•, F•) = FpAp+q

Fp−1Ap+q
.

We can now define the notion of convergence.

Definition 1.1.8. A spectral sequence {Er, dr} is said to converge to A•, a graded abelian
group, if there is a given filtration F• together with isomorphisms E∞p,q ∼= E0

p,q(A•, F•), and we
denote it :

E1
p,q ⇒ Ap+q.

We will now try to answer the following question : how does a spectral sequence arise ?

1.2 Spectral Sequence of a Filtered Complex
Now that we can describe a spectral sequence, how do we build one ? Most spectral sequences
arise from a filtered complex.

Definition 1.2.1. A filtered (chain) complex is a chain complex (K•, ∂) (see appendix A for
definition), together with a filtration {FpKn}p∈Z of each Kn such that the boundary operator
preserves the filtration : ∂(FpKn) ⊆ FpKn−1, for all p and n. The family {FpKn}n∈Z is itself
a complex with induced boundary opeartors ∂ : FpKn → FpKn−1. The filtration induces a
filtration on the homology of K•, with FpHn(K•) defined as the image of Hn(FpK) under the
(graded) map induced by the inclusion FpK• ↪→ K•.
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With fundamental definitions in place, one can give the main theorem.

Theorem 1.2.2. A filtration F• of a chain complex (K•, ∂) determines a spectral sequence
{Er••, dr}, r = 1, 2, . . ., where :

E1
p,q = Hp+q

(
FpK•
Fp−1K•

)
,

and the map d1 :

d1 : Hp+q

(
FpK•
Fp−1K•

)
−→ Hp+q−1

(
Fp−1K•
Fp−2K•

)
[z + Fp−1K•] 7−→ [∂(z) + Fp−2K•]

where z is in FpK such that ∂(z) ∈ Fp−1K. Suppose further that the filtration is bounded, that
is, for each n, there are values s = s(n), t = t(n), so that :

{0} = FsKn ⊆ Fs+1Kn ⊆ . . . ⊆ Ft−1Kn ⊆ FtKn = Kn,

then the spectral sequence converges to H•(K) : E1
p,q ⇒ Hp+q(K•); more explicitly :

E∞p,q
∼=

Fp(Hp+q(K•))
Fp−1(Hp+q(K•))

.

Proof. We construct «by hand» the spectral sequence. Let’s recall that we have the filtration :

. . . ⊆ Fp−1Kp+q ⊆ FpKp+q ⊆ Fp+1Kp+q ⊆ . . . ,

and the fact that ∂(FpKp+q) ⊆ FpKp+q−1. For all integers r ≥ 0, we introduce :

Zrp,q := elements in FpKp+q that have boundaries in Fp−rKp+q−1

= {a ∈ FpKp+q | ∂(a) ∈ Fp−rKp+q−1}
= FpKp+q ∩ ∂−1(Fp−rKp+q−1),

Br
p,q := elements in FpKp+q that form the image of ∂ from Fp+rKp+q+1

= FpKp+q ∩ ∂(Fp+rKp+q+1),
Z∞p,q := ker ∂ ∩ FpKp+q,

B∞p,q := im ∂ ∩ FpKp+q.

However, one must be careful here, since
⋃
s FsK• is not necessarly equal to K•, the equalities

B∞p,q =
⋃
r≥1B

r
p,q and Z∞p,q =

⋂
r≥1 Z

r
p,q do not hold. So the definitions of Zr and Br are not as

before. We obtain :

B0
p,q ⊆ B1

p,q ⊆ . . . ⊆ B∞p,q ⊆ Z∞p,q ⊆ . . . ⊆ Z1
p,q ⊆ Z0

p,q,

and :

∂(Zrp+r,q−r+1) = ∂
(
Fp+rKp+q+1 ∩ ∂−1(FpKp+q)

)
= FpKp+q ∩ ∂(Fp+rKp+q+1)
= Br

p,q.

Define for all 0 < r ≤ ∞ :
Erp,q :=

Zrp,q

Zr−1
p−1,q+1 +Br−1

p,q
.
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Since Zr−1
p−1,q+1 ⊆ Zrp,q (use only the definitions), the quotient is well defined. Write the canonical

projection ηrp,q : Zrp,q → Erp,q. By our previous work : ∂(Zrp,q) = Br
p−r,q+r−1 ⊆ Zrp−r,q+r−1, thus

we get :

∂(Zr−1
p−1,q+1 +Br−1

p,q ) ⊆ ∂(Zr−1
p−1,q+1) + ∂(Br−1

p,q )
⊆ Br−1

p−r,q+r−1 + 0, because ∂∂ = 0,
⊆ Zr−1

p−1−r,q+r +Br−1
p−r,q+r−1.

Thus the boundary operator, as a mapping ∂ : Zrp,q → Zrp−r,q+r−1, induces a homomorphism dr,
r ≥ 1, such that the following diagram commutes :

Zrp,q Zrp−r,q+r−1

Erp,q Erp−r,q+r−1

∂

η η

dr

It follows that drdr = 0. Whence we have constructed {Er, dr}.

In order to show that it is indeed a spectral sequence, we need to prove that there is an
isomorphism Hp,q(Er, dr) ∼= Er+1

p,q . Consider the following diagram, we will prove that it is
commutative :

Zrp−1,q+1 +Br
p,q Zr+1

p,q Zrp,q Zrp−r,q+r−1

ker dr Erp,q Erp−r,q+r−1

Hp,q(Er, dr)

0

ηrp,q |
Z

r+1
p,q

γ

∂

ηrp,q ηrp−r,q+r−1

dr

We first prove that ηrp,q(Zr+1
p,q ) = ker dr. Consider (ηrp,q)−1(ker dr). Since drη = η∂, it implies

that dr(η(z)) = 0 if and only if ∂(z) ∈ Zr−1
p−r−1,q+r +Br−1

p−r,q+r−1; which is the case if and only if
z ∈ Zr+1

p,q + Zr−1
p−1,q+1 (use the definitions). Whence, η−1(ker dr) = Zr+1

p,q + Zr−1
p−1,q+1. Finally, we

obtain : ker dr = η(Zr+1
p,q + Zr−1

p−1,q+1) = η(Zr+1
p,q ), because Zr−1

p−1,q+1 ⊆ ker ηrp,q.
Now, we prove : Zrp−1,q+1 + Br

p,q = Zr+1
p,q ∩

(
(ηrp,q)−1(im dr)

)
. First, we know that we have :

im dr = ηrp,q(∂(Zrp+r,q−r+1)) = ηrp,q(Br
p,q). And so :

(ηrp,q)−1(im dr) = Br
p,q + ker ηrp,q

= Br
p,q +Br−1

p,q + Zr−1
p−1,q+1

= Br
p,q + Zr−1

p−1,q+1.

Since by the definitions :

Zr−1
p−1,q+1 ∩ Z

r+1
p,q =

(
Fp−1Kp+q ∩ ∂−1(Fp−rKp+q−1)

)
∩
(
FpKp+q ∩ ∂−1(Fp−r−1Kp+q−1)

)
= Fp−1Kp+q ∩ ∂−1(Fp−r−1Kp+q−1)
= Zrp−1,q+1,
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all together, we get : Zr+1
p,q ∩

(
(ηrp,q)−1(im dr)

)
= Zrp−1,q+1 +Br

p,q, because Zrp−1,q+1 ⊆ Zr−1
p−1,q+1.

Now we can describe the isomorphism Hp,q(Er, dr) ∼= Er+1
p,q . Let γ : Zr+1

p,q → Hp,q(Er, dr) be
the dashed map in the diagram, where ker dr → Hp,q(Er, dr) is the canonical projection. The
kernel of γ is : Zr+1

p,q ∩
(
(ηrp,q)−1(im dr)

)
= Zrp−1,q+1 + Br

p,q. Since γ is surjective, by the first
isomorphism theorem :

Er+1
p,q =

Zr+1
p,q

Zrp−1,q+1 +Br
p,q

∼= Hp,q(Er, dr).

Now we must prove : E1
p,q
∼= Hp+q

(
FpK•
Fp−1K•

)
. We will use our previous work. Define, as

before, the case r = 0 :

E0
p,q =

Z0
p,q

Z−1
p−1,q+1 +B−1

p,q
,

where Z−1
p−1,q+1 := Fp−1Kp+q and B−1

p,q := ∂(Fp−1Kp+q+1). Thus we get :

E0
p,q = FpKp+q ∩ ∂−1(FpKp+q−1)

Fp−1Kp+q + ∂(Fp−1Kp+q+1)

= FpKp+q
Fp−1Kp+q

, because the boundary operator preserves the filtration.

Now define the differential d0 : E0
p,q → E0

p,q−1 as the induced map of ∂ : FpKp+q → FpKp+q−1.
Our previous work still holds for r = 0, and so we get :

E1
p,q
∼= Hp,q(E0, d0) = Hp+q

(
FpK•
Fp−1K•

)
.

Using this isomorphism, one can determine the map d1 : Hp+q
(

FpK•
Fp−1K•

)
→ Hp+q−1

(
Fp−1K•
Fp−2K•

)
.

A class in Hp+q
(

FpK•
Fp−1K•

)
can be written as [z +Fp−1K•], where z ∈ FpK• and ∂(z) ∈ Fp−1K•.

The map d1 maps [z + Fp−1K•] to [∂(z) + Fp−2K•].

Finally, we prove : E∞p,q ∼=
Fp(Hp+q(K•))
Fp−1(Hp+q(K•))

, when the filtration is bounded. The assumption

that the filtration is bounded implies, for r large enough, that Zrp,q = Z∞p,q and Br
p,q = B∞p,q. Our

previous definition of Er still holds for r = ∞ : more precisely, the limit term of the spectral
sequence is really the case r = ∞ (use lemma 1.1.5). Consider the canonical projections
η∞p,q : Z∞p,q → E∞p,q and π : ker ∂ → H(K•, ∂). We get :

Fp(Hp+q(K•)) = im (Hp+q(FpK•) ↪→ Hp+q(K•))
= π(FpKp+q ∩ ker ∂)
= π(Z∞p,q).

Since π(ker η∞p,q) = π(Z∞p−1,q+1 +B∞p,q) = Fp−1(Hp+q(K•)), the map π induces a mapping :

d∞ : E∞p,q −→
Fp(Hp+q(K•))
Fp−1(Hp+q(K•))

,
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which is surjective. Finally, observe that :

ker d∞ = η∞p,q

(
π−1(Fp−1Hp+q(K•)) ∩ Z∞p,q

)
= η∞p,q

(
(Z∞p−1,q+1 + im ∂) ∩ Z∞p,q

)
= η∞p,q(Z∞p−1,q+1 +B∞p,q) = {0}.

So d∞ is an isomorphism, which ends the proof.

1.3 Spectral Sequences of a Double Complex
Definition 1.3.1. A double (chain) complex (or bicomplex) is an ordered triple (K, ∂′, ∂′′),
where K is a bigraded abelian group, and ∂′, ∂′′ : K → K are bigraded maps (called the
horizontal boundary and the vertical boundary) of bidegree (−1, 0) and (0,−1) respectively,
such that :

(i) ∂′∂′ = 0 and ∂′′∂′′ = 0,

(ii) (anticommutativity) ∂′p,q−1∂
′′
p,q + ∂′′p−1,q∂

′
p,q = 0.

We associate to each double complex its total complex, denoted tot(K)•, which is the complex
with n-th term :

tot(K)n =
⊕

p+q=n
Kp,q,

where the boundary operator is given by ∂ := ∂′ + ∂′′. One can easely check that ∂∂ = 0,
whence tot(K)• is indeed a complex.

Definition 1.3.2. Let (K, ∂′, ∂′′) be a double complex. The transpose of the double complex
is (tK, δ′, δ′′), where tKp,q = Kq,p, δ′p,q = ∂′′q,p and δ′′p,q = ∂′q,p. Then (tK, δ′, δ′′) is also a double
complex and the total complexes are identical : tot(tK)• = tot(K)• and δ = δ′+δ′′ = ∂′+∂′′ = ∂.

To each double complex, one can associate homology groups.

