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Abstract

The aim of this introduction to stable homotopy theory is to present the construction of gener-
alized homology and cohomology theories, using only homotopy-theoretical methods. We show
how (co)homology theory is to a large extent a branch of stable homotopy theory.
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Introduction

In algebraic topology, we define algebraic invariants on topological spaces in order to convert
topological problems into algebraic problems. The first examples of invariants stem from homo-
topy theory and are the homotopy groups πn(X,x0) of a topological based space (X,x0). The
idea of homotopy groups is intuitively simple : we study the shape of the topological spaces
by investigating their relations with the simplest topological spaces, the n-spheres. However
the task is tremendous : even these relations between the n-spheres themselves are not known
completely nowadays. Fortunately, other algebraic invariants were invented, such as homology
and cohomology groups of a space. Their definitions are much more complicated than homo-
topy groups, as they involve a mixture between geometric interpretations of topological spaces,
and algebraic methods to output abelian groups. However their computations are easier than
homotopy groups.

The founding result of stable homotopy theory is the Freudenthal suspension theorem which
states that homotopy groups eventually become isomorphic after sufficiently many iterated sus-
pensions. This lead to the notion of stable homotopy groups of a topological space. The aim of
this paper is to explain how every homology and cohomology theory can actually be constructed
using only homotopy-theoretical methods. We will show that homology and cohomology theo-
ries are strongly related to stable objects called prespectra.

In Chapter 1, we establish fundamental theorems needed subsequently. We will give a
complete homotopic proof of the Freudenthal suspension theorem, as a corollary of the Blakers-
Massey theorem, which specifies when excision holds for homotopy groups. We also prove the
Hurewicz theorem, which relates homotopy groups and integer homology groups under connec-
tivity assumptions. In Chapter 2, we construct the Eilenberg-MacLane spaces, fundamental
topological spaces that will lead to the homotopic construction of ordinary homology and co-
homology theories. We will prove that stable homotopy groups define a generalized homology
theory and how this result will let us define generalized homology and cohomology theories from
prespectra. In Chapter 3, we prove the converse for cohomology theories : every generalized
cohomology theory is associated to a particular kind of prepsectra. This will follow from the
Brown representability theorem. We also mention briefly the case of generalized homology the-
ories.
In Appendix A, we give the background material needed for the paper. Basic results are recalled
and proved. We have included the axiomatic approach of Eilenberg-Steenrod to homology and
cohomology theories in Appendix B, as it is needed throughout this paper. We will set our
terminology of a generalized (co)homology theory. We will also prove that it is always sufficient
to define reduced (co)homology theories on based CW-complexes. In Appendix C, we establish
in detail the right categorical language needed for the stable homotopy theory.
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Conventions

Throughout this paper, we will make the following conventions.

• A space is a topological space. A map is a continuous map.

• Homeomorphism and isomorphism are denoted by the symbol ∼=. Homotopy equivalence
is denoted by ', and based homotopy equivalence is denoted by '∗.

• If a map f : X → Y is a weak equivalence, we add the symbol ∼ over the map : f : X ∼→ Y .

• We often omit the basepoint when we consider a based space.

• We denote I = [0, 1] ⊆ R the unit interval endowed with the subspace topology.

• The (n+ 1)-disk will be denoted Dn+1 and its boundary, the n-sphere, is denoted Sn.

• The space Y X of maps from the spaces X to Y endowed with the compact-open topology
is denoted Map(X,Y ).

• The homotopy class of maps from a pair of based spaces (X,A) to a pair (Y,B) is denoted :
[(X,A), (Y,B)]∗. The homotopy class of a map f : X → Y is denoted by [f ]. The based
homotopy class is denoted by [f ]∗.

• For any based space X, the reduced cone is denoted CX, its based loopspace is denoted
ΩX and its reduced suspension is denoted ΣX.
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CHAPTER 1

The Underlying Theorems

We begin this paper by presenting three main results in algebraic topology. These will be
fundamental in our work in next chapters. We will rely on Appendix A. Our summary is based
on [May, 1999] and [Switzer, 1975].

1.1. The Blakers-Massey Theorem (Homotopy Excision)

The major difficulty in computing homotopy groups is due to the failure of the excision axiom.
If one has an excisive triad (X;A,B), that is spaces A,B ⊆ X such that Å ∪ B̊ = X, then
the inclusion (A,A ∩ B) ↪→ (X,B) does not necessarly induce an isomorphism of homotopy
groups in general. However, the statement is true in some dimensions, and this is called the
Blakers-Massey theorem.
Recall that a map f : X → Y is an n-equivalence if f∗ : πk(X)→ πk(Y ) is an isomorphism for
k < n, and a surjection for k = n, when n ≥ 0. For instance, the inclusion Sn ↪→ Dn+1 is a
n-equivalence. One can define the following relative case.

Definition 1.1.1.
A map f : (A,C)→ (X,B) of pairs is an n-equivalence, where n ≥ 1, if :

f−1
∗ (im (π0B → π0X)) = im (π0C → π0A),

which holds automatically when A and X are path-connected, and if for all choices of basepoints
in C, the map f∗ : πk(A,C)→ πk(X,B) is a bijection for k < n, and a surjection for k = n.

Definition 1.1.2.
A space X is said to be n-connected if πk(X,x) = 0, for 0 ≤ k ≤ n, and all points x in X. A
pair (X,A) is said to be n-connected if the map π0(A) → π0(X) induced by the inclusion is
surjective, and πk(X,A, a) = 0 for 1 ≤ k ≤ n, and all a in A. This is equivalent1 to saying that
the inclusion A ↪→ X is a n-equivalence.

Hence, a path-connected space is 0-connected and a simply connected space is 1-connected. The
n-sphere Sn is (n− 1)-connected, for all n ≥ 1.

Theorem 1.1.3 (Homotopy excision, Blakers-Massey).
Let (X;A,B) be an excisive triad and let C = A∩B. Assume that (A,C) is (m− 1)-connected

1Use the long exact sequence of the pair (X,A).
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and (B,C) is (n− 1)-connected, where m ≥ 2 and n ≥ 1. Then the inclusion (A,C) ↪→ (X,B)
is an (m+ n− 2)-equivalence.

To prove the theorem, we must ask ourselves when the inclusion (A,A ∩B) ↪→ (X,B) induces
isomorphisms in relative homotopy groups. One way to tackle this problem is to embed the
induced map from the inclusion in a long exact sequence, and turn the question into one about
the vanishing of certain groups.

Triad Homotopy Groups Recall that for any based map i : A→ X, the homotopy fiber
of i, denoted Fi, is defined by the following pullback :

Fi PX

A X,i

where PX ⊆ Map(I,X) is the based path-space of X, that is the space of all paths in X that
start at the basepoint; and where the right vertical map sends any path to its endpoint. In the
particular case where i : A ↪→ X is an inclusion, we get isomorphisms πn(X,A) ∼= πn−1(Fi),
for n ≥ 1, where we endowed PX with the basepoint the constant path c∗ at basepoint ∗ of
A ⊆ X. It is a bijection for the case n = 1. One can easily see this by using the exponential
law.
We now generalize this argument. Recall that a triad (X;A,B, ∗) is a space X together with
two subspaces A and B and basepoint ∗ ∈ A∩B, such that A∪B = X. Let us name i : B ↪→ X
and j : A ∩ B ↪→ A the inclusions. Since A ∩ B ⊆ B and PA ⊆ PX are subspaces, it follows
that Fj is a subspace of Fi. For n ≥ 2, the n-th triad homotopy group of (X;A,B, ∗) is defined
by :

πn(X;A,B, ∗) := πn−1(Fi, Fj, (∗, c∗)),
:= [(In−1, ∂In−1, Jn−2), (Fi, Fj, (∗, c∗))],

where Jn−2 = ∂In−2 × I ∪ In−2 × {0} ⊆ In−1, as usual.

Lemma 1.1.4.
The n-th triad homotopy group of (X;A,B, ∗) can be regarded as the set of homotopy classes of
maps of tetrads :

(In; In−2 × {1} × I, In−1 × {1}, Jn−2 × I ∪ In−1 × {0}) −→ (X;A,B, ∗).

Sketch of the Proof : Name S this set of homotopy classes of maps of tetrads. We
construct a bijection between πn−1(Fi, Fj, (∗, c∗)) and S. Take a map f : (In−1, ∂In−1, Jn−2)→
(Fi, F j, (∗, c∗)). Let p : Fi→ PX be the projection. Since I is locally compact and Hausdorff,
f admits an adjoint f̂ : In = In−1× I −→ X, where f̂(x, t) = p(f(x))(t), for any x in In−1 and
t in I. It is easy to see that f̂ is in S.
Conversely, suppose f is in S. Let the map f̃ : In−1 → PX be its adjoint. Define the map :
f̂ : In−1 → Fi, by f̂(x) = (f(x, 1), f̃(x)), for any x in In−1. One can easily check that [f̂ ]∗ is
in πn−1(Fi, Fj, (∗, c∗)).

From the long exact of the sequence of the pair (Fi, Fj), we get the following long exact
sequence :

· · · πn+1(X;A,B) πn(A,A ∩B) πn(X,B) πn(X;A,B) · · · .

2



We recognize the homomorphism πn(A,A ∩ B) → πn(X,B) induced by the inclusion (A,A ∩
B) ↪→ (X,B), which is the map mentionned in homotopy excision Theorem. Therefore the triad
homotopy groups may be considered to measure the amount by which the relative homotopy
groups fail to satisfy the excision axiom. So with the conditions of theorem 1.1.3, the goal is to
prove that πk(X;A,B) = 0, for all 2 ≤ k ≤ m+ n− 2.

Before proving homotopy excision, we mention another long exact sequence that will be
helpful subsequently.

Proposition 1.1.5 (The Exact Sequence of a Triple).
For a triple (X,A,B), that is spaces B ⊆ A ⊆ X, and any basepoint in B, the following sequence
is exact :

· · · πk(A,B) πk(X,B) πk(X,A) πk−1(A,B) · · · ,i∗ j∗ k∗◦∂

where i : (A,B) ↪→ (X,B), j : (X,B) ↪→ (X,A), and k : (A, ∗) ↪→ (A,B) are the inclusions.

Sketch of the Proof : The proof consists of a diagram chase of the following diagram,
where the rows are the long exact sequences of the pairs (A,B), (X,B) and (X,A), and the
unlabeled vertical maps are the induced homomorphisms of the inclusions A ↪→ X and B ↪→ A.

πk(B) πk(A) πk(A,B) πk−1(B) πk−1(A)

πk(B) πk(X) πk(X,B) πk−1(B) πk−1(X)

πk(A) πk(X) πk(X,A) πk−1(A) πk−1(X)

πk−1(A,B) πk−1(X,B).

i∗

j∗

k∗◦∂

∂

k∗

i∗

One must prove exactness for the dashed maps, which is a purely algebraic argument.

We now start proving the Blakers-Massey Theorem. We begin with a special case, where
all the hard work is contained. The simplicial approximation Theorem proved in Appendix A
is at the heart of the proof.

Lemma 1.1.6.
Let C be any Hausdorff space, and suppose that A is obtained from C by attaching a m-cell em,
where m ≥ 2, B is obtained from C by attaching a n-cell en, where n ≥ 1, and X = A ∪ B,
forming a triad (X;A,B). Then πk(X;A,B) = 0, for all 2 ≤ k ≤ n+m− 2.