Definition 1.3.3. Let (K, ∂′, ∂′′) be a double complex. One can see that (K, ∂′) and (K, ∂′′)
are both complexes. The homology of the rows is the bigraded abelian group H ′••(K) defined
as below :

H ′p,q(K) =
ker ∂′p,q
im ∂′p+1,q

.

Similarly, define the homology of the columns by H ′′p,q(K) =
ker ∂′′p,q
im ∂′′p,q+1

. For each fixed q, the

q-th row H ′′•,q(K) of H ′′(K) can be made into a complex if one defines the induced boundary
operator :

∂′ : H ′′p,q(K) −→ H ′′p−1,q(K)
[z] = z + im ∂′′p,q+1 7−→ ∂′(z) + im ∂′p−1,q+1 =

[
∂′(z)

]
,

where z ∈ ker ∂′′p,q. It is easy to check that ∂′∂′ = 0. Thus one can again define a homology
called the first iterated homology of the double complex, denoted H ′•H

′′
• (K), which is defined

as : H ′pH ′′q (K) := Hp(H ′′•,q(K), ∂′) = ker ∂′p,q
im ∂′p+1,q

. Similarly, define the second iterated homology

H ′′•H
′
•(K) as : H ′′pH ′q(K) := Hp(H ′q,•(K), ∂′′), where ∂′′ is defined in a similar way.
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Moreover, we can define two filtrations out of double complex :

I(Ki,j)p =
{

0, if i > p,
Ki,j , if i ≤ p,

II(Ki,j)p =
{

0, if j > p,
Ki,j , if j ≤ p.

These filtrations both define a filtration on the total complex.

Definition 1.3.4. Let (K, ∂′, ∂′′) be a double complex. The column-wise filtration of tot(K)•
is given by :

I(Fptot(K))n =
⊕
i≤p

Ki,n−i

= . . .⊕Kp−2,q+2 ⊕Kp−1,q+1 ⊕Kp,q,

where q = n−p. For any fixed p, one can easily check that I(Fptot(K))• is indeed a subcomplex
of tot(K)•, and a filtration. Similarly, the row-wise filtration of tot(K)• is given by :

II(Fptot(K))n =
⊕
j≤p

Kn−j,j

= . . .⊕Kq+2,p−2 ⊕Kq+1,p−1 ⊕Kq,p.

With these two filtered complexes, there are induced spectral sequences, by theorem 1.2.2.

Theorem 1.3.5. Given a double complex (K, ∂′, ∂′′), there are two spectral sequences {IEr,I dr}
and {IIEr,II dr}, with first pages :

IE1
p,q
∼= H ′′p,q(K), and IIE1

p,q
∼= H ′p,q(K),

and second pages :
IE2

p,q
∼= H ′pH

′′
q (K), and IIE2

p,q
∼= H ′′pH

′
q(K).

Moreover, if Kp,q = {0} when p < 0 or q < 0, then both spectral sequences are first quadrant,
and converge to the homology of the total complex H•(tot(K)•, ∂) :

IE1
p,q ⇒ Hp+q(tot(K)•), and IIE1

p,q ⇒ Hp+q(tot(K)•).

Proof. The proof follows from theorem 1.2.2. Because Kp,q = {0} when p < 0 or q < 0, the
filtrations are bounded, thus we obtain two spectral sequences converging to H•(tot(K)•, ∂).
In particular, there exists filtration IF• and IIF• such that : IE∞p,q

∼=
IFp(Hp+q(tot(K)•))

IFp−1(Hp+q(tot(K)•)) and
IIE∞p,q

∼=
IIFp(Hp+q(tot(K)•))

IIFp−1(Hp+q(tot(K)•)) , where for p+ q =: n fixed, IFt = 0 and IIFt = 0, for all t < 0 and
IFt = Hp+q(tot(K)•)) and IIFt = Hp+q(tot(K)•)), for all t ≥ n.
We first give a proof in the case of {IEr,I dr}. Consider the column-wise filtration IF•. Let us
prove IE1

p,q
∼= H ′′p,q(K). By theorem 1.2.2, we have :

IE1
p,q = Hp+q

((
IFptot(K)

IFp−1tot(K)

)
•
, ∂

)
.

The (p+ q)-th term of the quotient complex is given by :
I(Fptot(K))p+q

I(Fp−1tot(K))p+q
= . . .⊕Kp−2,q+2 ⊕Kp−1,q+1 ⊕Kp,q

. . .⊕Kp−2,q+2 ⊕Kp−1,q+1
∼= Kp,q.
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The induced boundary operator ∂ :
I(Fptot(K))p+q

I(Fp−1tot(K))p+q −→
I(Fptot(K))p+q−1

I(Fp−1tot(K))p+q−1
maps the elements

ap+q + I(Fp−1tot(K))p+q to ∂(ap+q) + I(Fp−1tot(K))p+q−1, where ap+q ∈ I(Fptot(K))p+q, but
we have just seen that we may assume ap+q ∈ Kp,q. Now ∂(ap+q) = (∂′ + ∂′′)(ap+q) which
belongs to Kp−1,q ⊕ Kp,q−1. But we have Kp−1,q ⊆ I(Fp−1tot(K))p+q−1, so only ∂′′ survives.
We have just proved :

Hp+q

((
IFptot(K)

IFp−1tot(K)

)
•
, ∂

)
∼= H ′′p,q(K).

Now, we prove IE2
p,q
∼= H ′pH

′′
q (K). We will simplify the notation : IFptot(K) becomes Fp.

We need to prove that the following diagram commutes :

Hp+q

(
Fp
Fp−1

)
Hp+q−1

(
Fp−1
Fp−2

)

H ′′p,q(K) H ′′p−1,q(K)

d1

∼=

∂′

∼=

The elements in H ′′p,q(K) are the classes [z], where z are in ker ∂′′p,q. Now recall that d1 sends
[x+Fp−1] to [∂(x)+Fp−2], where x in Fp and ∂(x) in Fp−1. Since ∂′′z = 0, using the isomorphism
H ′′p,q(K) ∼= Hp+q

(
Fp
Fp−1

)
, this determines [∂′(z)+Fp−2] as an element of Hp+q−1

(
Fp−1
Fp−2

)
. Finally,

the isomorphism Hp+q−1
(
Fp−1
Fp−2

)
∼= H ′′p−1,q(K), sends [∂′(z) +Fp−2] to [∂′(z)] in H ′′p−1,q(K). We

have just proved the commutativity of the diagram. And so : IE2
p,q
∼= H ′pH

′′
q (K).

To get the second spectral sequence from the row-wise filtration IIF•, reindex the double
complex as its transpose (see definition 1.3.2), so that the total complex stays unchanged, but
the row-wise filtration becomes the column-wise filtration. The same proof goes over to obtain
the result.
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Chapter 2

The Serre Spectral Sequence

2.1 The Notion of Serre Fibration
This section gathers results from algebraic topology that will be necessary subsequently, when
we will introduce the Serre spectral sequence. We recall here the notion of Serre fibration and
its properties.

Definition 2.1.1. A continuous map p : E → B is a Serre fibration (also called weak fibration)
if it has the homotopy lifting property with respect to every cube In, n ≥ 0; i.e. for any homotopy
H : In × I → B, for any continuous map h̃0 : In → E such that ph̃0 = Hi0 (h̃0 is said to be
a lift of Hi0), where i0 : In ↪→ In × I is the inclusion x 7→ (x, 0), there exists a homotopy
H̃ : In × I → E such that the diagram commutes :

In E

In × I B

h̃0

i0 p

H

H̃

whence H̃ is a lift of H, such that H̃|In×{0} = h̃0.

One of the fundamental properties of Serre fibration is the following theorem.

Theorem 2.1.2 (Homotopy Sequence of a Serre Fibration). Let p : E → B be a Serre
fibration, equipped with basepoints e0 ∈ E, b0 ∈ B such that p(e0) = b0, so that the fiber is
defined by F := p−1(b0). Then there is an exact sequence :

· · · πn+1(B) πn(F ) πn(E) πn(B) πn−1(F ) · · ·

· · · π1(B) π0(F ) π0(E) π0(B)

Proof. See [3] for a proof.

We will use throughout this chapter, the following results.

Proposition 2.1.3. The pullback of a Serre fibration is a Serre fibration.

Proof. An easy proof : use the fundamental property of a pullback.
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Proposition 2.1.4. If p : E → B is a Serre fibration, then the induced continuous map
p̂ : Map(Is, E) → Map(Is, B) is also a Serre fibration, where Map(X,Y ) denotes the function
space Y X together with the compact-open topology.

Proof. Since Is is locally compact and Hausdorff, any continuous map In → Map(Is, B) is
equivalent to a continuous map In × Is → B. Idem for the maps In−1 → Map(Is, A). Now the
assertion follows directly, using the fact that p is a Serre fibration.

Proposition 2.1.5. For any topological space X, the continuous map i : X → Map(In, X)
which maps each element x to the constant map cx, is a homotopy equivalence, with homotopy
inverse j : Map(In, X)→ X which maps each map σ to σ(0).

Proof. Obviously, ji = idX , so we only need to prove : ij ' idMap(In,X), i.e. there is a homotopy
H : Map(In, X) × I → Map(In, X), such that H(σ, 0) = cσ(0) and H(σ, 1) = σ, for any σ in
Map(In, X). Since In is locally compact and Hausdorff, it is equivalent to find a homotopy
Ĥ : Map(In, X) × In × I → X, where Ĥ(σ, s, 0) = σ(0) and Ĥ(σ, s, 1) = σ(s), for any σ in
Map(In, X) and any s in In. Since In is contractible, there is a homotopy : H ′ : In × I → In

whereH ′(s, 0) = 0 andH ′(s, 1) = s, so define Ĥ(σ, s, t) := σ(H ′(s, t)). The map Ĥ is continuous
because it is the composite of the following continuous maps :

Map(In, X)× In × I Map(In, X)× In X,
id×H′ evaluation

whence Ĥ is indeed the desired homotopy.

Proposition 2.1.6 (The 5-Lemma). Consider the category Ab of abelian groups. Suppose the
following commutative diagram :

· · · A B C D E · · ·

· · · A′ B′ C ′ D′ E′ · · ·

f

`

g

m

h

n

j

p q

r s t u

where rows are exact sequences, m and p isomorphims, l surjective, and q injective. Then n is
an isomorphism.

Proof. It is a classical diagram chasing argument. Let us prove the surjectivity. Let c′ ∈ C ′.
Since p is surjective, ∃d ∈ D such that p(d) = t(c′). By commutativity, u(p(d)) = q(j(d)).
Since im t = keru, we have : 0 = u(t(c′)) = u(p(d)) = q(j(d)). Since q injective, j(d) = 0. So,
d ∈ ker j = im h. Whence ∃c ∈ C such that h(c) = d. By commutativity, t(n(c)) = p(h(c)) =
t(c′). Since t is a group homomorphism, t(n(c)− c′) = 0. Whence n(c)− c′ ∈ ker t = im s. So
∃b′ ∈ B′ such that s(b′) = c′ − n(c). But m is surjective, hence ∃b ∈ B such that m(b) = b′. By
commutativity, n(g(b)) = s(m(b)) = c′ − n(c). However, n is a group homomorphism, whence
n(g(b) + c) = c′. Thus n surjective.
Let us prove now the injectivity. Let c ∈ C such that n(c) = 0. Since t is a group homomorphism,
t(n(c)) = 0. By commutativity, p(h(c)) = 0. But p is injective, so h(c) = 0. Whence c ∈ kerh =
im g. So ∃b ∈ B such that g(b) = c. By commutativity, s(m(b)) = n(g(b)) = n(c) = 0. Hence
m(b) ∈ ker s = im r. Whence ∃a′ ∈ A′ such that r(a′) = m(b). But l surjective, so ∃a ∈ A such
that l(a) = a′. By commutativity, we have now : m(f(a)) = r(l(a)) = r(a′) = m(b). Since m is
injective : f(a) = b. Whence c = g(f(a)). But im f = ker g, thus c = 0.
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Scholia 2.1. Obviously, the proposition still holds for non abelian groups. Moreover, one can
notice that we only used the group structure for the groups C, C ′ and D′, with homomorphisms
n and t. All the other groups and homomorphisms can be replaced by pointed sets and pointed
set maps respectively, where l and q are no longer isomorphisms, but bijections. The "kernel" of
a pointed set map would then be defined as the (pointed) set of all points of the domain which
are maped into the basepoint of the target.

We will also need subsequently the following result from category theory.

Proposition 2.1.7. Let C be a fixed category. Consider a pullback square :

A B

D C

a

d b

c

Consider then the following commutative diagram :

E A

F D

e

f d

g

The statement says that the latter diagram is a pullback, if and only if the following induced
diagram is a pullback :

E B

F C

ae

f b

cg

Proof. It is a simple argument using the universal property of the pullback.

2.2 The Singular Homology with Coefficients in a Local System
We present here a generalization of the singular homology on a topological space. We use the
notations of appendix A. Our work is based on [9].

Definition 2.2.1. A local system A = {Ax, τγ} on a topological space X consists of two
functions : the first assigns to each point x (regarded as a singular 0-simplex) of X an abelian
group Ax, the second assigns to each path γ : ∆1 → X (regarded as a singular 1-simplex) of X
a group homomorphism τγ : Aγε1 → Aγε0 such that :

(i) if γ is constant, then τγ is the identity map;

(ii) for each singular 2-simplex h : ∆2 → X, there is an identity :

τhε0τhε2 = τhε1 .

If Ax = A for all x, where A is a fixed abelian group, and if all of the maps τγ are the identity
map, then we say that A is a constant local system with value A.
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Lemma 2.2.2. Let A = {Ax, τγ} be a local system on X. If two paths λ and λ′ in X are
homotopic : λ '∗ λ′, then τλ = τλ′.

Proof. Consider the paths λ, λ′ : I → X start at x0 = λ(0) = λ′(0) and end at x1 = λ(1) = λ′(1).
There is a path homotopyH : I×I → X, such thatH(t, 0) = λ(t), H(t, 1) = λ′(t), H(0, s) = x0,
H(1, s) = x1, for all t and s in I. We need to define a singular 2-simplex h : ∆2 → X, such that
hε2 = λ, hε1 = λ′ and hε0 = cx1 .
We will give an explicit formula, using geometry. Regard (via an affine map) ∆2 as a subspace of
R2 : a triangle (with interior) with vertices A = (0, 0), B = (1, 0) and C = (1

2 ,
√

3
2 ). The equation

of the line (BC) is : y = −
√

3x +
√

3. Now let P = (p1, p2) be any point in ∆2 except the
point A = (0, 0). Let LP be the line passing through P , parallel to the line (BC). Its equation
is of the form : y = −

√
3x + α. Since the point P belongs to LP , we get α =

√
3p1 + p2.

Let P̂ = (p̂, 0) be the point of intersection of the lines LP and (AB). The equation of the line
LP gives us that p̂ = p1 +

√
3

3 p2. Now let L̃P be the line passing through A and P , and let
P̃ be the point of intersection of L̃P with the line (BC). Denote mP the value of ‖BP̃‖. By
Thales, we get mP = ‖AB‖·‖PP̂‖

‖AP̂‖ . Since ‖AB‖ = 1, and by computation ‖PP̂‖ = 2
√

3
3 p2, we get :

mP = 2p2√
3p1+p2

. Now define a map :

f : ∆2 \ {(0, 0)} −→ I2 \ ({0} × I)

P = (p1, p2) 7−→ (‖AP̂‖, ‖BP̃‖) = (p̂,mP ) = (p1 +
√

3
3 p2,

2p2√
3p1 + p2

).

x

y

A B

C

P

P̂

P̃

LP

L̃P

It is well-defined, continuous and bijective. Now we can define the map h by :

h : ∆2 −→ X

(p1, p2) 7−→
{
Hf(p1, p2), if (p1, p2) 6= (0, 0),
x0, if (p1, p2) = (0, 0).

We must check that h is continuous. Since the maps H and f are both continuous, we only
need to check the continuity at (0, 0). Let (an), (bn) ⊂ R be sequences such that (an, bn) are
in ∆2 for all n, and lim

n→∞
an = lim

n→∞
bn = 0. Take U an open set in X containing x0. Since H

is continuous, the pre-image H−1(U) is an open set in I2 containing {0} × I. For any s in I,
by continuity of H, there exists Vs := [0, ds[×(]cs, c′s[∩I) ⊆ H−1(U) open set in I2, such that
(0, s) ∈ Vs and : H(0, s) = x0 ∈ H(Vs) ⊆ U . Whence {0} × I ⊆

⋃
s∈I Vs. Since {0} × I is
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compact in I2, there exists s1, . . . , sr such that {0}×I ⊆
⋃r
i=1 Vsi . Letm be the minimum of dsi ,

for all i = 1, . . . , r. Since limn→∞ an +
√

3
3 bn = 0, there exists N ∈ N, such that an +

√
3

3 bn ≤ m,
for any n ≥ N . Hence f(an, bn) ∈

⋃r
i=1 Vsi , for all n ≥ N . Thus h(an, bn) ∈ U , for all n ≥ N .

We get : lim
n→∞

Hf(an, bn) = x0, so h is continuous.
Now one can see that hε2 = λ, hε1 = λ′ and hε0 = cx1 . The equality τhε0τhε2 = τhε1 becomes
τcx1

τλ = τλ′ . Since cx1 is a constant map, τcx1
is the identity map, whence τλ = τλ′ .

Proposition 2.2.3. For any local system A = {Ax, τγ} on X, the maps τγ are isomorphism,
with inverses τγ, where γ is the inverse path of γ.

Proof. For any two paths γ and γ′ in X, if their concatenation γ ? γ′ is well defined, then
τγ?γ′ = τγ′τγ . Now choose γ′ to be γ. Since γ ? γ '∗ cγ(0), the constant map at γ(0), we get
τγτγ = idAγ(0) , and whence τγ is an isomorphism.

Local systems on a topological space X form a category in which a map A→ B is defined to
be a collection of maps {Ax → Bx}x∈X , such that for every singular 1-simplex γ, the following
diagram commutes :

Aγε1 Bγε1

Aγε0 Bγε0

Recall that the fundamental groupoid1 of a topological spaceX, denoted Π1(X), is a category
where the objects are the points of X, the maps are the homotopy classes of paths relative to
the boundary, and composition comes from concatenation of paths. A local system in X is then
equivalent to the data of a functor from Π1(X) to Ab : it follows directly from lemma 2.2.2.

Proposition 2.2.4. If X is a simply connected topological space, then any local system on X
is isomorphic to a constant local system on X.

Proof. Fix x0 ∈ X. We will write [λ]∗ for the homotopy class of a path λ relative to the
endpoints. Let A = {Ax, τγ} be a local system on X. It is equivalent to a functor F : Π1(X)→
Ab. A constant local system on X can be regarded as a functor G : Π1(X)→ Ab which sends
each object x in Π1(X) to Ax0 , and each morphism [λ]∗ to the identity map. To prove the
theorem, we only need to show there is a natural isomorphism η : F ⇒ G, that is to say a
family {ηx : Ax → Ax0}x∈X of abelian group isomorphisms, such that for each class [λ]∗ with
endpoints x and y, we have the following commutative diagram :

Ax Ay

Ax0 Ax0

τλ

ηx ηy

id

(2.1)

For each point x in X, since X is simply connected, define γx to be the unique path, up to
relative homotopy with endpoints, from x to x0, and define then ηx := τγx . It is well defined by
lemma 2.2.2 and it is an isomorphism by proposition 2.2.3. Now for any path λ in X from x
to y, we have [γy ? λ]∗ = [γx]∗, because X is simply connected. So we get ηyτλ = ηx by lemma
2.2.2, and so we have proved the commutativity of (2.1).

1Also named the Poincaré groupoid of X.
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We will often use the following notation subsequently.

Notation 2.2.5. Let X be topological space. For any singular n-simplex σ : ∆n → X, for any
0 ≤ i ≤ n, write σi = σ(i). In addition, for any 0 ≤ i ≤ j ≤ n define the singular 1-simplex
σij : ∆1 → X to be the composite :

∆1 ∆n X

σij

σ

where the unlabeled map is defined as the affine map sending 0 and 1, to i and j respectively.

Construction of the Homology with Coefficients in a Local System Let X be a
topological space, and n ∈ N. Let A = {Ax, τγ} be a local system on X. We want to construct
a chain complex using A. Define the abelian group Cn(X;A) to be :

Cn(X;A) :=
⊕

σ:∆n→X
Aσ0 .

Set C−1(X;A) := 0. We need to define the boundary operator ∂ : Cn(X;A)→ Cn−1(X;A).
Recall the universal property of direct sums of abelian groups : for any direct sum

⊕
j∈J Aj of

abelian groups, for any abelian group B and group homomorphisms ϕk : Ak → B, where k in
J , there is a unique group homomorphism ϕ̃ :

⊕
j∈J Aj → B such that the following diagram

commutes for each k.
Ak

⊕
j∈J

Aj B

ϕk

ϕ̃

Now, as we did for the construction of the singular complex S(X•) in appendix A, we will use
the face maps εi. Since Cn(X;A) is defined by using σ0, we need to see how the face map acts
on σ0, where σ is a singular n-simplex. We have :

(σεi)0 =
{
σ0, if i > 0,
σ1, if i = 0.

So the case i > 0 will be easy. Define ∂in to be the unique group homomorphism such that the
following diagram commutes :

Aσ0

Cn(X;A) Cn−1(X;A)
∂in

where the unlabeled map is defined as the identity map which sends Aσ0 to A(σεi)0 = Aσ0 ,
followed by the inclusion to Cn−1(X;A). We have only regarded the singular n-simplex σ as a
singular (n− 1)-simplex thanks to εi.
For the case i = 0, since (σε0)0 = σ1, consider the singular 1-simplex σ01 : the path from
σ0 to σ1, use the induced group isomorphim τσ01 : Aσ0 → Aσ1 given by the structure of the
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local system A, and finally regard Aσ1 as A(σε0)0 . Namely, define ∂0
n to be the unique group

homomorphism such that the following diagram commutes :

Aσ0

Cn(X;A) Cn−1(X;A)
∂0
n

where the unlabeled map is defined to be the composite :

Aσ0 A(σε0)0 = Aσ1 Cn−1(X;A)τσ01

Finally, we define the boundary operator for all n > 0 as :

∂n :=
n∑
i=0

(−1)i∂in,

and set ∂0 := 0. To prove now that C•(X;A) := {Cn(X;A), ∂} is a chain complex, we need to
show that ∂∂ = 0. It suffices to show that ∂n∂n+1(a, σ) = 0 for all elements (a, σ) ∈ Aσ0 , where
σ is a singular (n+ 1)-simplex (we indexed the element a of the group by σ).

∂∂(a, σ) = ∂

(∑
i

(−1)i∂in+1(a, σ)
)

= ∂

(
(τσ01(a), σεn+1

0 ) +
∑
i>0

(−1)i(a, σεn+1
i )

)

=
(
τ(σεn+1

0 )01
τσ01(a), σεn+1

0 εn0

)
+
∑
i>0

(−1)i
(
τ(σεn+1

i )01
(a), σεn+1

i εn0

)
+
∑
j>0

(−1)j
(
τσ01(a), σεn+1

0 εnj

)
+
∑
i,j>0

(−1)i+j(a, σεn+1
i εnj )

︸ ︷︷ ︸
=0, using (A.1) page 40

=
(
τ(σεn+1

0 )01
τσ01(a), σεn+1

0 εn0

)
−

τ(σεn+1
1 )01

(a), σεn+1
1 εn0︸ ︷︷ ︸

=σεn+1
0 εn0


︸ ︷︷ ︸

=0, because : τ(σεn+1
0 )01

τσ01=τ(σεn+1
1 )01

by (ii) of 2.2.1

+
∑
i>1

(−1)i
(
τ(σεn+1

i )01
(a), σεn+1

i εn0

)
+
∑
j>0

(−1)j
(
τσ01(a), σεn+1

0 εnj

)
=

∑
q>0

(−1)q+1
(
τ(σεn+1

q+1 )
01

(a), σεn+1
0 εnq

)
+
∑
j>0

(−1)j
(
τσ01(a), σεn+1

0 εnj

)
, by (A.1) page 40,

= 0, because (σεn+1
q+1 )01 = σ01, ∀q > 0.