Proof : Take [f ]∗ in πk(X;A,B), where 2 ≤ k ≤ n + m − 2. To see that [f ]∗ = 0, we will
show that [f ]∗ can be seen as an element of πk(A;A,A − {q}) for some point q in A, since
πk(A;A,A − {q}) = 0 by definition. This will stem from the fact A is a strong deformation
retract of X−{p} for some point p in e̊n ⊆ B, and B is a strong deformation retract of X−{q}
for some point q in e̊m ⊆ A (using Proposition A.1.2, page 51). We choose the points p and q
such that f can be seen as map whose image lies in (X;A,X −{p, q}). In other words, naming
the inclusions j1 : (X;A,B) ↪→ (X;A,X− {q}), j2 : (X−{p};A,X−{p, q}) ↪→ (X;A,X−{q})
and j3 : (A;A,A− {q}) ↪→ (X − {p};A,X − {p, q}), we get :

πk(A;A,A− {q}) j3∗−→ πk(X − {p};A,X − {p, q})
j2∗−→ πk(X;A,X − {q}) j1∗←− πk(X;A,B),
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such that j1∗([f ]∗) is in the image of j2∗. Since B is a strong deformation retract of X − {q},
j1∗ is an isomorphism. Similarly, A is a strong deformation retract of X − {p}, so j3∗ is an
isomorphism. It follows that [f ]∗ = 0.
In order to find points p and q with such properties, we first replace the map f by a homotopic
map g. Indeed, by the simplicial approximation Theorem (Theorem A.2.6, page 53), Ik can be
triangulated so finely that f is homotopic to a map g, where for any simplex σ :{

g(|σ|) ∩ en1/4 6= ∅ ⇒ g(|σ|) ⊆ e̊n1/4,
g(|σ|) ∩ em1/4 6= ∅ ⇒ g(|σ|) ⊆ e̊m1/4,

and g is affine on each |σ|.

Finding p : For any simplex σ in the fine triangulation of Ik, if g(|σ|) meets en1/4, then g(|σ|)
is a convex set, with dimension less or equal to n. Define the sets : C1 := {σ ∈ Ik |
g(|σ|)∩en1/4 6= ∅, dim(g(|σ|)) < n}, and C2 := {σ ∈ Ik | g(|σ|)∩en1/4 6= ∅, dim(g(|σ|)) = n}.
Then the set

⋃
σ∈C1 g(|σ|) does not cover en1/4, so there exists a point p in en1/4 such that

if p is in g(|σ|) for some simplex σ, then σ is in C2.

Finding q : The compact space g−1(p) lies in the fine triangulation of Ik. It is thus a finite
union of polyhedra P1, . . . , Pr. Name L1, . . . , Lr : Rk → Rn the linear surjections, such
that Li|Pi = g|Pi

, for i = 1, . . . , r. Each polyhedron Pi is of dimension at most k since
they are contained in Ik. Since each Li is surjective, the kernel ker(Li) has dimension at
most k − n, by the rank theorem. Therefore the space g−1(p) is a polyhedron in Ik of
dimension at most k − n. Let us denote π : Ik = Ik−1 × I → Ik−1 the projection onto
the first factor. Define the space K := π−1(π(g−1(p))). It is a polyhedron of dimension
at most one more than the dimension of g−1(p), i.e., its dimension is at most :

k − n+ 1 ≤ (n+m− 2)− n+ 1 ≤ m− 1.

Thus, g(|K|) does not cover em1/4, so there exists a point q in em1/4 such that q /∈ g(|K|).

Proving j1∗([g]∗) ∈ im(j2∗) : Since g(∂Ik−1 × I) ⊆ A, the spaces π(g−1(p)) and π(g−1(q)) ∪
∂Ik−1 are disjoint closed subset of the normal space Ik−1. Thus by Uryssohn’s Lemma,
there is a map ζ : Ik−1 → I such that ζ(π(g−1(q)) ∪ ∂Ik−1) = 0 and ζ(π(g−1(p))) = 1.
Define the map :

h : (Ik−1 × I)× I −→ Ik−1 × I
(x, s, t) 7−→ (x, s (1− tζ(x))) ,

which is obviously continuous. We get h(x, s, 0) = (x, s) for any x in Ik−1 and s in I,
and h(Ik−1 × I × {1}) ⊆ Ik − g−1(p). Moreover, h(Ik−1 × {1} × I) ⊆ Ik − g−1(q), and
h(x, s, t) = (x, s), if x is in ∂Ik−1. The composite j1 ◦ g ◦ h is therefore a homotopy from
j1 ◦ g to a map f ′ whose image is in (X − {p};A,X − {p, q}). We have just proved that
j1∗([g]) = j2∗([f ′]).

It follows that [g]∗ = [f ]∗ = 0.

We can now give the proof of homotopy excision (Blakers-Massey). The goal is to reduce
any excisive triad to the case of the previous lemma.

Proof of Homotopy Excision (Theorem 1.1.3) : We want to prove πk(X;A,B) = 0
for all 2 ≤ k ≤ n+m−2. By theorem A.3.11, the excisive triad (X;A,B) may be approximated
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by a weakly equivalent CW-triad (X̃; Ã, B̃), where for the sake of clarity the CW-triad shall be
renamed (X;A,B), and such that (A,C) has no relative k-cells for k < m, and (B,C) has no
relative k-cells for k < n. Since Ik is compact, any map Ik → X has its image contained in a
finite subcomplex of X, and so we may assume that X has finitely many cells. We now prove
that inductively, it suffices to show the result when (A,C) has exactly one cell. Suppose that
C ⊆ A′ ⊆ A where A is obtained from A′ by attaching a single cell, and (A′, C) has one less
cell than (A,C). Define X ′ as the pushout :

C A′

B X ′.

If the result holds for the triads (X ′;A′, B) and (X;A,X ′) by induction, then by the 5-Lemma,
it holds also for the triad (X;A,B), since there is a commutative diagram :

πk+1(A,A′) πk(A′, C) πk(A,C) πk(A,A′) πk−1(A′, C)

πk+1(X,X ′) πk(X ′, B) πk(X,B) πk(X,X ′) πk−1(X ′, B),

∼= ∼= ∼= ∼=

where the rows are the exact sequences of the triples (A,A′, C) and (X,X ′, B), by Proposition
1.1.5. For the case k = 2, one must be careful, since we are dealing with sets instead of groups.
But the result also holds since the pairs of the diagram are all 1-connected, whence one can
argue similarly as in the proof of the 5-Lemma. So one can assume that (A,C) has exactly one
cell. We can also assume that (B,C) has exactly one cell. Indeed, by induction, suppose that
C ⊆ B′ ⊆ B, where B is obtained from B′ by attaching a single cell and (B′, C) has one less
cell than (B,C). Define again X ′ as the following pushout :

C B′

B X ′.

If the result holds for the triads (X ′;A,B) and (X;X ′, B) by induction, then it also holds for
(X;A,B), since the inclusion (A,C) ↪→ (X,B) fits into the following commutative diagram :

(A,C) (X,B)

(X ′, B).

Thus we may assume that the triad (X;A,B) is as Lemma 1.1.6, which ends the proof.

1.2. The Freudenthal Suspension Theorem and Stable Homo-
topy Groups

A useful result for homotopy groups is the isomorphism πk(X) ∼= πk−1(ΩX), for k ≥ 1, which
links any based space and its based loop space. However, what about the dual case? In other
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words, what is the relationship between a space X and its reduced suspension ΣX, in terms of
homotopy groups?
The Freudenthal suspension Theorem is a fundamental result in homotopy theory that will
answer these questions. It leads to the notion of stable homotopy groups.

Definition 1.2.1 (The Suspension Homomorphism).
For a based space X, an integer k ≥ 0, define the suspension homomorphism by :

Σ : πk(X) −→ πk+1(ΣX)
[f ]∗ 7−→ [f ∧ idS1 ]∗,

where for any continuous based map f : Sk → X, the map Σf := f ∧ idS1 : Sk+1 ∼= ΣSk → ΣX
sends any x ∧ t to f(x) ∧ t.

The suspension homomorphism is of course a well-defined map, and it is really an homo-
morphism for k ≥ 1. An alternative way to introduce the map is to consider the loopspace
of a suspension. Namely, define a map X → Ω(ΣX) which sends any x in X, to the loop
t 7→ x ∧ t. The induced homomorphism πk(X) → πk(ΩΣX) ∼= πk+1(ΣX) is the suspension
homomorphism.

Lemma 1.2.2.
The suspension homomorphism is a natural transformation Σ : πn ⇒ πn+1, for any n ≥ 0.

Proof : We must prove that the following diagram commutes, for any map f : X → Y :

πn(X) πn+1(ΣX)

πn(Y ) πn+1(ΣY ).

f∗

Σ

(Σf)∗

Σ

For any [g]∗ in πn(X), we have :

((Σf)∗ ◦ Σ)([g]∗) = (Σf)∗([g ∧ idS1 ]∗)
= [(f ◦ g) ∧ idS1 ]∗
= Σ([f ◦ g]∗)
= (Σ ◦ f∗)([g]∗),

which demonstrates the commutativity of the diagram.

We now establish the Freudenthal suspension theorem which states that the suspension
homomorphism is an isomorphism, in a range of dimensions. It can be proved as a corollary of
homotopy excision (Theorem 1.1.3).

Theorem 1.2.3 (Freudenthal Suspension).
Let X be an (n − 1)-connected space, where n ≥ 1. Then the suspension homomorphism Σ :
πk(X)→ πk+1(ΣX) is a bijection for k < 2n− 1, and a surjection for k = 2n− 1.

Proof : We want to apply homotopy excision (Theorem 1.1.3). For this, decompose the
reduced suspension ΣX as a union of two reduced cones glued together along X. One way to
describe this is to consider the reversed reduced cone C ′X, which is defined as the following

6



pushout :
X × {0} ∪ {∗} × I X × I

{∗} C ′X.

q

Clearly C ′X is homeomorphic to the usual reduced cone but only I is given the basepoint 0
rather than 1 in the construction. Thus ΣX is homeomorphic to the pushout of X → CX with
X → C ′X. We obtain a triad (ΣX;CX,C ′X), where CX ∩C ′X ∼= X, though it is not excisive,
since CX and C ′X need not be open in ΣX. But if one regards the reduced suspension as the
usual following pushout :

X × ∂I ∪ {∗} × I X × I

{∗} ΣX,

and defines the spaces :

A := X×]0, 1]
X × {1} ∪ {∗}×]0, 1] , and B := X × [0, 1[

X × {0} ∪ {∗} × [0, 1[ ,

one can see that A and B are open in ΣX, and there are the based homotopy equivalences
A '∗ CX, B '∗ C ′X, A ∩B '∗ X. Indeed, the homotopy :

H : CX × I −→ CX

([x, t], s) 7−→ [x, s+ (1− s)t],

gives a based homotopy equivalence CX '∗ ∗. With the same argument, we have :

A '∗ ∗, and B '∗ ∗ '∗ C ′X.

Hence, the triad (ΣX;A,B) is excisive. Moreover, A and B are contractible spaces, so (A,X)
and (B,X) are (n−1)-connected, by the long exact sequence of the pairs, whence we can apply
the excision homotopy Theorem. The inclusion (B,X) ↪→ (ΣX,A) is a (2n − 2)-equivalence,
and thus, the inclusion : i : (C ′X,X) ↪→ (ΣX,CX) is a (2n− 2)-equivalence.
To end the proof, we need to know the relation between the inclusion i and the suspension
homomorphism Σ. Consider an element [f ]∗ ∈ πk(X) = [(Ik, ∂Ik), (X, ∗)]∗. Let us name
q : X × I → C ′X ∼= X × I/(X × {0} ∪ {∗} × I) the quotient map induced by the definition of
C ′X as a pushout. Define g to be the composite :

Ik+1 f×id−→ X × I q−→ C ′X.

It is easy to see that g(∂Ik+1) ⊆ X, and g(Jk) = {∗}. Indeed, we have g(∂Ik×I) = [(∗, I)] ⊆ X,
g(Ik × {0}) = ∗ ∈ X and g(Ik × {1}) ⊆ X. Hence g(∂Ik+1) ⊆ X. It is similar to prove that
g(Jk) = {∗}. Therefore [g]∗ ∈ πk+1(C ′X,X). Moreover, it is clear g|

Ik×{1}
= f . Hence

∂([g]∗) = [f ]∗, where ∂ is the boundary map of the long exact sequence of the pair (C ′X,X).
We get : ρ ◦ g = Σf , where the map ρ : C ′X → ΣX can be viewed as a quotient map, through
the homeomorphism ΣX ∼= C ′X/(X × {1}). Thus the following diagram commutes :

· · ·
=0︷ ︸︸ ︷

πk+1(C ′X) πk+1(C ′X,X) πk(X)
=0︷ ︸︸ ︷

πk(C ′X) · · ·

· · · πk(CX)︸ ︷︷ ︸
=0

πk+1(ΣX,CX) πk+1(ΣX) πk+1(CX)︸ ︷︷ ︸
=0

· · · .

∂
∼=

i∗ ρ∗
Σ

∼=

7



The rows of the diagram are the long exact sequences of the pairs (C ′X,X) and (ΣX,CX).
Since i is a (2n− 2)-equivalence, it follows that Σ is a bijection for k < 2n− 1 and a surjection
for k = 2n− 1.

Corollary 1.2.4.
For all n ≥ 1, πn(Sn) = Z.

Proof : We already have π1(S1) = Z. By the Hopf fibration S1 ↪→ S3 → S2, and the long
exact sequence of a fibration, we get π2(S2) = Z, since π2(S3) = 0. Recall that Sn is a (n− 1)-
connected space and ΣSn ∼= Sn+1. By the Freudenthal suspension theorem, the suspension
homomorphism Σ : πn(Sn)→ πn+1(Sn+1) is an isomorphism for n ≥ 2. The result follows.

Stable Homotopy Groups Let X be a (n − 1)-connected space, where n ≥ 1. The
suspension homomorphism Σ : πk(X) → πk+1(ΣX) is an isomorphism for k < 2n − 1. In
particular, it is an isomorphism for k ≤ n−1. Hence πk(X) = 0 implies that πk+1(ΣX) = 0, for
k ≤ n−1, i.e. ΣX is a n-connected space. Inductively, we get that ΣrX is a (n+r−1)-connected
space, where Σr denotes the r-th reduced suspension. We get the following homotopy groups
sequence :

πk(X) πk+1(ΣX) · · · πk+r(ΣrX) · · · .Σ Σ Σ Σ (1.1)

Since ΣrX is (n+ r − 1)-connected, the suspension homomorphism :

Σ : πk+r(ΣrX)→ πk+r+1(Σr+1X),

is an isomorphism for k+ r < 2(n+ r)−1, i.e., r > k−2n+ 1. Hence for fixed integers n and k,
the sequence of homomorphisms in (1.1) are eventually all isomorphisms for a sufficiently large
enough r. It allows us to define the notion of stable homotopy groups.

Definition 1.2.5 (Stable homotopy groups).
Let X be a (n− 1)-connected space. Let k ≥ 0. The k-th stable homotopy group of X, denoted
πSk (X), is defined to be the group πk+r(ΣrX), for any r > k− 2n+ 1. It is the group for which
the sequence (1.1) is stabilized. With the vocabulary of appendix C, the stable group πSk (X)
is the colimit : colimrπk+r(ΣrX). This definition of stable groups remains valid for any based
space (not necessarly (n− 1)-connected).

In particular, we have the stable homotopy group of the spheres, using ΣSn ∼= Sn+1, for
each n ≥ 0. The suspension πn+k(Sn)→ πn+k+1(Sn+1) is an isomorphism for n+ k < 2n− 1,
i.e., for n > k + 1. We have πSk (Sn) = πSk−n(S0) for n ≤ k, so the stable homotopy groups of
Sn can be expressed in terms of the values of the stable homotopy groups of S0.

Definition 1.2.6 (Stable homotopy groups of the spheres).
The k-th stable homotopy group of the spheres, denoted πSk , is defined as :

πSk := πSk (S0) = colimrπk+r(Sr) = πk+n(Sn), where n > k + 1.

In general, the groups πk+n(Sn) are called stable if n > k + 1, and unstable if n ≤ k + 1.

1.3. The Hurewicz Theorem
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The Hurewicz Theorem is a fundamental result in algebraic topology since it relates homotopy
groups with integral homology groups. We will again need homotopy excision (Theorem 1.1.3)
to prove the theorem. In most of the literature, the Hurewicz Theorem is proved by using a
specific definition of the integral homology (such as singular homology, cellular homology, etc).
Even if these proofs are very geometric and visually intuitive, it is perhaps more elegant and
more algebraic to present the Hurewicz Theorem axiomatically. In other words, what do we
really need from the integral homology groups to prove the Hurewicz Theorem ? Moreover,
anticipating our work for the next chapters, it is more consistent to approach the problem ax-
iomatically. Theorefore we will use the notions of Appendix B.

Let H∗ be an ordinary homology theory with coefficents Z; we drop the component Z in the
notation. There is a corresponding ordinary reduced homology theory H̃∗. Let i0 be a generator
of H̃0(S0) ∼= Z. Using the suspension axiom, define inductively the generators in of H̃n(Sn) by
the suspension homomorphism : in+1 := Σ(in).

Definition 1.3.1 (The Hurewicz Homomorphism).
For any based space X, the Hurewicz homomorphism is defined by :

h : πn(X) −→ H̃n(X)
[f ]∗ 7−→ H̃n(f)(in).

It is well-defined since H̃n is a homotopy invariant functor.

Lemma 1.3.2.
For any based space X, the Hurewicz homomorphism h is indeed a homomorphism for n ≥ 1.

Proof : Let us recall that the multiplication on πn(X) = [(Sn, ∗), (X, ∗)]∗ is given by the
natural co-H-structure of Sn, seen as the reduced suspension ΣSn−1. In other words for any
classes [f ]∗ and [g]∗ in πn(X), the multiplication [f ]∗ · [g]∗ is the based homotopy class of :

Sn
p−→ Sn ∨ Sn f∨g−→ X ∨X ∇−→ X,

where p is the pinch map, and ∇ is the fold map. Using the additivity axiom (H̃3) of H̃∗, we
get the following commutative diagram :

H̃n(Sn) H̃n(Sn ∨ Sn) H̃n(X ∨X) H̃n(X)

H̃n(Sn)⊕ H̃n(Sn) H̃n(X)⊕ H̃n(X).

H̃n(p)

∆

H̃n(f∨g) H̃n(∇)

∼=

H̃n(f)+H̃n(g)

∼= ∇

Since H̃n(∇◦f ∨g◦p) = H̃n(∇)◦H̃n(f ∨g)◦H̃n(p), we get : h([f ]∗ · [g]∗) = h([f ]∗)+h([g]∗).

Lemma 1.3.3.
The Hurewicz homomorphism is a natural transformation h : πn ⇒ H̃n, for all n ≥ 0, and is
compatible with the suspension homomorphism, i.e., the following diagram commutes :

πn(X) H̃n(X)

πn+1(ΣX) H̃n+1(ΣX).

h

Σ Σ

h

(1.2)
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Proof : To prove naturality of h, one must check the commutativity of the following diagram,
for any map f : X → Y :

πn(X) H̃n(X)

πn(Y ) H̃n(Y ).

h

πn(f) H̃n(f)

h

For any element [g]∗ in πn(X), we have :

(H̃n(f) ◦ h)([g]∗) = H̃n(f)(H̃n(g)(in))
= H̃n(f ◦ g)(in)
= h([f ◦ g]∗)
= (h ◦ πn(f)) ([g]∗),

which ends the proof of naturality of h.
Now let us prove the commutativity of the diagram (1.2). Recall that the suspension is natural
with respect to the ordinary reduced homology H̃∗ owing to the suspension axiom (H̃2), and
hence the following diagram commutes for any map f : Y → Z :

H̃n(Y ) H̃n+1(ΣY )

H̃n(Z) H̃n+1(ΣZ),

Σ

H̃n(f) H̃n+1(Σf)

Σ

for any n. Recall that Σin = in+1, and so, for any [g]∗ in πn(X), we get :

(h ◦ Σ)([g]∗) = h([Σf ]∗)
= H̃n+1(Σf)(in+1)
= H̃n+1(Σf)(Σin)
= Σ(H̃n(f)(in))
= (Σ ◦ h)([g]∗),

which proves the commutativity of the diagram (1.2).

To establish the Hurewicz Theorem, we will need the following theorem, which stems from
homotopy excision. The result will be at the heart of the proof of Hurewicz.

Theorem 1.3.4 (A Corollary of Homotopy Excision).
Let f : X → Y be a based (n − 1)-equivalence between (n − 1)-connected well-pointed spaces
(see Appendix B), where n > 1, so that πn−1(f) is surjective. The quotient map q : (Mf,X)→
(Cf, ∗) is an (2n − 1)-equivalence, where Mf denotes the reduced mapping cylinder of f , and
Cf denotes the reduced mapping cone of f . In particular Cf is (n− 1)-connected.

Proof : Recall that the reduced mapping cylinder Mf is given by the pushout :

X Y

(X × I)/({∗} × I) Mf,

f

10



and the reduced mapping cone Cf is given by the pushout :

X Y

CX Cf,

f

where CX is the reduced cone of X. It follows that, for j : X → Mf , which is defined by
x 7→ [x, 1] :

Cf = Mf

j(X) = CX ∪ Y
f(x) ∼ (x, 0) .

Define A = (X × [0, 2/3])/({∗} × [0, 2/3]) ∪ Y
f(x) ∼ (x, 0) and B = (X × [1/3, 1])/({∗} × [1/3, 1])

j(X) sub-
spaces of Cf . It follows that :

C := A ∩B = X × [1/3, 2/3]
{∗} × [1/3, 2/3] .

We get an excisive triad (Cf ;A,B). We now want to apply homotopy excision (Theorem
1.1.3). One can see that (Mf, j(X)) '∗ (A,C) and (Cf,B) '∗ (Cf, ∗) (use Lemma B.1.5) :
these based homotopy equivalences are visually clear. Also notice that (B,C) '∗ (CX,X).
Hence the quotient map q : (Mf,X) → (Cf, ∗) defined by Cf = Mf/j(X) is homotopic with
the composite :

(Mf, j(X)) (A,C) (Cf,B) (Cf, ∗).'∗ '∗

We now argue that (A,C) is (n− 1)-connected and (B,C) is n-connected. From the long exact
sequence of the pair (Mf,X) :

· · · πk(X) πk(Mf) πk(Mf,X) πk−1(X) · · · ,

we obtain πk(Mf,X) = 0, for k < n − 1, since f is a (n − 1)-equivalence so πk(X) ∼= πk(Y ),
and Mf is homotopy equivalent to Y (since the spaces are well-pointed). Thus πk(A,C) = 0
for k < n−1, owing to (A,C) '∗ (Mf,X). So (A,C) is (n−1)-connected. From the long exact
sequence of the pair (CX,X), since CX is contractible, we obtain isomorphisms πk(CX,X) ∼=
πk−1(X). Now, since X is (n − 1)-connected, and (B,C) '∗ (CX,X), we get that (B,C) is
n-connected. Thus, homotopy excision states that (A,C) ↪→ (Cf,B) is a (2n− 1)-equivalence,
and hence q is a (2n− 1)-equivalence.