Definition 2.2.6. The n-th singular homology group Hn(X;A) of a topological space X with co-
efficients in a local system A is the n-th homology groupHn(C•(X;A)) of the complex C•(X;A).
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Remark 2.2.7. When A is the constant system with value in Z, for any topological space X,
we have Hn(X;Z) = Hn(X), which is the usual singular homology from appendix A (hence the
fact that we often specify «with integer coefficients»).

We give a very useful result that will help us to compute homologies with constant coefficients.

Theorem 2.2.8. Let X be a topological space and A any abelian group. Then X is path-
connected if and only if H0(X;A) ∼= A.

Proof. It is the same argument as theorem A.4.2 (we used only the abelian structure of Z).

Theorem 2.2.9. Let A be any abelian group. We have :
H0(S0;A) = A⊕A,
Hk(S0;A) = 0, if k > 0,
H0(Sn;A) = Hn(Sn;A) = A, if n > 0,
Hk(Sn;A) = 0, if k 6= 0, n.

Proof. Omitted.

Local System Induced by the Fibers of a Serre Fibration We want now to exhibit an
example of local systems, using Serre fibrations, that will be useful subsequently. We need the
following general result.

Lemma 2.2.10. Suppose that :

E′ E

B′ B

f

p′ p

g

is a pullback square in Top, in which p : E → B is a Serre fibration. If g : B′ → B is a weak
equivalence, then so is f : E′ → E.

Proof. By proposition 2.1.3, the map p′ : E′ → B′ is a Serre fibration. Choose the basepoints
e′0 ∈ E′, e0 := f(e′0) ∈ E, b0 := p(e0) ∈ B, and b′0 := p′(e′0) ∈ B′. Set the fibers of the Serre
fibrations F := p−1(b0) ⊆ E and F ′ := p−1(b′0) ⊆ E′. Name h : F ′ → F the restriction and
corestriction of f . Let us prove that h is a homeomorphism. Note that we have the two following
pullbacks :

F ′ E′ F E

b′0 B′ b0 B

p′ p′ p p

Whence, the former diagram together with the diagram of the statement, induce the following
pullback (use the proposition 2.1.7):

F ′ E′ E

b′0 B′ B

p′

f

p

g
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Thus, by the universal property of pullbacks, F ∼= F ′. In particular, h is a weak equivalence.
The homotopy sequence of a Serre fibration enounced in the proposition 2.1.2 gives rise to two
exact sequences : the rows of the following diagram.

· · · πn+1(B′) πn(F ′) πn(E′) πn(B′) πn−1(F ′) · · ·

· · · πn+1(B) πn(F ) πn(E) πn(B) πn−1(F ) · · ·

g∗ h∗ f∗ g∗ h∗

The scholia 2.1 proves that f∗ is a group isomorphism for n ≥ 1. We need to show now that
f∗ is a bijection for the case n = 0. Let us prove first that f∗ : π0(E′) → π0(E) is surjective.
Recall that π0(X) of a topological space X is the set of path components of X. We will write
Px for the path component containing x ∈ X. Recall that since E′ is a pullback, it can be
written as B′ ×B E := {(b′, e) ∈ B′ × E | g(b′) = p(e)}, and both p′ and f are regarded as
projection maps. Take Pe ∈ π0(E). To prove the surjectivity, one must find e′ ∈ E′, such that
there exists a path in E from e to f(e′). Define b := p(e) and consider Pb ∈ π0(B). Since g
is a weak equivalence, the induced map g∗ : π0(B′) → π0(B) is a bijection. Thus, there exists
b′ ∈ B′ such that g∗(Pb′) = Pb. Whence there exists a path λ : I → B where λ(0) = b = p(e),
and λ(1) = g(b′). Using the homotopy lifting property of the Serre fibration p :

{0} E

I B

p

λ

λ′

where the unlabeled map maps 0 to e, there exists a path λ′ : I → E where λ′(0) = e and
pλ′(1) = λ(1) = g(b′). Take e′ := (b′, λ′(1)) ∈ E′. We have now that f(e′) = λ′(1). Hence, λ′ is
a path in E from e to f(e′), which ends the proof of the surjectivity.
Now, we need to show that f∗ is injective. It is rather simple, but one needs to be careful. The
proof will be somehow very similar to the 5-lemma. The idea is to choose the basepoints such
that one can always work with the fibers. Take e′1 and e′2 in E′ such that there exists a path in
E from f(e′1) to f(e′2). We need to show that there is a path in E′ between e′1 and e′2. One can
notice that the definition of π0(E′) and π0(E) is independent of the choice of basepoints e′0 and
e0, and hence this same fact holds for f∗ : π0(E′)→ π0(E). Thus, one can set the basepoints of
E′ and E to be e′1 and f(e′1) respectively ; and set p′(e′1) and p(f(e′1)) for the basepoints of B′
and B respectively. The fibers F , F ′ will although change, but the same consequences hold :
one can define the weak equivalence h as before, and p and p′ give rise to two exact sequences.
In particular, with the inclusions i′ : F ′ ↪→ E′, i : F ↪→ E, we have :

· · · π1(B′) π0(F ′) π0(E′) π0(B′)

· · · π1(B) π0(F ) π0(E) π0(B)

δ′

g∗

i′∗

h∗

p′∗

f∗ g∗

δ i∗ p∗

(2.2)

Since there is a path in E from f(e′1) to f(e′2), there is an induced path in B from pf(e′1) to
pf(e′2). Whence, by commutativity of the diagram (2.2), we get :

g∗p
′
∗(Pe′1) = p∗f∗(Pe′1) = p∗f∗(Pe′2) = g∗p

′
∗(Pe′2).
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By bijectivity of g∗, we get : p′∗(Pe′1) = p′∗(Pe′2), so there is a path in B′ from p′(e′1) to p′(e′2).
Hence Pe′1 and Pe′2 are in the «kernel» of p′∗ which is equal to the image of i′∗ by exactness of
the top row of (2.2) : there exist x′1 and x′2 in F ′ such that there are paths in E′ from x′1 to
e′1 and from x′2 to e′2. Since x′1 and e′1 are both in the fibers, we can make the assumption that
x′1 = e′1. Now, in order to prove the injectivity, we only need to prove that the path component
Px′2 lies in the «kernel» of i′∗, which is defined by : ker i′∗ = {Px ∈ π0(F ′) | i′∗(Px) = Pe′1}. By
commutativity of (2.2) :

i∗(h∗(Px′2)) = f∗(i′∗(Px′2)) = f∗(Pe′2) = f∗(Pe′1).

Then h∗(Px′2) ∈ ker i∗ = {Px ∈ π0(F ) | i∗(Px) = Pf(e′1) = f∗(Pe′1)}. By exactness, this kernel
equals to im δ. Whence there exists b in B such that δ(Pb) = h∗(Px2). Since the map g∗ is
surjective, there exists b′ in B′ such that g∗(Pb′) = Pb. So by commutativity, we get :

h∗(δ′(Pb′)) = δ(g∗(Pb′)) = δ(Pb) = h∗(Px′2).

By bijectivity of h∗, we get Px′2 = δ′(Pb′). Whence we obtain : i′∗(δ(Pb′)) = i′∗(Px′2) = Pe′2 . Since
we have the exactness : im δ′ = ker i′∗, we get Px′2 ∈ ker i′∗. Thus : Pe′2 = i′∗(Px′2) = Pe′1 .

Example 2.2.11. Suppose p : E → B is a Serre fibration, and q ∈ Z a fixed integer. For each
x in B we use the notation Fx := p−1(x) : the fiber of x over B. Define the local system induced
by the fibers of the Serre fibration p : A = {Ax, τγ} as follows. The abelian groups are defined
by Ax := Hq(Fx), for each x in B. Given a singular 1-simplex γ : ∆1 → B, define Eγ → ∆1 by
the pullback square :

Eγ E

∆1 B

p

γ

that is to say : Eγ = ∆1 ×B E, and the unlabeled maps are the projections maps. We have
then a diagram with pullbacks at fibers :

Fγ(0) Eγ Fγ(1)

{0} ∆1 {1}

(2.3)

Clearly, the maps of the bottom row of (2.3) are weak equivalences. The map Eγ → ∆1

is a Serre fibration (use proposition 2.1.3). Whence, by the lemma 2.2.10, the maps of the
upper row of (2.3) are weak equivalences. Thus, we have the induced group isomorphisms
Hq(Fγ(0))→ Hq(Eγ) andHq(Fγ(1))→ Hq(Eγ). The latter isomorphism induces an isomorphism
Hq(Eγ)→ Hq(Fγ(1)) which is its inverse. Define then τγ as the composite :

Hq(Fγ(0)) Hq(Eγ) Hq(Fγ(1))
∼=

τγ

∼= (2.4)

Of course, if γ is constant, τγ is the identity map. To prove that A is indeed a local system on
B, we must now show that for any singular 2-simplex h : ∆2 → B, the following identity holds :

τhε0τhε2 = τhε1 .
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Define Eh as the following pullback :

Eh E

∆2 B

p

h

The identity follows from the commutativity of the following diagram :

Fh(2)

Ehε1

Fh(0) Ehε2 Fh(1)

Eh

Ehε0 (2.5)

where the maps Fh(i) → Eh and Ehεi → Eh, with i = 0, 1, 2, are defined as follows. Recall that
Fh(0) and Ehε2 are obtained as the pullbacks of the following diagrams respectively :

Fh(0) E Ehε2 E

{h(0)} B ∆1 B

p p

hε2

But one can define Fh(0) and Ehε2 equivalently as the pullbacks of the induced diagram (use
repeatedly the proposition 2.1.7) :

Fh(0) Ehε2 Eh E

{0} ∆1 ∆2 B

p

ε2 h

and let Fh(0) → Eh and Ehε2 → Eh be the dashed maps. The commutativity of the triangle
diagram follows immediately by construction :

Eh

Fh(0) Ehε2

Now, we wish do define Fh(0) → Ehε1 . By the same argument, one can take Ehε1 as the pullback
square of the diagram :

Ehε1 Eh

∆1 ∆2ε1
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Whence, by the universal property of the pullbacks and the proposition 2.1.7 :

Fh(0)

Ehε1 Eh E

{0} ∆1 ∆2 B

p

ε1 h

there is a unique map (dashed in the diagram) Fh(0) → Ehε1 such that the diagram com-
mutes. Whence, by construction, we have the commutativity of the following diagram which
corresponds to left bottom corner of (2.5).

Ehε1 Eh

Fh(0) Ehε2

One can get the whole diagram (2.5) inductively. Thus we have showed that the diagram (2.5)
commutes. All the maps Fh(i) → Eh and Ehεi → Eh, with i = 0, 1, 2, are weak equivalences (use
the lemma 2.2.10). Using directly the definition (2.4) of τγ , the identity follows : τhε0τhε2 = τhε1 .

2.3 Dress’ Construction
We now finally introduce the Serre spectral sequence. It is sometimes called the Leray-Serre
spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence.
The result is due to the great mathematician Jean-Pierre Serre in his doctoral dissertation
[15], in 1951. We will give an elegant construction due to Andreas Dress, from his article [4],
in 1967. Our work is based on [10]. Basically, the idea is to construct a double complex from
any Serre fibration in order to apply theorem 1.3.5. We will get two spectral sequences. One
will be the Serre spectral sequence of the Serre fibration, and the other will help us to determine
the convergence of the Serre spectral sequence.
Theorem 2.3.1 (Leray-Serre). Let f : E → B be a Serre fibration. Then, there is a first
quadrant spectral sequence {Er, dr}r≥2, called the Serre spectral sequence, with second page
E2
p,q = Hp(B;Hq(F )) : the singular homology with coefficients in the local system induced by

the fibers of f . The spectral sequence converges to the singular homology of the topological
space E :

E2
p,q = Hp(B;Hq(F ))⇒ Hp+q(E).

Proof. We will apply the theorem 1.3.5, so we will construct a double complex. For all natural
numbers p, q, consider the set of continuous maps :

Sp,q = {(σp,q, τp) | σp,q : ∆p ×∆q → E, τp : ∆p → B continuous with fσp,q = τppr1} ,

where pr1 is the projection ∆p × ∆q → ∆p. Thus (σp,q, τp) belongs to Sp,q if the following
diagram commutes :

∆p ×∆q E

∆p B

σp,q

pr1 f

τp

(2.6)
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Apply the free abelian group functor FAb (defined in appendix A) : define for all p, q ≥ 0 :

Kp,q = FAb(Sp,q),

and set Kp,q = 0 whenever p < 0 or q < 0. We must now define the horizontal and vertical
boundaries : for p, q > 0,

∂′p,q : Kp,q −→ Kp−1,q

(σp,q, τp) 7−→
p∑
i=0

(−1)i (σp,q(εpi × id∆q), τpεpi )

∂′′p,q : Kp,q −→ Kp,q−1

(σp,q, τp) 7−→
q∑
j=0

(−1)j+p(σp,q(id∆p × εqi ), τp),

and set ∂′p,q = ∂′′p,q = 0 whenever p ≤ 0 or q ≤ 0. We get : ∂′∂′ = ∂′′∂′′ = ∂′′∂′ + ∂′∂′′ = 0.
Thus (K, ∂′, ∂′′) is a double complex. Now by theorem 1.3.5, we get two first quadrant spectral
sequences {IEr,I dr} and {IIEr,II dr}. The former will be the Serre spectral sequence. The lat-
ter will help us to compute the homology of the total complex associated to the double complex.

Let us work first with the second spectral sequence {IIEr,II dr}. We will prove that the
homology of the total complex is the singular homology (with integer coefficients) of the topo-
logical space E : Hp+q(tot(K)•) = Hp+q(E). We drop the exponent II in our discussion. We
start by computing the E1-page of the spectral sequence. By theorem 1.3.5, it is given by the
homology of the rows : E1

p,q = H ′p,q(K).
We reinterpret our construction of the double complex. Fix q, and think p as varying. Recall the
diagram (2.6). Since we have the homeomorphism ∆q ∼= Iq, the standard q-simplex is locally
compact and Hausdorff, so there is a bijection between continuous maps σp,q : ∆p × ∆q → E
and continuous maps σ̂p,q : ∆p → Map(∆q, E), where σ̂p,q(t)(s) = σp,q(t, s), for all t ∈ ∆p and
s ∈ ∆q. So one can regard the top row of the diagram (2.6) as a map ∆p → Map(∆q, E).
Now consider the topological space E′ defined by the pullback square :

E′ Map(∆q, E)

B Map(∆q, B)

f̂

i

where the map i : B → Map(∆q, B) assigns to every point b in B, the constant map cb : ∆q → B
in b. Define the set Pp,q to be all continuous maps ∆p → E′. We claim that there is a bijection
between Pp,q and Sp,q.
For all (σp,q, τp) ∈ Sp,q, since E′ is defined as a pullback, there is a (unique) continuous map
` : ∆p → E′ such that the following diagram commutes :

∆p

E′ Map(∆q, E)

B Map(∆q, B)

τp

σ̂p,q

`

f̂

i
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So define F : Sp,q → Pp,q as (σ̂p,q, τp) 7→ `. Now, if we name p1 : E′ → Map(∆q, E) and
p2 : E′ → B the projections associated to the pullback, define G : Pp,q → Sp,q as ` 7→ (p1`, p2`).
The maps F and G are mutual inverses, and so we have proved that there is a bijection between
Pp,q and Sp,q.
Applying the bijection to the horizontal boundary, we get :

∂′p,q : Kp,q −→ Kp−1,q

` 7−→
p∑
i=0

(−1)i`εpi ,

Thus every q-th row of the double complex is exactly the singular chain complex of E′. Now since
B → Map(∆q, B) is a homotopy equivalence by proposition 2.1.5, hence a weak equivalence,
the top row map E′ → Map(∆q, E) is a weak equivalence (by lemma 2.2.10). Consider now
E → Map(∆q, E) defined the same way as B → Map(∆q, B). It is also a weak equivalence by
proposition 2.1.5. Whence, we obtain the isomorphisms :

Hp(E′)
∼=−→ Hp(Map(∆q, E))

∼=←− Hp(E).

So Hp(E′) ∼= Hp(E), for every p. We have just proved that the homology of the rows H ′p,q(K),
that is to say the first page E1

p,q of the spectral sequence, is the singular homology Hp(E).
Now let us compute the second page E2

p,q. Recall that E2
p,q = H ′′pH

′
q(K) := Hp(H ′q,•(K), ∂′′),

by theorem 1.3.5. Applying our previous bijection to the vertical map ∂′′, we get :

∂′′p,q : Kp,q −→ Kp,q−1

` 7−→
q∑
j=0

(−1)j+p`,

whence the map alternates between the identity map and the zero map. Thus, for each column
p, we get chain complexes :

· · · Hp(E) Hp(E) Hp(E) Hp(E) 00 0

Therefore, we get (pay attention to the swap between p and q) :

E2
p,q = Hp(H ′q,•(K), ∂′′)

=



kerHq(E) 0−→ Hq(E)
im Hq(E) = Hq(E) , p > 0 and odd,

kerHq(E) = Hq(E)
im Hq(E) 0−→ Hq(E)

, p > 0 and even,

kerHq(E) −→ 0
im Hq(E) 0−→ Hq(E)

, p = 0.

=
{

0, p > 0,
Hq(E), p = 0.

Hence we have computed the second page. It is easy to see now that Erp,q = E2
p,q, for each r ≥ 2,

because Er+1
p,q = Hp,q(Er, dr). Hence E∞p,q = E2

p,q.
Now we can finally determine the homology of the total complex. Recall that there exists a
filtration F• of the homology of the total complex Hp+q(tot(K)•) :

0 = F−1Hp+q(tot(K)•) ⊆ . . . ⊆ Fp+q−1Hp+q(tot(K)•) ⊆ Fp+qHp+q(tot(K)•) = Hp+q(tot(K)•),
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such that : E2
p,q = E∞p,q

∼=
Fp(Hp+q(tot(K)•))
Fp−1(Hp+q(tot(K)•))

, according to theorem 1.3.5. Now fix the

integer n := p+ q. We will write Fp for Fp(Hp+q(tot(K)•)). We get :

Hn(E) = E2
0,n = F0

F−1
= F0 ⇒ F0 = Hn(E),

0 = E2
1,n−1 = F1

F0
= F1
Hn(E) ⇒ F1 = Hn(E),

...

0 = E2
n,0 = Fn

Fn−1
= Hn(tot(K)•)

Hn(E) ⇒ Hn(E) = Hn(tot(K)•).

So we have proved that the homology of the total complex is the singular homology of the
topological space E : Hp+q(tot(K)•) = Hp+q(E).

We consider now the other spectral sequence {IErp,q, dr}. We drop the exponent I for our
discussion. Recall from theorem 1.3.5 that E1

p,q = H ′′p,q(K), the homology of the columns. Our
goal is to show that H ′′p,q(K) ∼= Cp(B;Hq(F )), the abelian group of the singular chain complex
on B with coefficients in the local system induced by the fibers of the Serre fibration f . We
reinterpret again our construction of the double complex. For all continuous maps τp : ∆p → B,
denote Sp,q(τp) = {σp,q | σp,q : ∆p ×∆q → E, continuous with fσp,q = τppr1}. One sees that
the set Sp,q equals

∐
τp:∆p→B

Sp,q(τp). Fix p and the map τp : ∆p → B. Now consider the fiber

Fτp of the induced Serre fibration f̂ : Map(∆p, E) → Map(∆p, B), defined by the following
pullback square :

Fτp Map(∆p, E)

{∗} Map(∆p, B)

f̂

j

where j is defined by j(∗) = τp. Define the set Lp,q(τp) to be all continuous maps ∆q → Fτp . As
before, one can argue that there is a bijection between Lp,q(τp) and Sp,q(τp), for all continuous
maps τp : ∆p → B, using the universal property of the pullback.
Now we prove that the singular homology of Fτp is isomorphic to the homology of the fiber
Fτp(0) := f−1(τp(0)). For that consider the diagram :

Fτp Map(∆p, E) Map(∆p, B)

Fτp(0) E B

f̂

f

where the column maps are given by restricting a map from ∆p to its zero vertex. The two right
vertical maps are weak equivalences by proposition 2.1.5. Now using a similar argument as for
lemma 2.2.10, since the rows induce exact sequences of homotopy groups, using the 5-lemma
and scholia 2.1, one can show that the map Fτp → Fτp(0) is a weak equivalence : one just has
to be careful for the case π0 where sets appear. Whence Hq(Fτp) ∼= Hq(Fτp(0)), for all q.
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We can compute the homology of the columns. We have :

Kp,q = FAb(Sp,q)
= FAb(

∐
τp:∆p→B

Sp,q(τp))

=
⊕

τp:∆p→B
FAb(Sp,q(τp)), it follows from the definition of FAb

=
⊕

τp:∆p→B
FAb(Lp,q(τp)), using the bijection.

Using again the bijection, one sees that the induced boundary map on FAb(Lp,q(τp)), for a
fixed τp, is given by, for ` : ∆q → Fτp :

∂′′τp : FAb(Lp,q(τp)) −→ FAb(Lp,q−1(τp))

` 7−→
q∑
j=0

(−1)j+p`εqi

which is, up to a sign, the usual boundary operator of the singular chain complex (defined in
page 40). Whence we get (using proposition A.1.8) :

H ′′p,q(K) =
⊕

τp:∆p→B
Hq(FAb(Lp,q(τp)), ∂′′τp)

=
⊕

τp:∆p→B
Hq(Fτp)

∼=
⊕

τp:∆p→B
Hq(Fτp(0))

= Cp(B;Hq(F )).

Now the second page is given by E2
p,q = H ′pH

′′
q (K) = Hp(C•(B;Hq(F )), ∂′). So we only have to

determine how the map ∂′ works with C•(B;Hq(F ). Using the bijection we get :

∂′p,q : Kp,q −→ Kp−1,q

` : ∆q → Fτp 7−→
p∑
i=0

(−1)i`i

where `i : ∆q → Fτpεpi
, and `i(x) = `(x)εpi , for all x in ∆q. Now we want to prove the

commutativity of the following diagram :

⊕
τp:∆p→B

Hq(Fτp)
⊕

τp:∆p→B
Hq(Fτp(0)) = Cp(B;Hq(F ))

⊕
τp−1:∆p−1→B

Hq(Fτp−1)
⊕

τp−1:∆p→B
Hq(Fτp−1(0)) = Cp−1(B;Hq(F ))

∼=

∂′ δ

∼=

(2.7)

where δ is the usual boundary map of the chain complex C•(B;Hq(F )), defined on page 16. Fix
a map τp : ∆p → B. To prove the commutativity of (2.7), it suffices to consider a class [`] in
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Hq(Fτp), where ` : ∆q → Fτp is continuous such that ∂′′τp(`) = 0. The top row isomorphism of
(2.7) sends [`] to [˜̀] where ˜̀ : ∆q → Fτp(0) is the continuous map such that ˜̀(x) = `(x)(0), for
all x in ∆q. The bottom row isomorphism is defined in a similar way. Now take [`] in Hq(Fτp).
The induced map ∂′ maps [`] to [∂′(`)] =

∑p
i=0(−1)i[`i]. Note that ˜̀

i = ˜̀ for all i ≥ 1, and
˜̀0(x) = `(x)(1), for all x in ∆q. Hence the composite :

Hq(Fτp)
∂′→

⊕
τp−1:∆p−1→B

Hq(Fτp−1) ∼=
⊕

τp−1:∆p→B
Hq(Fτp−1(0)),

maps [`] to [ ˜̀0] +
∑p
i=1(−1)i[˜̀]. Now let us determine the other composite in the diagram (2.7).