The Hurewicz Theorem states that the Hurewicz homomorphism is an isomorphism in the
first dimension where the homotopy groups and reduced homology groups are both not trivial.
We begin with a particular case of spaces : the wedges of n-spheres. Let us compute first the
homotopy groups of such spaces.

Lemma 1.3.5.
Consider the wedge of n-spheres :

∨
j∈J Sn where J is any index set. Let ιnj : Sn ↪→

∨
j∈J Sn

be the inclusion. If n = 1, then its fundamental group is the free group generated by {ι1j}j∈J .
If n ≥ 2, then its n-th homotopy group is the free abelian group generated by {ιnj }j∈J .

Proof : The statement is obvious if the index set J consists of only one element. Let us first
prove the case n = 1. When J consists of two elements, the statement follows directly from
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the Seifert-van Kampen Theorem. The argument can be easily generalized when J is a finite
set. If J is any set, define ΘJ :∗j∈J π1(S1)→ π1(

∨
j∈J S1) as the homomorphism induced

by the maps {ι1j}j∈J . Let us prove that it is an isomorphism. Endow the circle S1 with its
usual CW-decomposition. For any map f : S1 →

∨
j∈J S1, its image f(S1) is compact, and so

there is a finite subset J ⊆ J , such that [f ]∗ can be seen as an element of π1(
∨
j∈J S

1). By
our previous case, it is in the image of ΘJ . It follows that ΘJ is surjective. Now suppose there
exists α in∗j∈J π1(S1), such that its image ΘJ (α) equals a class [f ]∗ where f : S1 →

∨
j∈J S1

is nullhomotopic, via a homotopy H. There exists a finite subset J ⊆ J , such that α is in
∗j∈J π1(S1). Since the image H(S1 × I) is compact, there exists a finite subset J ′ ⊆J , such
that f is a nullhomotopic map that represents an element in π1(

∨
j∈J ′ S

1). Whence we get
ΘJ∪J ′(α) = [f ]∗ = 0, and by our previous case, we get that α = 0, which proves the injectivity
of ΘJ .
Let us prove now the case n ≥ 2. Let J be a finite set. Regard

∨
j∈J Sn as the n-skeleton of the

product
∏
j∈J Sn, where again the n-sphere Sn is endowed with its usual CW-decomposition,

and
∏
j∈J Sn has the CW-decomposition induced by the finite product of CW-complexes. Since∏

j∈J Sn has cells only in dimensions a multiple of n, the pair (
∏
j∈J Sn,

∨
j∈J Sn) is (2n−1)-

connected. The long exact sequence of this pair gives the isomorphism :

πn(
∨
j∈J

Sn) ∼= πn(
∏
j∈J

Sn) ∼=
⊕
j∈J

πn(Sn),

induced by the inclusions {ιnj }j∈J . The result follows. Let now J be any index set, let
ΘJ :

⊕
j∈J πn(Sn) → πn(

∨
j∈J ) be the homomorphism induced by the inclusions {ιnj }j∈J .

Just as the case n = 1, one can reduce J to the case where it is finite to establish that ΘJ is
an isomorphism.

Lemma 1.3.6.
Let n ≥ 1. Consider the wedge of n-spheres

∨
j∈J Sn, where J is any index set. Then the

Hurewicz homomorphism :

h : πn

 ∨
j∈J

Sn

→ H̃n

 ∨
j∈J

Sn

 ,
is the abelianization homomorphism if n = 1, and is an isomorphism if n > 1.

Proof : For the case of a single n-sphere, the result is obvious since h([idSn ]∗) = in, i.e.
the Hurewicz homomorphism sends the generator [idSn ]∗ of πn(Sn) ∼= Z to the generator in of
H̃n(Sn) = Z.
For the general case, using previous lemma, the Hurewicz homomorphism h maps the generators
of the n-th homotopy group of

∨
j∈J Sn to the canonical generators of the free abelian group

H̃n(
∨
j∈J Sn) ∼=

⊕
j∈J H̃n(Sn) =

⊕
j∈J Z, owing to the additivity axiom of H̃∗. So when

n ≥ 2, it is an isomorphism, and for n = 1, it is the abelianization homomorphism since
H̃1(

∨
j∈J S1) is abelian.

We emphasize the following algebraic argument that will be made in the proof of Hurewicz
Theorem.

Lemma 1.3.7.
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For any commutative diagram of abelian groups :

A B C 0

A′ B′ C ′ 0,

α

∼=f

β

∼=g h

α′ β′

where the rows are exact sequences, if f and g are isomorphisms, then h is an isomorphism.

Sketch of the Proof : It is an easy algebraic argument, very similar to the proof of the
5-Lemma.

Theorem 1.3.8 (Hurewicz).
Let X be a (n− 1)-connected based space, where n ≥ 1. Then the Hurewicz homomorphism

h : πn(X)→ H̃n(X)

is the abelianization homomorphism if n = 1 and is an isomorphism if n > 1.

Proof : We can assume that X is a CW-complex, since there is a weakly equivalent CW-
complex by Theorem A.3.6, and weak equivalences induce isomorphisms on homotopy groups
and reduced homology groups. Since X is (n − 1)-connected, one may assume that the CW-
complex X has a single vertex and no k-cells for 1 ≤ k ≤ n − 1. By Corollary A.3.8, all the
attaching maps are based, and the n-skeleton Xn is obtained as the following pushout :

∨
j∈Jn

Sn−1 X0

∨
j∈Jn

Dn Xn.

Since X0 = {∗}, we get Xn =
∨
j∈Jn

Sn. Now the (n + 1)-skeleton Xn+1 can be regarded as
the reduced mapping cone :

∨
j∈Jn+1

Snj Xn

C(
∨

j∈Jn+1

Snj )
∨

j∈Jn+1

Dn+1
j Xn+1 Cf.

f

∼= ∼=

We argue that X may be assumed to be a (n + 1)-dimensional CW-complex, and so one can
consider X = Xn+1. Indeed, the inclusion Xn+1 ↪→ X is a (n+ 1)-equivalence, and so we have
the isomorphism πn(Xn+1) ∼= πn(X). Let us prove now that H̃n(Xn+1) ∼= H̃n(X). We first
argue that H̃n(Xn+1) ∼= H̃n(Xn+2) ∼= H̃n(Xn+3) ∼= . . .. Recall that Xn+2 is obtained as the
pushout : ∨

Sn+1 Xn+1

∨
Dn+2 Xn+2.
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We obtain Xn+2/Xn+1 ∼=
∨
Sn+2. Since Xn+1 � Xn+2 is a cofibration, using theorem B.1.8,

there is the following exact sequence :

· · · H̃n+1(
∨
Sn+2) H̃n(Xn+1) H̃n(Xn+2) H̃n(

∨
Sn+2) · · · .

But the additivity axiom gives H̃n+1(
∨
Sn+2) = 0 and H̃n(

∨
Sn+2) = 0. Therefore we obtain

the isomorphism H̃n(Xn+1) ∼= H̃n(Xn+2). Using the same argument, we get the isomorphisms :
H̃n(Xn+2) ∼= H̃n(Xn+3), H̃n(Xn+3) ∼= H̃n(Xn+4), etc. Hence colimjH̃n(Xn+1+j) = H̃n(Xn+1).
But colimjXn+1+j = X, thus Theorem C.4.7 gives the desired isomorphism : H̃n(Xn+1) ∼=
H̃n(X). Therefore, we may assume that X is a (n+ 1)-dimensional CW-complex : X = Xn+1.

For clarity, let us name A :=
∨
j∈Jn

Snj which stems from the definition of Xn as a pushout,
and B :=

∨
j∈Jn+1 S

n
j = Xn. The map f : A→ B induces the following commutative diagram :

πn(A) πn(B) πn(X) 0

H̃n(A) H̃n(B) H̃n(X) 0,

(�)

where we used that X ∼= Cf . The vertical homomorphisms are the Hurewicz homomorphisms.
From the top row (a priori not exact), since B ↪→ X is a n-equivalence, the homomorphism
πn(B) → πn(X) is surjective. Using Theorem B.1.8, the bottom row of the diagram is exact
since H̃n−1(A) = 0. We now argue that the top row is also exact.

When n = 1, we use a corollary of the Seifert-van Kampen (a proof can be found in the
reference [Munkres, 2000], Corollary 70.4) :

Let X = U∪V , where U and U∩V are path-connected, and V is simply connected.
There is an isomorphism π1(U)/N ∼= π1(X), where N is the least normal subgroup
of π1(U) containing the image of the homomorphism π1(U ∩ V ) → π1(U) induced
by the inclusion U ∩ V ↪→ U .

Here X is built out of B by attaching 2-cells, i.e. X = B ∪ e2
j . Since B ∩ e2

j = A, and e2
j is

simply connected, we get that π1(X) ∼= π1(B)/N where N is the least normal subgroup of π1(B)
containing the image of π1(A) → π1(B), whence the top row of (�) becomes exact by passage
to abelianizations. The two left vertical Hurewicz homomorphisms are then isomorphisms by
Lemma 1.3.6. Thus the Hurewicz homomorphism π1(X)→ H̃1(X) is the abelianization homo-
morphism by Lemma 1.3.7.

For n > 1, the two left vertical Hurewicz homomorphisms of (�) are isomorphisms by Lemma
1.3.6. We prove the exactness of the top row. Use the mapping cylinder factorisation of f :

A B

Mf,

f

pf

where pf is a homotopy equivalence. We get the commutative diagram :

· · · πn(A) πn(Mf) πn(Mf,A) 0 · · ·

πn(A) πn(B) πn(X) 0,

(pf )∗∼=
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where the top row is the long exact sequence of the pair (Mf,A), and where the quotient map
Mf → Mf/A = Cf = X induces the right vertical homomorphism πn(Mf,A) → πn(X).
Since A and B are (n− 1)-connected and n > 1, Theorem 1.3.4 states that the homomorphism
πn(Mf,A)→ πn(X) is an isomorphism. Hence, the top row of the diagram (�) is exact. Thus
the Hurewicz homomorphism πn(X)→ H̃n(X) is an isomorphism by Lemma 1.3.7.

15



CHAPTER 2

Generalized (Co)homology
Theories

In this chapter, we describe a general homotopy-theoretic method to construct generalized ho-
mology and cohomology theories. We begin by the description of Eilenberg-MacLane spaces.
These spaces will be fundamental for the homotopy description of ordinary homology and co-
homology theories. Afterwards, we introduce prespectra, which are particular sequences of
based spaces subsuming stable phenomena, and we will see how they give rise to generalized
(co)homology theories.

2.1. Eilenberg-MacLane Spaces

Definition 2.1.1 (Eilenberg-MacLane Spaces).
Let G be any group, and n in N. An Eilenberg-MacLane space of type (G, n), is a space X of
the homotopy type of a based CW-complex such that :

πk(X) ∼=
{
G, if k = n,
0, otherwise.