Again, take [`] in Hq(Fτp). The top row isomorphism sends [`] to [˜̀]. Now apply the boundary
map δ on [˜̀]. Recall that δp =

∑p
i=0(−1)iδip, where δip([˜̀]) = [˜̀], for all i ≥ 1, and δ0

p([˜̀]) = [ ˜̀0].
To see this, let γ be the path from τp(0) to τp(1) given by the composite : ∆1 ↪→ ∆p τp→ B.
Write τγ for the isomorphism induced by γ given by the structure of the local system Hq(F ).
Recall how we have defined τγ , we wrote Eγ ⊆ ∆1 × E the following pullback :

Eγ E

∆1 B

f

γ

which induced pullbacks at fibers :

Fτp(0) Eγ Fτp(1)

{0} ∆1 {1}

ϕ ψ

where we proved that ϕ and ψ are weak equivalences. They induced isomorphisms on homology
groups, and so τγ is given by :

Hq(Fτp(0)) Hq(Eγ) Hq(Fτp(1))
∼=

τγ

∼=

The map δp0 is given by τγ followed by the inclusion to Cp−1(B;Hq(F )). Thus, to show that
δ0
p([˜̀]) = [ ˜̀0], we need to prove that the following diagram commutes :

Hq(Fτp) Hq(Fτp(0))

Hq(Eγ)

Hq(Fτpεp0) Hq(Fτp(1))

∼=

ϕ̂
∼=

∼=

ψ̂
∼=

(2.8)

where the vertical unlabeled map sends [`] to [`0]. Now recall that homotopic maps induce the
same map in homology (this stems from the homotopy invariance axiom of Eilenberg-Steenrod).
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So we only need to show that the maps : Fτp → Fτp(0) → Eγ and Fτp → Fτpεp0 → Fτp(1) → Eγ
are homotopic. Let us name the two composites G,G′ : Fτp → Eγ respectively. We have, for
any g in Fτp , G(g) = (0, g(0)) and G′(g) = (1, g(1)). Name g01 the composite ∆1 ↪→ ∆p g→ E.
Define the map H by :

H : Fτp × I −→ Eγ

(g, t) 7−→ (t, g01(t))

By definition of Fτp , we have fg01(t) = γ(t) for any t in I ∼= ∆1. So H is well-defined. It is
also continuous since it is an evaluation on I. Notice that H(g, 0) = G(g) and H(g, 1) = G′(g),
for any g. Thus H is a homotopy from G to G′. Thus, the diagram (2.8) commutes, and so we
proved that δ0

p([˜̀]) = [ ˜̀0].
Whence the composite :

Hq(Fτp) ∼= Hq(Fτp(0))
δ→

⊕
τp−1:∆p→B

Hq(Fτp−1(0)),

maps [`] to [ ˜̀0] +
∑p
i=1(−1)i[˜̀]. We have just proved the commutativity of (2.7). Thus, the

induced map ∂′ is exactly the boundary map of the chain complex C•(B;Hq(F )), and so we get
E2
p,q = Hp(B;Hq(F )), which ends the proof.

Corollary 2.3.2. Let f : E → B be a Serre fibration with fiber F , where B is simply connected.
Then the second page of the Serre spectral sequence is : E2

p,q = Hp(B;Hq(F ))⇒ Hp+q(E).

Proof. Apply proposition 2.2.4.

We give now an immediate easy application of the Serre spectral sequence.

Proposition 2.3.3. Let f : E → B be a Serre fibration with fiber F . If B is simply connected
and E is path-connected, then F is path-connected.

Proof. Consider the Serre spectral sequence. We have : E2
0,0 = E∞0,0 = H0(E), because it is a

first quadrant sequence. Since E is path-connected, we get H0(E) = Z. But we also have :
E2

0,0 = H0(B;H0(F )) = H0(F ) by theorem 2.2.8, and so H0(F ) = Z. Conclude with theorem
A.4.2.

The following result will be very useful subsequently.

Proposition 2.3.4. If f : E → B is a Serre fibration, where E is simply connected, then the
limit page of the Serre spectral sequence induced by f is given by : E∞p,q = 0 for all p and q,
except E∞0,0 = Z.

Proof. Since E is contractible, we get Hn(E) = 0 for all n > 0, and H0(E) = Z. The proposition
follows from the convergence of the Serre spectral sequence.
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Chapter 3

Applications of the Serre Spectral
Sequence

3.1 The Path Fibration
We recall the definition of a fibration.

Definition 3.1.1. A map p : E → B is a fibration if it is a continuous map which has the
homoptopy lifting property with respect to any topological space (see definition 2.1.1). If (B, b0)
is a pointed space, the subspace F := p−1(b0) is called the fiber of the fibration p. We write the
fibration : F ↪→ E

p→ B.

Of course, any fibration is a Serre fibration. From any space B, it gives rise to a fibration
ΩB ↪→ PB → B that will be very useful subsequently.

Definition 3.1.2. Let (B, b0) be a pointed space. The path space PB of (B, b0) is the topological
space : PB = {λ ∈ Map(I,B) | λ(0) = b0} ⊆ Map(I,B).

Proposition 3.1.3. Let (B, b0) be a pointed space. The map p : PB → B defined by p(λ) = λ(1)
for any λ in PB is a fibration, with fiber ΩB : the loop space of B.

Proof. Since the map p can be seen as an evaluation : Map(I,B)× {1} → B, it is continuous.
Let X be any topological space. Let H : X × I → B be a homotopy, and h̃0 : X → PB a
continuous map, such that the following diagram commutes :

X × {0} PB

X × I B

h̃0

p

H

H̃ (3.1)

where H̃ is still to be defined. For all 0 < t ≤ 1, for all x ∈ X, let H[0,t](x) : I → B be the path
defined by, for all s in I : H[0,t](x)(s) = H(x, st) Define the map :

H̃ : X × I −→ PB

(x, t) 7−→ h̃0(x) ? H[0,t](x),

where ? represents the concatenation of paths. We have : h̃0(x)(1) = H(x, 0), because (3.1)
commutes, so the map H̃ is well defined. The continuity follows from the fact that H̃ is
equivalent to a continuous map G : X × I × I → B, where G(x, t, s) = H̃(x, t)(s). It is
straightforward to see that p−1(b0) = ΩB.
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Definition 3.1.4. The path fibration of a pointed space (B, b0) is the fibration of the previous
proposition : ΩB ↪→ PB → B.

Proposition 3.1.5. For any pointed space (B, b0), the path space PB is contractible.

Proof. Define the map f : PB → {b0} by f(λ) = λ(0), for all λ in PB. Let g : {b0} → PB be
the constant path in B at b0. Of course fg = id{b0}. For any λ in PB, the map gf(λ) is the
constant path in B at λ(0). We must show that gf ' idPB. Define the map H : PB× I → PB
by H(λ, t)(s) = λ(s(1 − t)), for any λ in PB, and any t, s in I. We get H(λ, 0) = λ and
H(λ, 1) = gf(λ). The continuity follows from the fact that H is equivalent to the map Ĥ,
which is the composition of the following continuous maps :

PB × I × I PB × I B,
idPB × h evaluation

where h(t, s) = s(1− t), for all t and s in I. So H is the desired homotopy.

Corollary 3.1.6. For a pointed space (B, b0), we get isomorphisms : πn+1(B, b0) ∼= πn(ΩB, b0),
for all n ≥ 1. For the case n = 0, there is a bijection between π1(B) and π0(ΩB).

Proof. Consider the path fibration ΩB ↪→ PB → B. Apply theorem 2.1.2. By the previous
proposition, we get πn(PB, b0) = 0, for all n, which gives the isomorphisms.
For the case n = 0, define the map F : π1(B)→ π0(ΩB) by F ([λ]∗) = Pλ, the path component
of the loop λ. It is a well defined bijective set map : two path components Pλ and Pλ′ are equal
if and only if there exists a path Ĥ : I → ΩB, from λ to λ′. But since I is locally compact and
Hausdorff, the map Ĥ is equivalent to a map H : I × I → B : a path homotopy from λ to λ′,
which is the case if and only if [λ]∗ = [λ′]∗.

Remark 3.1.7. The preceeding result could have been proved by using the suspension functor
Σ and the fact that [ΣX,Y ] = [X,ΩY ].

We have constructed a fibration for any topological space. In the following sections, the path
fibration will be extremely useful when applied to the Serre spectral sequence.

3.2 The Hurewicz Isomorphism Theorem
Theorem 3.2.1. Let X be a path-connected space. The the first group of homology H1(X) is the
Abelianization of the fundamental group π1(X) of X. In other words, we have the isomorphism :

H1(X) ∼= π1(X)/[π1(X), π1(X)].

Proof. Omitted, a proof can be found for instance in [13].

Theorem 3.2.2 (Hurewicz Isomorphism Theorem). Let X be a simply connected space.
Then the firsts nontrivial homotopy and homology groups occur in the same dimension and are
equal, i.e., given a positive integer n ≥ 2, if πq(X) = 0, for 1 ≤ q < n, then Hq(X) = 0, for
1 ≤ q < n, and Hn(X) = πn(X).

Proof. We will prove the statement by induction. Start with n = 2. Consider the Serre
spectral sequence induced by the path fibration ΩX ↪→ PX → X. The second page is given
by E2

p,q = Hp(X;Hq(ΩX)). When q = 0, since ΩX is path-connected (because π0(ΩX) =
π1(X) = 0 by corollary 3.1.6), we get H0(ΩX) = Z. So the 0-th row of the second page is
given by the singular homologies of X : E2

p,0 = Hp(X). We have H0(X) = Z because X is
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path connected, and H1(X) = 0 because π1(X) = 0 (use theorem 3.2.1). When p = 0, we have
H0(X;Hq(ΩX)) = Hq(ΩX) by theorem 2.2.8. So the 0-th column is given by the homologies
of ΩX : E2

0,q = Hq(ΩX). So a part of the second page can be represented as :

0 1 2 3

0

1

2

Z 0 H2(X)

H1(ΩX)

H3(X)

H2(ΩX)

The differential d2
2,0 : H2(X) → H1(ΩX) must be an isomorphism. If not, some elements in

H2(X) or in H1(ΩX) would survive in the third page, meaning that E3
2,0 or E3

0,1 would not be

zero, because E3
2,0 = ker d2

2,0
im 0→H2(X) and E3

0,1 = kerH1(ΩX)→0
im d2

2,0
. And because of the structure of a

first quadrant spectral sequence, we have E∞2,0 = E3
2,0 and E∞0,1 = E3

0,1, meaning these elements
will survive all the way to the limit page. However the only non trivial group of the limit
page is E∞0,0 = Z, by proposition 2.3.4 because PX is contractible. Whence d2

2,0 is really an
isomorphism.
By theorem 3.2.1, we have H1(ΩX) ∼= π1(ΩX)/[π1(ΩX), π1(ΩX)], but we have the isomorphism
π1(ΩX) ∼= π2(X), which is an abelian group. Whence : H1(ΩX) ∼= π1(ΩX) ∼= π2(X). Thus we
obtain : H2(X) ∼= π2(X).

Now let n > 2 be any fixed positive integer. By the induction hypothesis applied to ΩX,
Hq(ΩX) ∼= πq(ΩX) ∼= πq+1(X) = 0, for q < n − 1, and Hn−1(ΩX) ∼= πn−1(ΩX) ∼= πn(X). By
the same argument as before, the second page E2 of the Serre spectral sequence of the path
fibration is :

0 1 2 · · · n

0

1

...

n− 1

Z 0 0 0

0 0 0 0 0

0 0 0 0 0

Hn(X)

Hn−1ΩX

As before, because PX is contractible, dnn,0 : Hn(X) → Hn−1(ΩX) is also an isomorphism.
Thus : Hn(X) ∼= Hn−1(ΩX) ∼= πn−1(ΩX) ∼= πn(X).

Corollary 3.2.3. For any n ≥ 2, we have : πq(Sn) = 0, for q < n, and πn(Sn) = Z.

Proof. Apply theorems A.4.6 and 3.2.2.
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3.3 The Gysin and Wang sequences
The Serre spectral sequence of a fibration induces exact sequences of homology groups. First
we recall some basic results in homological algebra. We define the cokernel of an abelian group
homomorphism f : G→ H by the quotient coker(f) = H/(imf).

Proposition 3.3.1 (Splicing exact sequences). Let A → B
f→ C and D → E

g→ F be exact
sequences of abelian groups. Suppose there is an isomorphism ϕ : coker(f)

∼=→ ker g. Then there
is an exact sequence :

A −→ B
f−→ C

ψ−→ D
g−→ E −→ F

c 7−→ ϕ(c)

where c is the class of c in coker(f).

Proof. Let c be in kerψ. It is equivalent to say that ψ(c) = ϕ(c) = 0, which is equivalent to say
that c = 0, because ϕ is an isomorphism. But this means that c is in im f . We have just proved
that kerψ = im f . Let d be in ker g, this means that there exists c in C such that ϕ(c) = d,
because ϕ is an isomorphism. This is equivalent to say that ψ(c) = d and so d is in im ψ. We
have just proved that ker g = im ψ.

Lemma 3.3.2. Given the following diagram of abelian groups :

A

B

0 C D E

0

f

g
hg

h k

where the row and the column are both exact sequences, the following induced sequence is exact :

A B D E
f hg k

Proof. This is an easy proof.

Theorem 3.3.3 (The Gysin Sequence). Let Sn ↪→ E → B be a Serre fibration, where B is
simply connected and n ≥ 1. Then there exists an exact sequence :

· · · Hr(E) Hr(B) Hr−n−1(B) Hr−1(E) · · ·

In particular, for 0 ≤ r ≤ n− 1, we have isomorphisms : Hr(E) ∼= Hr(B).

Proof. The second page of the Serre spectral sequence of the fibration is given by :

E2
p,q = Hp(B;Hq(Sn)) =

{
Hp(B;Z), if q = 0, n,
0, otherwise,
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using theorem A.4.6. Whence, the only non-zero differentials are dn+1
p,0 : En+1

p,0 → En+1
p−n−1,n and

En+1
p,q = E2

p,q. It follows that :

Hp,q(En+1, dn+1) = En+2
p,q = . . . = E∞p,q =


0, if q 6= 0, n,
ker dn+1

p,0 , if q = 0,
coker dn+1

p+n+1,0, if q = n.

And so we get exact sequences :

0 ker dn+1
p,0︸ ︷︷ ︸

=E∞p,0

En+1
p,0 = E2

p,0

E2
p−n−1,n = E∞p−n−1,n coker dn+1

p,0︸ ︷︷ ︸
=E∞p−n−1,n

0

Since by first isomorphism theorem we have : En+1

ker dn+1
p,0

∼= im dn+1
p,0 , we get by splicing the above

exact sequences (proposition 3.3.1) the following exact sequence :

0 E∞p,0 E2
p,0 E2

p−n−1,n E∞p−n−1,n 0dn+1 (3.2)

Now, by the structure of the limit page E∞, the fitration of Hr(E) is given by, for all r :

{0} = F0 = · · · = Fr−n−1 ⊆ Fr−n︸ ︷︷ ︸
=E∞r−n,n

= · · · = Fr−1 ⊆ Fr = Hr(E)

And so we get exact sequences for all r :

0 E∞r−n,n Hr(E) Hr(E)
E∞r−n,n

= E∞r,0 0 (3.3)

Putting together the exact sequences (3.2) and (3.3) :

...

Hr(E) 0

0 E∞r,0 E2
r,0︸︷︷︸

=Hr(B)

E2
r−n−1,n︸ ︷︷ ︸

=Hr−n−1(B)

E∞r−n−1,n 0

0 Hr−1(E)

0 E∞r−1,0 · · ·

0

dn+1
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Using repeatedly lemma 3.3.2, we obtained the desired exact sequence (using the dashed map
of the previous diagram) :

· · · Hr(E) Hr(B) Hr−n−1(B) Hr−1(E) · · ·dn+1

In particular, when 0 ≤ r ≤ n− 1, we have Hr−n−1(B) = 0 and so :

· · · 0 Hr(E) Hr(B) 0 · · ·

Whence : Hr(E) ∼= Hr(B).

Example 3.3.4. Recall there is a fibration S1 ↪→ S2n+1 → CPn, for all n ≥ 1, and CPn is
simply connected. Knowing that the homology Hp(CPn) = 0 for all p > 2n (this stems from
cellular homology), we can use the Gysin sequence. We will show that, for p ≤ 2n :

Hp(CPn) =
{

Z, p even,
0, p odd.

From the Gysin sequence, we have in particular :

H2n+2(CPn)︸ ︷︷ ︸
=0

H2n(CPn) H2n+1(S2n+1)︸ ︷︷ ︸
=Z

H2n+1(CPn)︸ ︷︷ ︸
=0

and so H2n(CPn) = Z. Now consider the exact sequence (from the Gysin sequence) :

H2n(S2n+1)︸ ︷︷ ︸
=0

H2n(CPn)︸ ︷︷ ︸
=Z

H2n−2(CPn) H2n−1(S2n+1)︸ ︷︷ ︸
=0

and so H2n−2(CPn) = Z. Iterating this argument, we get : Hp(CPn) = Z, for p ≤ 2n and p
even. Now notice that :

H2n+1(CPn)︸ ︷︷ ︸
=0

H2n−1(CPn) H2n(S2n+1)︸ ︷︷ ︸
=0

So : H2n−1(CPn) = 0. Now from the exact sequence :

H2n−1(S2n+1)︸ ︷︷ ︸
=0

H2n−1(CPn)︸ ︷︷ ︸
=0

H2n−3(CPn) H2n−2(S2n+1)︸ ︷︷ ︸
=0

we get : H2n−3(CPn) = 0. Iterating this argument, we get : Hp(CPn) = 0, for p ≤ 2n and p
odd.

Example 3.3.5. Like previous exemple, knowing there is a fibration S3 ↪→ S4n+3 → HPn, for
all n ≥ 1, and Hp(HPn) = 0, for all p > 4n, one can prove with the Gysin sequence :

Hp(HPn) =
{

Z, p = 0, 4, 8, . . . , 4n,
0, otherwise.
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Theorem 3.3.6 (The Wang Sequence). Let F ↪→ E → Sn be a Serre fibration, with n ≥ 2.
Then there exists an exact sequence :

· · · Hr(F ) Hr(E) Hr−n(F ) Hr−1(F ) · · ·

In particular, for 0 ≤ r ≤ n− 2, we have isomorphisms : Hr(E) ∼= Hr(F ).

Proof. The proof will be similar to the Gysin sequence. We will thus give less details. The
second page of the Serre spectral sequence is given by :

E2
p,q = Hp(Sn;Hq(F )) =

{
Hq(F ), if p = 0, n,
0, otherwise,

using theorem 2.2.9. Hence the only possible non-zero differentials are dnp,q. We get E2
p,q = . . . =

Enp,q and En+1
p,q = . . . = E∞p,q. Since En+1

p,q = Hp,q(En, dn), we get the exact sequences :

0 E∞n,q E2
n,q E2

0,q+n−1 E∞0,q+n−1 0dn (3.4)

Now, by the structure of the limit page E∞, the fitration of Hr(E) is given by, for all r :

0 = F−1 ⊆ F0 = . . . = Fn−1 ⊆ Fn = . . . = Hr(E),

and we get E∞n,r−n = Hr(E)
E∞0,r

, and whence the exact sequences :

0 E∞0,r Hr(E) E∞n,r−n 0 (3.5)

Putting together the exact sequences (3.4) and (3.5) :

...

Hr(E) 0

0 E∞n,r−n E2
n,r−n︸ ︷︷ ︸

=Hr−n(F )

E2
0,r−1︸ ︷︷ ︸

=Hr−1(F )

E∞0,r−1 0

0 Hr−1(E)

0 E∞n,r−n−1 · · ·

0

dn

Conclude with lemma 3.3.2.
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Corollary 3.3.7. The loop space ΩSn of the n-sphere, where n ≥ 2, has singular homology :

Hr(ΩSn) =
{

Z, if r is a multiple of n− 1,
0, otherwise,

Proof. Apply the Wang sequence to the path fibration ΩSn ↪→ PSn → Sn. Since PSn is
contractible, every third term Hr(PSn) in the Wang sequence is zero, except for the case
H0(PSn) = Z. Whence we get isomorphisms Hr−n(ΩSn) ∼= Hr−1(ΩSn). Knowing the initial
value H0(ΩSn) = Z (using proposition 2.3.3), one can conclude.
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Conclusion

We are able to solve our initial problem : for any (Serre) fibration F ↪→ E → B, is there a link
between the homology groups of the spaces E, B and F ? The anwser is given by the Serre
spectral sequence :

E2
p,q = Hp(B;Hq(F ;Z))⇒ Hp+q(E;Z).

This relationship is particularly strong and, with more knowledge in homology theory and
homotopy theory, one can deduce many results through the Serre spectral sequence. For in-
stance, one can prove that : π4(S3) = Z/2Z. Even better, one can show that : if n is odd, then
πm(Sn) is finite whenever m 6= n.

We worked only with homology groups, but the dual case exists. In words, there is a
cohomological spectral sequence which gives the same kind of relations between the cohomology
groups of the spaces E, B and F .
We also dealt only with the singular homology, but the same result holds for any ordinary
homology theory (it is usually called the Leray-Serre-Atiyah-Hirzebruch spectral sequence).

36



Appendix A

Singular Homology

The singular homology is one of the most important homology theories in algebraic topology.
The modern definition is due to Samuel Eilenberg in [5] in 1944. We will present here briefly
the concept of singular homology. We follow [12] and [13].

A.1 Homology of Complexes
We introduce the fundamental notion in homological algebra used throughout this paper.
Definition A.1.1. A (chain) complex (K•, ∂) of abelian groups, is a family {Kn, ∂n}n∈Z of
abelian groups Kn and (abelian) group homomorphisms ∂n : Kn → Kn−1 such that ∂n∂n+1 = 0
for each n ∈ Z. The last condition is equivalent to im ∂n+1 ⊆ ker ∂n. We will usually write
simplyK• for (K•, ∂). The homomorphisms ∂n are called the boundary operators or differentials.
A complex K• thus appears as a doubly infinite sequence :

K• : · · · Kn+1 Kn Kn−1 · · ·∂n+1 ∂n

with each composite map zero. An n-cycle ofK• is an element of the subgroup Zn(K•) := ker ∂n,
an n-boundary of K• is an element of the subgroup Bn(K•) := im ∂n+1.1

Definition A.1.2. Let K• be a complex. The homology H(K•) of the complex K• is the family
of abelian groups Hn(K•) called n-th homology group of the complex K• :

Hn(K•) := ker ∂n
im ∂n+1

= Zn(K•)
Bn(K•)

(cycles mod boundaries).

Thus, Hn(K•) = 0 means that the sequence K• is exact at Kn. The coset of a cycle c in Hn

is written cls c := c+Bn, and is called the homology class of c. Subsequently, we usually omit
the subscript n on ∂n.
Definition A.1.3. A complex K• is positive if Kn = 0 for n < 0.
Definition A.1.4. IfK• andK ′• are complexes, a chain transformation f : K• → K ′• is a family
of (abelian) group homomorphisms fn : Kn → K ′n, one for each n, such that ∂′nfn = fn−1∂n
for all n. In other words, we have the commutativity of the diagram :

K• : · · · Kn+1 Kn Kn−1 · · ·

K ′• : · · · K ′n+1 K ′n K ′n−1 · · ·

∂n+1

fn+1

∂n

fn fn−1

∂′n+1 ∂′n

1The symbol Zn is from the German Zykel
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The functionHn(f) = f∗ defined by f∗(c+Bn) = f(c)+B′n is an (abelian) group homomorphism
Hn(f) : Hn(K•) → Hn(K ′•). With this definition, each Hn is a (covariant) functor on the
category Comp of chain complexes and chain transformations to the category Ab of abelian
groups.

Definition A.1.5. A subcomplex S• of K• is a family of (abelian) subgroups Sn ⊆ Kn, for each
n, such that ∂Sn ⊆ Sn−1. We will write then : S• ⊆ K•. Hence S• is itself a complex (with
boundary operator induced by K•).