One denotes such a space by K(G,n).

Remark 2.1.2.
Notice that we used the isomorphism symbol∼= instead of the equality =. Although subsequently
we will fudge the distinction between one another, this means there is a particular choice of
a group isomorphism πn(X)

∼=−→ G which is called a structure of X as an Eilenberg-MacLane
space.

We now want to prove that the spaces K(G,n) exist and are unique, up to homotopy, for
every group G and every integer n ≥ 0. For the purpose of this paper, we will only show this
statement when G is an abelian group and when n ≥ 1. The case n = 0 is vacuous : one just
takes the group G endowed with its discrete topology. The case n = 1 but G is not abelian is
done in [Hatcher, 2002], chapter 1.B. Notice that when n ≥ 2, the group G must be abelian.
Notice also that when n ≥ 1, the spaces K(G,n) are path-connected. More generally, the spaces
K(G,n) are (n− 1)-connected.
For the construction of K(G,n), we introduce its analogue in homology.
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Definition 2.1.3 (Moore Spaces).
Let G be an abelian group and n ≥ 1 an integer. A Moore space of type (G, n) is a path-
connected space X of the homotopy type of a based CW-complex such that :

H̃k(X;Z) ∼=
{
G, if k = n,
0, if k 6= 0, n.

One denotes such a space by M(G,n).

Proposition 2.1.4.
For any abelian group G, and any integer n ≥ 1, there exists a Moore space of type (G,n).

Proof : Recall that there is a free resolution of G, i.e., there exists F0 and F1 free abelian
groups such that there is an exact sequence :

0 F1 F0 G 0.

Let us recall briefly the algebraic details : define F0 to be the free abelian groups
⊕

g∈G Z
generated by the elements of G. Define the surjective homomorphism F0 → G by simply
mapping the basis of F0 to the elements of G, and let F1 be the kernel of this homomorphism.
It is also a free abelian group, and in this case, we have F1 ⊆ F0. We have obtained the desired
exact sequence.
Let {ej}j∈J be a basis of F1. Let L0 :=

∨
g∈G S

n. By the additivity axiom, we have the
isomorphism : H̃n(L0;Z) ∼=

⊕
g∈G H̃n(Sn;Z) = F0. Let h : πn(L0) → H̃n(L0) ∼= F0 be the

Hurewicz homomorphism. It is an isomorphism by the Hurewicz Theorem (Theorem 1.3.8)
since L0 is (n − 1)-connected. So there exists [fj ]∗ in πn(L0) for each basis element ej of
F1 ⊆ F0. Let L1 :=

∨
j∈J Sn. Define the following reduced mapping cone :

L1 L0

C(L1)
∨
j∈J

Dn+1 Cf.

f=
∑
j∈J

fj

if

∼=

It is a CW-complex. Using again the additivity axiom, we obtain : H̃n(L1;Z) ∼= L1 and
H̃m(L1;Z) = 0 = H̃m(L0;Z), whenever m 6= n. Apply Theorem B.1.8 to the based map
f : L1 → L0. For k ∈ Z such that k 6= n, n+ 1, we obtain the exact sequence :

· · · H̃k(L0;Z)︸ ︷︷ ︸
=0

H̃k(Cf ;Z) H̃k−1(L1;Z)︸ ︷︷ ︸
=0

· · · ,

so H̃k(Cf ;Z) = 0 for every k 6= n, n+ 1. For the case k = n+ 1, we have the exact sequence :

· · · H̃n+1(L0;Z)︸ ︷︷ ︸
=0

H̃n+1(Cf ;Z) H̃n(L1;Z)︸ ︷︷ ︸
∼=F1

H̃n(L0;Z)︸ ︷︷ ︸
∼=F0

· · · .

Since we have the commutativity of the following diagram :

H̃n(L1;Z) H̃n(L0;Z)

F1 F0,

∼= ∼=
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we get that the image of H̃n+1(Cf ;Z) → H̃n(L1;Z) is trivial since it equals the kernel of
H̃n(L1;Z) → H̃n(L0;Z). Hence H̃n+1(Cf ;Z) = 0, by exactness. For the case k = n, we have
the exact sequence :

· · · 0 F1 F0 H̃n(Cf ;Z) 0 · · · ,

so H̃n(Cf ;Z) ∼= F0/F1 ∼= G. Therefore Cf is a Moore space of type (G,n).

Theorem 2.1.5 (Existence of K(G, n)).
Let G be an abelian group, and n ≥ 1 an integer. Then there exists an Eilenberg-MacLane space
of type (G,n).

Proof : Let M(G,n) be a Moore space. We give two constructions of an Eilenberg-MacLane
space of type (G,n). The first is a rather explicit construction, whereas the second is more
functorial.

First Construction From the Hurewicz homomorphism :

h : πk(M(G,n)) −→ H̃k(M(G,n);Z),

we get that M(G,n) is (n− 1)-connected and πn(M(G,n)) ∼= G. Let M(G,n) = Kn. By
Lemma A.3.5, we build a CW-complex Kn+1 by attaching (n+ 2)-cells to Kn so that we
kill its homotopy only in dimension n+1, i.e. : πn+1(Kn+1) = 0 and πk(Kn+1) = πk(Kn),
for k ≤ n. Iterating this procedure, name K the colimit colimjKn+j . It is a CW-complex
and by Theorem C.4.5, it is an Eilenberg-MacLane space of type (G,n).

Second Construction There is a homotopical invariant functor : SP : Top∗ → A called the
infinite symmetric product, where A is the category of abelian topological monoids (see
references [Strom, 2011] and [Aguilar et al., 2002] for details). For any based space X,
SP(X) is the free commutative topological monoid generated by X. If X is a based CW-
complex, then SP(X) is also a CW-complex. If X is path-connected, then H̃n(X;Z) ∼=
πn(SP(X)), for any n ≥ 0. Hence an Eilenberg-MacLane space of type (G,n) is given by
: SP(M(G,n)).

Thus Eilenberg-MacLane spaces exist for any abelian group G.

Lemma 2.1.6.
Let Y be a space such that πk(Y ) = 0 for all k > n and any chosen basepoint of Y . Let X
be a CW-complex. Suppose A ⊆ X is a subcomplex with Xn+1 ⊆ A ⊆ X. Then for any map
f : A→ Y , there exists a map φ : X → Y such that the following diagram commutes :

A Y

X.

f

∃φ

Proof : We wish to extend f skelelton by skeleton, and hence cell by cell, by induction.
Indeed, suppose we have a map g : W → Y , where X = W ∪ ek+1. Let ϕ : Sk → W be the
attaching map. Then an extension of g exists if and only if g ◦ ϕ is nullhomotopic, by Lemma
A.3.4. But this is always the case when k > n for our hypothesis. So we extend f cell by
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cell until we obtain the CW-complex X. To be completely rigorous, we argue using the Zorn’s
Lemma. Consider the set :

P := {(U, fU ) | U is a subcomplex of X with A ⊆ U ⊆ X, and fU an extension of f}.

We define a partial order � on P in the obvious way : we say that (U, fU ) � (V, fV ) if U is a
subcomplex of V and fV extends fU . Therefore we apply the Zorn’s Lemma to (P,�) : the
set P contains a maximal element. But noticing that if U 6= X then (U, fU ) is not maximal
since we can extend fU to a cell in X which not in U , we have that X is a maximal element of
P. Define φ to be fX .

Theorem 2.1.7.
Let G be a group and n ≥ 1. Let Y be an Eilenberg-MacLane space of type (G,n). Then for
any (n− 1)-connected CW-complex X, the function :

Φ : [X,Y ]∗ −→ HomZ(πn(X), πn(Y )) = HomZ(πn(X), G),
[f ]∗ 7−→ f∗

is bijective.

Proof : We first argue as we did in the proof of Hurewicz (Theorem 1.3.8). Since X is
(n− 1)-connected, we can assume that X has a single vertex and no k-cells for 1 ≤ k ≤ n− 1.
It is enough to prove the theorem for the special case where X has dimension at most n + 1
since the inclusion of the (n+ 1)-skeleton to X is an (n+ 1)-equivalence. Therefore we assume
X = Xn+1. The n-skeleton Xn is a wedge of n-sphere and X is obtained as a pushout :

∨
β∈B Snβ Xn

∨
β∈B Dn+1

β X.

∑
ϕβ

i (?)

Since i is a n-equivalence, the induced homomorphism i∗ : πn(Xn) → πn(X) is surjective. Let
us prove now that Φ is bijective.

Injectivity of Φ Let [f ]∗ and [g]∗ be elements of [X,Y ]∗, such that f∗ = Φ([f ]∗) equals
Φ([g]∗) = g∗, i.e., [f ◦ h]∗ = [g ◦ h]∗ for any map h : Sn → X. By surjectivity of i∗,
for any element [h]∗ in πn(X) there exists [h′]∗ in πn(Xn) such that i∗([h′]∗) = [h]∗, and
so : f∗(i∗([h′]∗)) = g∗(i∗([h′]∗)). In particular, since by Lemma 1.3.5 the generators of
πn(Xn) are represented by the inclusions Sn → Xn, we get [f ◦ i]∗ = [g ◦ i]∗. We get
then a homotopy Xn × I → Y from f ◦ i to g ◦ i. The homotopy and the maps f and
g together determine a map H : (X × ∂I ∪ Xn × I) → Y . The (n + 1)-skeleton of the
(n+2)-dimensional CW-complex X×I is (X × I)n = X×∂I∪Xn×I. So by Lemma 2.1.6,
we can extend H to X × I, so that we have a homotopy from f to g. Thus [f ]∗ = [g]∗.

Surjectivity of Φ Let h : πn(X)→ πn(Y ) be a group homomorphism. Let Xn =
∨
j∈J Snj .

The group πn(Xn) is generated by the homotopy classes of the inclusions ιj : Snj ↪→∨
j∈J Snj , by Lemma 1.3.5. From the composite :

πn(Xn) πn(X) πn(Y ),i∗ h
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we define fj : Snj → Y as a representative of the image of [ιj ]∗, i.e. : h(i∗([ιj ]∗) = [fj ]∗,
for each j in J . The maps {fj} determine a map fn : Xn → Y where fn ◦ ιj = fj . Let us
name ϕβ : Snβ → Xn the attaching maps from the pushout (?). For each β in B, the map
i ◦ ϕβ is nullhomotopic by Lemma A.3.4. Hence (fn)∗([ϕβ]∗) = h(i∗([ϕβ]∗)) = 0. Hence
fn ◦ϕβ is nullhomotopic for each β. Therefore fn extends to a map f : X → Y , by Lemma
A.3.4. From h ◦ i∗ = (fn)∗ = f∗ ◦ i∗, since i∗ is surjective, we obtain that f∗ = h, i.e. :
Φ([f ]∗) = h.

Thus the function Φ is bijective.

Corollary 2.1.8 (Uniqueness of K(G, n)).
Let G be an abelian group and n ≥ 1. An Eilenberg-MacLane space of type (G,n) is unique up
to homotopy.

Proof : Let X and Y be Eilenberg-MacLane space of type (G,n). This means that there are
isomorphisms θ : πn(X) → G and ρ : πn(Y ) → G. From the previous theorem, the composite
ρ−1 ◦ θ : πn(X)→ πn(Y ) is induced by a unique homotopy class of X → Y which is therefore a
weak equivalence. Since X and Y are CW-complexes, the Whitehead Theorem implies that X
and Y are homotopy equivalent.