Definition A.1.6. Consider the complexes S• ⊆ K•. The quotient complex (K•/S•) is a
complex with family Kn/Sn, together with boundary ∂′ : Kn/Sn → Kn−1/Sn−1 induced by the
boundary ∂ of K•.

Definition A.1.7. If {(Ki
•, ∂

i
•)}i∈I is a family of complexes, then their direct sum is the

complex
⊕
i∈I Ki

• with boundary maps :⊕
i∈I

∂in :
⊕
i∈I

Ki
n −→

⊕
i∈I

Ki
n−1

cin 7−→ ∂in(cin).

Proposition A.1.8. Homology commutes with direct sums : for all n, there are group isomor-
phisms : Hn(

⊕
i∈I Ki

•) ∼=
⊕
i∈I Hn(Ki

•).

Proof. Define the map :

Hn

⊕
i∈I

Ki
•

 −→
⊕
i∈I

Hn(Ki
•)

cls
(∑

ci
)
7−→

∑
cls ci

It is straightfoward to see that this is a well defined bijective abelian group homomorphism.

A.2 The Notion of Simplex
Before introducing the singular homology, we have to define a geometric notion, very useful in
algebraic topology : the simplices.

Let E be an n-dimensional euclidean space. It is a metric space and hence a topological
space. In particular, E may be the space Rn. A subset A of E is called affine if, for every pair
of distinct points x, x′ ∈ A, the line determined by x, x′ is contained in A. By convention, the
empty set ∅ and the point-set {∗} are affine.
It is easy to see that any intersection of affine subsets of Rn is also an affine subset. Thus, one
can define the affine set in Rn spanned by a subset X of Rn, by the intersection of all affine
subsets of Rn containing X. Similarly for convex sets, the convex set spanned by a subset X
(also called the convex hull of X) is the intersection of all convex subsets containing X. We
denote it by 〈X〉.
An affine combination of points p0, p1, . . . , pm in Rn is a point x with x =

∑m
i=0 tipi, where∑m

i=0 ti = 1. If moreover ti ≥ 0 for all i, it is a convex combination. One can prove that the affine
(respectively convex) set spanned by {p0, p1, . . . , pm} ⊂ Rn consists of all affine (respectively
convex) combinations of these points.
An ordered set of points {p0, . . . , pm} ⊂ Rn is affine independent if {p1 − p0, . . . , pm − p0} is a
linearly independent subset of Rn. One can prove the following result.
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Proposition A.2.1. The following conditions on an ordered set of points {p0, . . . , pm} in Rn
are equivalent.

(i) {p0, . . . , pm} is affine independent,

(ii) if {s0, . . . , sm} ⊂ R satisfies
∑m
i=0 sipi = 0 and

∑m
i=0 si = 0, then si = 0 for all i,

(iii) each x in the affine set spanned by {p0, . . . , pm} has unique expression as an affine com-
bination x =

∑m
i=0 tipi, where

∑m
i=0 ti = 1.

Thus affine independence is a property of the set {p0, . . . , pm} that is independent of the
given ordering. The entries ti mentioned are called the barycentric coordinates of x, relative to
the set {p0, . . . , pm}.
Whence we have the following definition.

Definition A.2.2. Let {p0, . . . , pm} be an affine independent subset of Rn. The convex set
spanned by this set, denoted by 〈p0, . . . , pm〉, is called the (affine) m-simplex with vertices
p0, . . . , pm.

Hence, each x in the m-simplex 〈p0, . . . , pm〉 has a unique expression of the form :

x =
m∑
i=0

tipi, where
∑

ti = 1 and each ti ≥ 0.

For instance, a 0-simplex is just a point, a 1-simplex is a line segment, a 2-simplex is a triangle
with interior, a 3-simplex is a tetrahedron, and so on.

Definition A.2.3. Let 〈p0, . . . , pm〉 be a m-simplex. A k-face of 〈p0, . . . , pm〉 is a k-simplex
spanned by k+ 1 of the vertices {p0, . . . , pm}, where 0 ≤ k ≤ m− 1. The (m− 1) face opposite
pi is 〈p0, . . . , p̂i, . . . pm〉.2 The boundary of 〈p0, . . . , pm〉 is the union of its faces.

Definition A.2.4. Let (e0, . . . , en) be the usal canonical basis of Rn+1. We define the standard
n-simplex ∆n to be 〈e0, . . . , en〉. Note that the barycentric coordinates and cartesian coordinates
coincide. In order to simplify the notations, we label the vertices of ∆n by (0, 1, . . . , n). Note
that ∆n is homeomorphic to the n-disk Dn.

Let {p0, . . . , pm} be affine independent and let A denote the affine set it spans. An affine
map T : A → Rk, for some positive integer k, is a function satisfying T (

∑
tipi) =

∑
tiT (pi),

whenever
∑
ti = 1. One can show that it is a continuous map and it is determined by its

values on an affine independent subset. It is easy now to see that any two m-simplices are
homeomorphic via an affine map, whence any m-simplex is homeomorphic to ∆m. This is why
we will usually work only with the standard simplex.

A.3 Construction of the Singular Complex
We will now construct a functor from the category of topological spaces Top to the category of
complexes Comp. The key concept is the following.

Definition A.3.1. Let X be a topological space. A singular n-simplex in X is a continuous
map σ : ∆n → X.

Before introducing the chain complex associated to any topological space, we must do an
algebraic detour.

2The circumflex notation means "delete".
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Free Abelian Groups Let B be a subset of an abelian group F . Then F is free abelian with
basis B if the cyclic subgroup 〈b〉 is infinite cyclic for each b ∈ B and F =

⊕
b∈B
〈b〉.

A free abelian group is thus a direct sum of copies of Z. Given a set T , there exists a free
abelian group FAb(T ) having T as a basis. Explicitely, there exists a functor FAb : Set → Ab,
which is given by :

FAb(T ) =
⊕
t∈T

Z · t =
{∑
t∈T

mt · t | mt ∈ Z, ∀t ∈ T, |{mt 6= 0}| <∞
}
,

where the sum is defined as :
(∑

mt · t
)

+
(∑

nt · t
)

:=
∑

(mt + nt) · t, and any set map
f : T → Y induces :

FAb(f) : FAb(T ) −→ FAb(Y )∑
t∈T

mt · t 7−→
∑
t∈T

mt · f(t).

Free abelian groups satisfy the following universal property : for any free abelian group F with
basis B, for any abelian group G and any set map ϕ : B → G, there exists a unique group
homomorphism ϕ̃ : F → G such that ϕ̃(b) = ϕ(b), for all b in B.

F

B G

ϕ̃

ϕ

The Singular Chain Complex We are now ready to construct a complex defined for any
topological space called the singular complex. Let X be a topological space. For each n ∈ N,
take Sn(X) to be the free abelian group with basis all singular n-simplices (using the functor
FAb). Define S−n(X) := 0 for each n ≥ 1.
We must now specify the boundary operator ∂ of the complex. For each n > 0, and 0 ≤ i ≤ n−1,
define the i-th face map :

εi = εni : ∆n−1 −→ ∆n

(t0, . . . , tn−1) 7−→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

One can see, by evaluating on each vertex, that if j > k, the face maps satisfy :

εn+1
j εnk = εn+1

k εnj−1 : ∆n−1 → ∆n+1. (A.1)

Then the i-th face maps define the boundary operators ∂ = ∂n : Sn(X) → Sn−1(X) as the
following alterning sum : for any singular n-simplex σ :

∂σ = σε0 − σε1 + · · ·+ (−1)nσεn =
n∑
i=0

(−1)iσεi,

if n > 0, and ∂0σ := 0. Using the universal property of free abelian groups, one can extend the
formula of ∂n for any element of Sn(X) and the homomorphism ∂ obtained is unique. To prove
now that S•(X) := {Sn(X), ∂} is a chain complex, we need to show that ∂∂ = 0. It suffices to
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show that ∂n∂n+1σ = 0 for all singular (n+ 1)-simplices σ, n ≥ 0.

∂∂σ = ∂

∑
j

(−1)jσεn+1
j


=

∑
j,k

(−1)j+kσεn+1
j εnk

=
∑
j≤k

(−1)j+kσεn+1
j εnk +

∑
j>k

(−1)j+kσεn+1
j εnk

=
∑
j≤k

(−1)j+kσεn+1
j εnk +

∑
j>k

(−1)j+kσεn+1
k εnj−1, by (A.1),

=
∑
j≤k

(−1)j+kσεn+1
j εnk +

∑
p≤q

(−1)p+q+1σεn+1
p εnq

= 0.

Thus, we have constructed S•(X) the singular complex of X.

Definition A.3.2. The n-dimensional singular homology group Hn(X) of a topological space
X is defined to be the n-th homology group Hn(S•(X)) of the singular complex S•(X).

For any continuous map f : X → Y , define Sn(f) : Sn(X)→ Sn(Y ) as follows :

Sn(f)
(∑

mσ · σ
)

=
∑

mσ · (fσ),

for all n, which induce all together a chain transformation S(f) : S•(X)→ S•(Y ). Thus, for all
n ≥ 0, Hn : Top → Ab is a (covariant) functor.

A.4 Some Properties of Singular Homology
We gather here some results that are useful.

Theorem A.4.1. Let {Xα}α∈J be all the path components of a topological space X. Then :
Hn(X) ∼=

⊕
α∈J Hn(Xα).

Proof. A singular simplex σ : ∆n → X has a path-connected image, because ∆n is path-
connected. Whence the singular chain complex Sn(X) equals

⊕
α∈J Sn(Xα). Now apply

proposition A.1.8.

Theorem A.4.2. Let X be a non empty topological space. Then X is path-connected if and
only if H0(X) ∼= Z.

Proof. Let us first show that if X is path-connected then H0(X) ∼= Z. Recall that ∂0 = 0, hence
we get : H0(X) = S0(X)/im ∂1. Define :

ϕ : S0(X) −→ Z∑
miσi 7−→

∑
mi

It is clearly a surjective group homomorphism. We only need to show that kerϕ = im ∂1, and
we can conclude that H0(X) ∼= Z, by the first isomorphism theorem.
Let σ : ∆1 → X be a 1-singular simplex. We get : ϕ(∂1(σ)) = ϕ(σε0 − σε1) = 1 − 1 = 0.
So im ∂1 ⊆ kerϕ. Now take

∑
miσi in S0(X), such that

∑
mi = 0. For that, fix any point
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x0 in X, and regard this point as the 0-singular simplex σx0 . Denote λi : ∆1 → X a path
from x0 to σi(0). We get ∂1(λi) = σi − σx0 , for all i. Whence : ∂1(

∑
miλi) =

∑
miσi, and so

kerϕ ⊆ im ∂1.
Let us prove the converse. By what we have just proved, and by the previous theorem, we
get that H0(X) is isomorphic to

⊕
p Z where p is the number of path components of X. Here

H0(X) = Z, so there is only one path component.

Theorem A.4.3. Consider {∗} the one-point set space. Then : H0({∗}) = Z and Hn({∗}) = 0,
for all n > 0.

Proof. The case n = 0 is already proved by theorem A.4.2. Since there is only one continuous
map σn : ∆n → {∗}, we get : Sn({∗}) = Z, generated by σn. Hence the boundary map ∂n
alternates between the trivial map, if n is odd, and maps σn to σn−1 if n is even. So we get a
chain complex :

· · · Z Z Z Z Z 0
∼= 0 ∼= 0

So its homologies are all trivial, for n > 0.

Theorem A.4.4. If f : X → Y is a weak equivalence, then it induces a group isomorphism
between Hn(X) and Hn(Y ), for all n.

Proof. Omitted, a proof can be found for instance in [13].

One consequence of this theorem is the following.

Theorem A.4.5. If X is a contractible space, then H0(X) = Z and Hn(X) = 0, for all n > 0.

Proof. A consequence of the two previous theorems.

Theorem A.4.6. The singular homologies of the spheres are :
H0(S0) = Z⊕ Z,
Hk(S0) = 0, if k > 0,
H0(Sn) = Hn(Sn) = Z, if n > 0,
Hk(Sn) = 0, if k 6= 0, n.

Proof. Omitted, a proof can be found for instance in [13].
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