Examples 2.1.9.
S1 is K(Z, 1). More generally, SPSn is K(Z, n).

Proposition 2.1.10.
For any abelian group G and n ≥ 1 : Ω(K(G,n)) '∗ K(G,n− 1).

Proof : This follows directly from the isomorphism πm(X) ∼= πm−1(ΩX), for any based space
X and m ≥ 1. However since we require the Eilenberg-MacLane spaces to be of the homotopy
type of a (based) CW-complex, we have to prove that Ω(K(G,n)) is indeed of the homotopy
type of a CW-complex. But this is given by the following Milnor Theorem.

Theorem 2.1.11 (Milnor).
If X is a based CW-complex, then the reduced loop space ΩX is a based CW-complex.

Proof : Omitted. A full detailed proof can be found in [Fritsch and Piccinini, 1990].

2.2. Prespectra and Generalized Homology Theories

In the previous chapter, we saw, via the Freudenthal Suspension Theorem, that after sufficiently
many iterated reduced suspensions, the homotopy groups of a based space eventually stabilize.
Moreover, in Appendix B, we show that generalized (reduced) homology and cohomology the-
ories are stable invariants, due to the suspension axiom : there exist suspension isomorphisms
for (co)homologies that do not alter the (co)homology groups. Thus, to construct a generalized
homology or cohomology theory, it seems intuitively natural first consider a family of based
spaces endowed with relations among the reduced suspensions of these spaces. As a matter of
fact, it will turn out to be sufficient to consider only a sequence E0, E1, E2, · · · of based spaces,
together with maps ΣEn → En+1. Such a sequence is called generally a spectrum.
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Throughout the literature, one find various definitions of a spectrum that do not necessarly
agree. Without going through the details, the reason for these different definitions is to find a
convenient category to work with, just as compactly generated spaces form a well-behaved full
subcategory of spaces.
Even though this is irrelevant for our goal to describe homotopically homologies and cohomolo-
gies, we shall retain the modern terminology, and talk about prespectra instead of spectra. Our
approach shall gather the different procedures for defining homology and cohomology theories
that one can find in most references.

Definition 2.2.1 (Prespectra).
A prespectrum E consists of a family of based spaces {En}n≥0 together with based maps σn :
ΣEn → En+1 called the structure maps. The space En is called the n-th term of the prespectrum
E. If E and E′ are prespectra, a map of prespectra f : E → E′ is a family of based maps
{fn : En → E′n | n ≥ 0} such that for each n ≥ 0, the following diagram commutes :

ΣEn ΣE′n

En+1 E′n+1.

Σfn

σn σ′n

fn+1

With the obvious composition of maps of prespectra, we denote P the category of prespectra.

The Suspension Prespectrum To each based space X, one can associate a prespectrum.
We define Σ∞X the suspension prespectrum of X, where the n-th term (Σ∞X)n is given by the
n-th reduced suspension of X, namely ΣnX, and its structure maps σn : Σ(ΣnX)→ Σn+1X are
the obvious identity maps. For each based map f : X → Y , we define Σ∞f : Σ∞X → Σ∞Y as
the family of maps {Σnf : ΣnX → ΣnY | n ≥ 0}. Obviously, we have the required commutativty
of the following diagram for each n ≥ 0 :

Σ(ΣnX) Σ(ΣnY )

Σn+1X Σn+1Y,

Σ(Σnf)

σn σn

Σn+1f

making Σ∞f as a map of prespectra. Since compositions and identies are obviously conserved,
we have defined a functor Σ∞ : Top∗ →P, called the suspension prespectrum functor.

Example 2.2.2 (The Sphere Prespectrum S).
A particular nice example is given by the 0-sphere S0. Apply the suspension prespectrum
functor Σ∞S0 : its n-th term is homeomorphic to Sn. Subsequently, we denote the sphere
prespectrum Σ∞S0 by S.

Definition 2.2.3 (Homotopy Groups of Prespectra).
Given a prespectrum E and n ≥ 0, we define its n-th homotopy group by :

πn(E) = colimkπn+k(Ek),

where the colimit is taken over the maps :

πn+k(Ek) πn+k+1(ΣEk) πn+k+1(Ek+1).Σ (σk)∗

For convenience, we set π−n(E) := colimk≥nπk−n(Ek), for all n ≥ 0.
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In particular, for the suspension prespectrum Σ∞X of a based space X, we get that πn(Σ∞X)
equals the stable homotopy groups πSn (X) of X (see definition 1.2.5, page 8). Hence, for the
sphere prespectrum S, we have πn(S) = πSn (see definition 1.2.6).
More generally, we have the following lemma, which states that homotopy groups of a prespec-
trum behave somehow as the stable homotopy groups.

Lemma 2.2.4.
Let n ≥ 0. For any prespectrum E, we have : πn(E) ∼= colimkπ

S
n+k(Ek).

Proof : The colimit πn(E) = colimkπn+k(Ek) is taken over :

πn(E0) πn+1(E1) πn+2(E2) · · · .(σ0)∗◦Σ (σ1)∗◦Σ (σ2)∗◦Σ

For any k, j ≥ 0 we have the following factorization :

πn+k(Ek) πn+k+j(Ek+j)

πn+k+j(ΣjEk).

Hence we get that colimkπn+k(Ek) = colimkπn+k+j(ΣjEk) for any j ≥ 0. In particular we
get that πn(E) = colimj(colimkπn+k+j(ΣjEk)). Using the interchange property of colimits
(Theorem C.3.4), we have :

colimj(colimkπn+k+j(ΣjEk)) ∼= colimk(colimjπn+k+j(ΣjEk)).

But colimjπn+k+j(ΣjEk) = πSn+k(Ek) for any k ≥ 0, by the definition of stable homotopy groups
(Definiton 1.2.5). Therefore we get : πn(E) ∼= colimkπ

S
n+k(Ek).

We have defined a functor πn : P → Ab, for all n ∈ Z. Indeed, for a map of prespectra
f : E → E′, there is a unique group homomorphism πn(f) =: f∗ : πn(E) → πn(E′), given by
the universal property of colimits, and obviously πn preserves compositions and identites.

We introduce now well-behaved families of prespectra. The first is the Ω-prespectra that
will be fundamental for cohomology theories (see next section).

Definition 2.2.5 (Ω-Prespectra).
An Ω-prespectrum E is a prespectrum such that the adjoint σ̃n : En → ΩEn+1 of the structure
map σn is a weak equivalence, for each n ≥ 0. If E and E′ are Ω-prespectra, then a map of
Ω-prespectra f : E → E′ is a map of the underlying prespectra. We denote by ΩP the category
of Ω-prespectra. It is a subcategory of P.

A fundamental example is the following.

Example 2.2.6 (The Eilenberg-MacLane Ω-prespectrum HG).
LetG be an abelian group. Let us consider the family of Eilenberg-MacLane spaces {K(G,n)}n≥0.
Proposition 2.1.10 gives weak homotopy equivalences1 σ̃n : K(G,n) ∼−→ ΩK(G,n+ 1), for each
n ≥ 0. Hence, we obtained an Ω-prespectrum, denoted HG, called the Eilenberg-MacLane
Ω-prespectrum for G, where its n-th term is (HG)n = K(G,n).

1Actually homotopy equivalences since we required an Eilenberg-MacLane space to be of the homotopy type
of a based CW-complex

22



Another crucial well-behaved family of prespectra is the family of CW-prespectra.

Definition 2.2.7 (CW-Prespectra).
A CW-prespectrum E is a prespectrum such that each n-th term is a based CW-complex
where its basepoint is a vertex, and such that the structure maps σn : ΣEn ↪→ En+1 are
cellular inclusions. A map of CW-prespectra f : E → E′ is a map of prespectra such that
each fn : En → E′n is cellular. We denote by CW-P the category of CW-prespectra. It is a
subcategory of P.

For instance, for any based CW-complex X, its suspension prespectrum Σ∞X is a CW-
prespectrum. Hence we have a functor Σ∞ : CW∗ −→ CW-P. Since we required the
Eilenberg-MacLane spaces to be of the homotopy type of CW-complexes, we get that HG is
a CW-prespectrum for any abelian group G (to get the inclusions, we will apply Lemma 2.2.10).

A natural question arises : is it possible to replace prespectra with CW-prespectra without
altering their homotopy groups? In other words, is there some kind of a CW-approximation for
prespectra? We first introduce the notion of weak equivalence for prespectra.

Definition 2.2.8 (Weak Equivalences).
A map of prespectra f : E → E′ is called a weak equivalence if it induces isomorphisms
f∗ : πn(E)

∼=−→ πn(E′), for all n ≥ 0. We say that E is weakly equivalent to E′.

Definition 2.2.9 (Levelwise Homotopy Equivalences).
A map of prespectra f : E → E′ is called a levelwise homotopy equivalence if each map fn :
En → E′n is a homotopy equivalence.

Lemma 2.2.10.
Given a prespectrum E where each n-th term is a CW-complex, and each structure maps σn
is cellular (but not necessarly an inclusion), there is a CW-prespectrum T and a levelwise
homotopy equivalence of prespectra r : E → T .

Proof : We proceed by defining each Tn as a double mapping cylinder, as we did for the
construction of the homotopy colimit in the proof of Theorem C.4.7. For each n ≥ 0, define the
mapping cylinder :

ΣEn ΣEn × [n, n+ 1]

En+1 Mn+1,

'

σn

'

which is a CW-complex. Let T0 = E0, T1 = M1. Define the double mapping cylinder Tn+1
inductively as :

ΣEn × {n} ΣTn

En+1 Mn+1 Tn+1,

'

' '

which is again a CW-complex. We obtain for each n ≥ 1 :

Tn+1 = M1
∐

ΣE1×{1}
M2

∐
ΣE2×{2}

. . .
∐

ΣEn−1×{n−1}
Mn,

and we obtain by construction cofivrations ΣTn � Tn+1 for each n ≥ 0. Name rn : En → Tn
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the homotopy equivalences obtained by construction. For each n ≥ 0, we get :

ΣEn ΣTn

En+1 Tn+1,

σn

Σrn

rn+1

making a homotopy equivalence of prespectra r : E → T .

Proposition 2.2.11.
Given a prespectrum E, there exists a weakly equivalent CW-prespectrum T .

Proof : For each n-th term, there is a weakly equivalent CW-complex E′n
∼→ En, such that

the structure maps σn are cellular (we use that if X is a CW-complex, then ΣX is a CW-
complex). In more details : there is a CW-approximation E′0

∼→ E0. Suppose that given a
CW-approximation E′n

∼→ En for some n ≥ 0. By Theorem A.3.6, the CW-approximation
E′n+1

∼→ En+1 can be given by the following commutative diagram :

ΣE′n ΣEn

En+1 En+1.

∼

∃ σn

∼

We then apply the previous lemma.

Before introducing the main theorem of this part, we shall make a disgression on smash
products.

Smash Products Let (X,x0) and (Y, y0) be based spaces. We define the smash product of
X and Y by :

X ∧ Y = X × Y
X ∨ Y

= X × Y
X × {y0} ∪ {x0} × Y

.

The class [(x, y)] is denoted x ∧ y, for any (x, y) in X × Y . The basepoint of X ∧ Y is given by
x0 ∧ y = x ∧ y0 = x0 ∧ y0, for any x in X and y in Y . If f : X → X ′ and g : Y → Y ′ are based
maps, the map f ∧ g : X ∧ Y → X ′ ∧ Y ′ is the unique map such that the following diagram
commutes :

X × Y X ′ × Y ′

X ∧ Y X ′ ∧ Y ′.

f×g

f∧g

Notice that if x0 ∈ A ⊆ X, then we have by Theorem C.3.4 :

(X/A) ∧ Y = X × Y
A× Y ∪X × {y0}

∼=
X ∧ Y
A ∧ Y

. (2.1)

Equality (2.1) shows that we already have encountered smash products before in particular
cases. Noticing that X∧I is the reduced cone of CX and recalling the (based) homeomorphism
S1 ∼= I/∂I, we get that X ∧ S1 ∼= ΣX from equality (2.1), for any based space X. More
generally, we get X ∧ Sn ∼= ΣnX. Hence we have Sn ∧ Sm ∼= Sn+m. In particular we have
X ∧ S0 ∼= X for any based space X.
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We can give nice algebraic and geometric descriptions of the smash product. Algebraically, the
smash product behaves as tensor product in the following way. Let us denote by Fun∗(X,Y ) the
subspace of Map(X,Y ) consisting of the based maps, endowed with the constant based map
as basepoint. There is a natural based homeomorphism (for Y a locally compact Hausdorff
space) :

Fun∗(X ∧ Y,Z) ∼= Fun∗(X,Fun∗(Y,Z)).
This is analogue to HomR(A ⊗R B,C) ∼= HomR(A,HomR(B,C)), where A, B and C are R-
modules for R a commutative ring. Geometrically, it is easy to show that if X and Y are based
Hausdorff compact spaces, then the Alexandroff compactification (i.e. one-point compactifica-
tion) of (X −{x0})× (Y −{y0}) is not given by X ×Y but by X ∧Y . Hence this gives another
way to see that Sn ∧ Sm ∼= Sn+m. We state, without a proof, the following properties, which
hold generally (except commutativity) only for compactly generated based spaces2 X, Y and
Z (see [Whitehead, 1978] for a proof) :

Commutativity X ∧ Y ∼= Y ∧X,

Associativity (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z),

Distributivity X ∧ (Y ∨ Z) ∼= (X ∧ Y ) ∨ (X ∧ Z).

Let X and Y be based CW-complexes which are r-connected and s-connected respectively.
Suppose that X or Y is locally compact. From the relative CW-structure of (X × Y,X ∨ Y ),
the smash product X ∧ Y is a (r + s+ 1)-connected CW-complex.

Returning to our context of prespectra, for any CW-prespectrum E and based CW-complex
X, we define X ∧E to be the prespectum with n-th term (X ∧ E)n given by X ∧En, and with
structure maps idX∧σn : Σ(X∧E) = (X∧En)∧S1 = X∧(En∧S1) = X∧(ΣEn) −→ X∧En+1.
For any based cellular map f : X → Y , we obtain a family of based maps {f ∧ idEn : X ∧En →
Y ∧En} forming a map of prepsectra f ∧ id : X ∧E → Y ∧E. We have thus defined a functor :

− ∧ E : CW∗ −→P.

The following corollary from Blakers-Massey will be at the heart of the proof of our main
result.

Theorem 2.2.12 (Another Corollary of Homotopy Excision).
Let i : A � X be a cofibration and an (n − 1)-equivalence between (n − 2)-connected spaces,
where n ≥ 2. Then the quotient map (X,A) → (X/A, ∗) is a (2n − 2)-equivalence, and it is a
(2n− 1)-equivalence if A and X are (n− 1)-connected.

Proof : It is a reformulation of Theorem 1.3.4, page 10. The proof follows from the commu-
tativity of the following diagram :

(Mi,A) (Ci, ∗)

(X,A) (X/A, ∗),

' '

where the top row unlabeled arrow is the quotient map from the reduced mapping cylinder to
the reduced mapping cone.

We are now ready to state and prove the main result.
2Compact spaces, metric spaces, locally compact spaces, CW-complexes and manifolds are all examples of

compactly generated spaces.
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Theorem 2.2.13.
Given a CW-prespectrum E, we define a functor for all n ∈ Z :

Ẽn : CW∗ −→ Ab
X 7−→ πn(X ∧ E).

Then the functors Ẽ∗ define a generalized reduced homology theory on based CW-complexes.

To prove Theorem 2.2.13, we first prove a particular case, where we choose the CW-prespectrum
E to be equal to the sphere prespectrum S. This case is particularly interesting, since for any
based CW-complex X, we get :

S̃n(X) = πn(X ∧ S) = πn(Σ∞X) = πSn (X).

In this case, S̃n is obviously a homotopy invariant functor. Notice that it makes perfect sense to
write πS−n(X) for n ≥ 0. Let us show that πS∗ is a reduced homology theory on CW-complexes.

Lemma 2.2.14.
The stable homotopy groups πS∗ : CW∗ → Ab defines a generalized reduced homology theory on
based CW-complexes.

Proof : Let us show that πS∗ respects the Eilenberg-Steenrod axioms for a generalized reduced
homology theory on CW-complexes.

Exactness Let (X,A) be a relative CW-complex. We need to show the exactness of the
following sequence, for any n :

πSn (A) πSn (X) πSn (X/A). (?)

The exact sequence of the pair (X,A) gives the exactness of the following sequence for
any k ≥ 0 :

πk(A) πk(X) πk(X,A).

From Theorem 2.2.12, the isomorphism πk(X,A) ∼= πk(X/A) holds under connectivity
assumptions that are achieved after sufficiently many suspensions. Recall that stable
homotopy groups are obtained as a colimit πSn (X) := colimkπn+k(ΣkX). By Theorem
C.4.3, it follows that the sequence (?) is exact.

Suspension For any based CW-complex X, by the Freudenthal Theorem (Theorem 1.2.3), we
have the isomorphism :

πSn (X) = colimkπn+k(ΣkX)
∼= colimk≥1πn+k(ΣkX), using Proposition C.4.4,
= colimkπn+k+1(Σk+1X)
= πSn+1(ΣX),

which is natural.

Additivity Let us prove that πSn (
∨
j∈J Xj) ∼=

⊕
j∈J πSn (Xj), where Xj are based CW-

complexes, for each j in a index set J . Let X =
∨
j∈J Xj . Recall that πSn (X) =

colimkπn+k(ΣkX). From the claim of the proof of Theorem C.4.5, it suffices to work with
a finite index set J when dealing with the groups πn+k(ΣkX), for each k ≥ 0, whence,
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it suffices to work with a finite index set J for πSn (X).
Let now X and Y be any based CW-complexes. By induction, it suffices to prove that
πSn (X ∨ Y ) ∼= πSn (X)

⊕
πSn (Y ). Recall that Σ(X ∨ Y ) ∼= (ΣX) ∨ (ΣY ), by distributivity

of the smash product. For any k ≥ 0, the CW-complexes ΣkX and ΣkY are k-connected.
Let us write (ΣkX × ΣkY )w their products endowed with the weak topology (which is
not necessarly equivalent to the product topology). Its (2k − 1)-skeleton is given by
ΣkX ∨ ΣkY . Hence the relative CW-complex ((ΣkX × ΣkY )w,ΣkX ∨ ΣkY ) is (2k − 1)-
connected. Therefore we get the isomorphism :

πn+k(ΣkX ∨ ΣkY ) ∼= πn+k((ΣkX × ΣkY )w),

for n+k < 2k−1, i.e., k > n+1. But by Corollary C.4.6, we have that πn+k((ΣkX×ΣkY )w)
is isomorphic to πn+k(ΣkX)⊕ πn+k(ΣkY ), for all k. Therefore, for k > n+ 1 we have the
isomorphism :

πn+k(Σk(X ∨ Y )) ∼= πn+k(ΣkX ∨ ΣkY ) ∼= πn+k(ΣkX)⊕ πn+k(ΣkY ).

Passing to colimits over k, we get the desired isomorphism :

πSn (X ∨ Y ) ∼= πSn (X)⊕ πSn (Y ).

Therefore, πS∗ defines a generalized reduced homology theory.

We now give the proof for Theorem 2.2.13 for any CW-prespectrum. It is a direct consequence
of previous lemma and Lemma 2.2.4.

Proof of Theorem 2.2.13 : We start the proof by showing that Ẽn is indeed a homotopy
invariant functor for all n. It is a functor since it is the composite of the functors :

CW∗ P Ab.−∧E πn

If X → Y is a based homotopy equivalence of CW-complexes, then so is X ∧ En → Y ∧ En,
for any n ≥ 0. Thus we get a homotopy equivalence of prespectra X ∧ E → Y ∧ E and so
Ẽn(X) ∼= Ẽn(Y ). Therefore Ẽn is homotopy invariant.
We next prove the Eilenberg-Steenrod axioms for reduced homology theories defined on CW∗.
Recall from Lemma 2.2.4 that :

πn(X ∧ E) ∼= colimkπ
S
n+k(X ∧ Ek).

Exactness Let (X,A) be a relative CW-complex. We need to show that the following sequence
is exact, for every n :

Ẽn(A) Ẽn(X) Ẽn(X/A).

Since for all k ≥ 0 : (X ∧Ek)/(A∧Ek) ∼= (X/A)∧Ek, this follows directly from exactness
of πS∗ :

πSn+k(A ∧ Ek) πSn+k(X ∧ Ek) πSn+k((X ∧ Ek)/(A ∧ Ek)),

and Theorem C.4.3.
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Suspension Let X be any based CW-complex. From the suspension of πS∗ , we get for any n,
the isomorphism :

Ẽn(X) ∼= colimkπ
S
n+k(X ∧ Ek)

∼= colimkπ
S
n+1+k(Σ(X ∧ Ek))

∼= colimkπ
S
n+1+k((ΣX) ∧ Ek)

∼= Ẽn+1(ΣX),

which is obviously natural.

Additivity Let {Xj}j∈J be any collection of based CW-complexes. For any n, we have :

Ẽn

 ∨
j∈J

Xj

 ∼= colimkπ
S
n+k

 ∨
j∈J

Xj

 ∧ Ek


∼= colimkπ
S
n+k

 ∨
j∈J

(Xj ∧ Ek)

 , by distributivity of ∧,

∼= colimk

⊕
j∈J

πSn+k(Xj ∧ Ek)

 , by additivity of πS∗ ,

∼=
⊕
j∈J

(
colimkπ

S
n+k(Xj ∧ Ek)

)
, by Theorem C.3.4,

∼=
⊕
j∈J

Ẽn(Xj).

Therefore, Ẽ∗ is a generalized reduced homology theory.

Let H denote the category of generalized reduced homology theories on CW∗ where the
morphisms are the transformations of reduced homology theories (see Appendix B).

Addendum 2.2.15.
The previous procedure of associating to each CW-prespectrum a generalized reduced homology
theory defines a functor F : CW-P −→H .

Proof : Let us first define how F assigns morphisms. Let f : E → E′ be a map of CW-
prespectra. We obtain a map of prepsectra idX ∧f which is the collection of the maps idX ∧fn :
X ∧ En → X ∧ E′n. Recall that πn : P → Ab is a functor. We thus obtain an abelian
group homomorphism (idX ∧ f)∗ : πn(X ∧ E) → πn(X ∧ E′). We have determined natural
transformations {Tn : Ẽn = πn(− ∧ En) ⇒ πn(− ∧ E′n) = Ẽ′n}. To prove that the induced
transformation T : Ẽ∗ → Ẽ′∗ is a transformation of reduced homology theories, we must prove
that the following diagram commutes :

πn(X ∧ E) πn(ΣX ∧ En)

πn(X ∧ E′) πn(ΣX ∧ E′).

(idX∧f)∗

Σ

(idΣX∧f)∗
Σ

But this follows easely from the definition of the suspension homomorphism Σ defined in the
proof of the previous theorem. Moreover, F obviously preserves compositions and identites.
Therefore F is a functor.
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Corollary 2.2.16.
Let G be an abelian group. The Eilenberg-MacLane Ω-prespectrum HG defines an ordinary
reduced homology H̃G∗.

Proof : We have to verify the dimension axiom. Recall that for any based space X, we have
the homeomorphism S0 ∧X ∼= X. For any n in Z :

H̃Gn(S0) = πn(S0 ∧HG) = colimkπn+k(S0 ∧K(G, k)) ∼= colimkπn+k(K(G, k)).

If n ≥ 0, then πn+k(K(G, k)) = 0. If n = 0, then πk(K(G, k)) = G for any k. Therefore :

H̃Gn(S0) =
{
G, if n = 0,
0, otherwise.

Thus H̃G∗ respects the dimension axiom.

We now investigate the relations between the homotopic description of the integer homology by
Dold-Thom :

H̃n(X;Z) = πn+1(SP(ΣX)),
for any n and any CW-complex X, and our previous homotopy description with the Eilenberg-
MacLane spaces K(Z, n). Recall that the spaces SP(Sk) are Eilenberg-MacLane spaces of type
(Z, k), whence :

H̃Zn(X) = colimkπn+k(X ∧ SP(Sk)),
for all n and all X. Moreover, there is a map, natural in X :

X ∧ SP(Sk) −→ SP(Sk ∧X)
x ∧ [(s1, s2, . . .)] 7−→ [(x ∧ s1, x ∧ s2, . . .)].

It induces a natural homomorphism on X for all n and k :

πn+k(X ∧ SP(Sk)) −→ πn+k(SP(Sk ∧X)).

Using repeatedly the Dold-Thom Theorem, we obtain : πn+k(SP(Sk ∧ X)) ∼= πn+1(SP(ΣX)).
Passing to colimit over k, we obtain a natural homomorphism on X for all n :

H̃Zn(X) −→ πn+1(SP(ΣX)).

This defines a transformation of reduced homology theories, as the suspension homomorphisms
are obviously compatible. Applying Theorem 3.2.13, we see that this transformation is in fact
an equivalence of reduced homology theories.

We end this section by the following corollary, which tells us how to associate a generalized
reduced homology theory from a prespectrum.

Corollary 2.2.17.
A prespectrum E determines a unique generalized reduced homology theory on based CW-
complexes.

Proof : From Proposition 2.2.11, there exists a weak equivalence T → E, such that T
is a CW-prespectrum, though T is not unique. Suppose we have another weak equivalence
T ′ → E where T ′ is a CW-prespectrum. Then we obtain a weak equivalence rn : Tn → T ′n, for
each n. Therefore we get a homotopy equivalence Tn → T ′n, and so a homotopy equivalence
X ∧ Tn → X ∧ T ′n, for all based CW-complexes, for each n. Therefore T̃n(X) ∼= T̃ ′n(X) for all
X and n, and we can set : Ẽn(X) = T̃n(X) ∼= T̃ ′n(X).
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2.3. Ω-Prespectra and Generalized Cohomology Theories

We have seen how prespectra define generalized reduced homology theories. We are now inter-
ested in generalized cohomology theories.

Suppose we have defined an Ω-prespectrum E = {En} only for n ≥ 1. The omitted term
E0 can be reconstructed from the remaining terms of the Ω-prespectrum. We need a weak
homotopy equivalence E0

∼→ ΩE1, given for instance by a CW-approximation. Hence we can
extend the definition of a Ω-prespectrum where we allow negative terms : {En}n∈Z where
E−n = ΩnE0, for all n ≥ 0. We have the identites σ̃−n : E−n → ΩE−n+1 as the adjoints of
the structure maps for the negative terms. For instance, if we extend the Eilenberg-MacLane
Ω-prespectrum HG, its negative terms are (HG)−n = ∗ for any n ≥ 1, since K(G, 0) is discrete,
for any abelian group G.

Theorem 2.3.1.
Given an Ω-prespectrum E, we define a contravariant functor for all n ∈ Z :

Ẽn : CW∗ −→ Ab
X 7−→ [X,En]∗.

Then the functors Ẽ∗ define a generalized reduced cohomology theory on based CW-complexes.

Proof : Since [−, Z]∗ : Top∗ → Set is a contravariant homotopy invariant functor for any
based space Z, so is Ẽn := [−, En]∗, for each n in Z. We need to argue that Ẽn admits an abelian
group structure. For each n in Z, there is a weak homotopy equivalence En

∼→ Ω2En+2. Hence
from Whitehead Theorem, the bijection between [X,En]∗ and [X,Ω2En+2]∗ ∼= [ΣX,ΩEn+2]∗
endows [X,En]∗ with an abelian group structure. Therefore Ẽn : CW∗ −→ Ab is indeed a
contravariant homotopy invariant functor. We now prove the Eilenberg-Steenrod axioms for a
reduced cohomology theory on based CW-complexes.

Exactness Let (X,A) be a relative CW-complex. Since A is closed in X, there is a home-
omorphism between X/A and the reduced mapping cone Ci, where i : A ↪→ X is the
inclusion. Hence, for any fixed based space Z, from Baratt-Puppe, we obtain an exact
sequence (a priori in Set∗) :

[X/A,Z]∗ [X,Z]∗ [A,Z]∗.

Specifying Z = En, we have the desired exact sequence for each n in Z :

Ẽn(X/A) Ẽn(X) Ẽn(A).

Suspension We have the desired natural isomorphism for each n in Z :

Ẽn(X) := [X,En]∗ [X,ΩEn+1]∗ ∼= [ΣX,En+1]∗ =: Ẽn+1(ΣX).
(σ̃n)∗
∼=

Additivity A based map
∨
j∈J Xj → Z is equivalent to a collection {Xj → Z}j∈J of based
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maps, for any based space Z. Therefore we obtain for all n in Z :

Ẽn

 ∨
j∈J

Xj

 = [
∨
j∈J

Xj , En]∗

∼=
∏
j∈J

[Xj , En]∗

=
∏
j∈J

Ẽn(Xj).

Thus Ẽ∗ is a generalized reduced cohomology theory on based CW-complexes.

Let coH denotes the category of generalized reduced cohomology theories on CW∗ where
the morphisms are the transformations of reduced cohomology theories (see Appendix B).

Addendum 2.3.2.
The previous procedure of associating to each Ω-prespectrum a generalized reduced cohomology
theory defines a functor G : ΩP −→ coH .

Proof : We first need to specify how G assigns morphisms of Ω-prespectra. So let f : E → E′

be a map of prepsectra. The following diagram commutes for each n :

ΣEn ΣE′n

En+1 E′n+1.

Σfn

σn σ′n

fn+1

For each based CW-complex X, the map fn induces a homomorphism natural in X :

Ẽn(X) = [X,En]∗ [X,E′n]∗ = Ẽ′n(X),
(fn)∗

i.e., a natural transformation G(fn) : Ẽn ⇒ Ẽ′n, for each n. Let G(f) : Ẽ∗ → Ẽ′∗ be the
collection of these natural transformations. In order to prove that G is a functor, we must show
that G(f) is a transformation of reduced cohomology theories, i.e., that the following diagram
commutes :

Ẽn(X) Ẽn(ΣX)

Ẽ′n(X) Ẽ′n(ΣX),

Σ

G(fn)X G(fn+1)ΣX

Σ

for every based CW-complex X, and each n, where Σ is the suspension homomorphism defined
in the proof of the suspension axiom of Theorem 2.3.1. The desired commutativity follows
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directly from the commutativity of the following diagram :

[X,En]∗ [X,ΩEn+1]∗ [ΣX,En+1]∗

[ΣX,ΣEn]∗

[ΣX,ΣE′n]∗

[X,E′n]∗ [X,ΩE′n+1]∗ [ΣX,E′n+1]∗.

(σ̃n)∗

(fn)∗

Σ

∼=

(fn+1)∗

(σn)∗

(Σfn)∗

(σ′n)∗

(σ̃′n)∗

Σ

∼=

The two triangles of the above diagram commutes by adjoint relation. Moreover, it is clear that
this way of defining G preserves compositions and identity. Therefore G is a functor.

Corollary 2.3.3.
Let G be an abelian group. The Eilenberg-MacLane Ω-prespectrum HG defines an ordinary
reduced cohomology H̃G∗.

Proof : We have H̃Gn(S0) = [S0,K(G,n)]∗ = π0(K(G,n)), for any n. Thus :

H̃G
n(S0) =

{
G, if n = 0,
0, otherwise.

Therefore H̃G∗ respects the dimension axiom.

We have seen how to define generalized cohomology theories from Ω-prespectra, but one may
ask if it possible for to define cohomology from prespectra? Let E be a prespectrum (possibly
replaced by weakly equivalent CW-prespectrum). Recall that E defines reduced homology as
Ẽn(X) = πn(X ∧ E), i.e. :

Ẽn(X) = colimk[Sn+k, X ∧ Ek]∗,

where the colimit is taken over :

[Sn+k, X ∧ Ek]∗ [Sn+k+1, X ∧ Ek+1]∗.
(σk)∗◦Σ

So one would try to define a reduced cohomology theory as :

Ẽn(X) = colimk[Sk ∧X,En+k]∗ ∼= colimk[ΣkX,En+k]∗,

where the colimit is taken over :

[ΣkX,En+k]∗ [Σk+1X,En+k+1]∗.
(σn+k)∗◦Σ

The iterated reduced suspensions give an abelian group structure to Ẽn(X), and Ẽn is clearly a
homotopy invariant functor. As we saw before in the proof of the previous theorem, the general
properties of the functor [−, En+k]∗ together with the properties of colimits will prove that Ẽ∗
will respect exactness and suspension axiom. However, the additivity need not to be respected :
this is mainly due to the fact that products, which are limits, do not interchange with colimits
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in general. Nevertheless, it is interesting to see the connections with Ω-prespectra. Suppose
now that E is a Ω-prespectrum. We get for any based CW-complex X :

Ẽn(X) = colimk[ΣkX,En+k]∗
∼= colimk[X,ΩkEn+k]∗
∼= colimk[X,En]∗
= [X,En]∗.

Therefore we recover our previous definition of reduced cohomology theory defined from a Ω-
prespectrum.
It is natural now to ask if for any prespectrum, there is a Ω-prespectrum associated to any
prespectrum, such that they define the same reduced homology theory. Recall the homotopy
colimit hocolimnZn construction of a telescope Z0 → Z1 → Z2 → · · · that we have done in the
proof of Theorem C.4.7.

Lemma 2.3.4.
For any telescope Z0 → Z1 → Z2 → · · · of based spaces, the natural map :

hocolimnΩZn −→ Ω(hocolimnZn),

is a weak equivalence.

Proof : Omitted, exercise found in [Hatcher, 2002], Section 4.F, exercise 3.

Proposition 2.3.5.
For any CW-prespectrum E, there is a related Ω-prespectrum T , such that T and E share the
same homotopy groups.

Sketch of the Proof : Let {σ̃n} be the adjoints of the structure maps of E. We define
the telescope for each n ≥ 0 :

En ΩEn+1 Ω2En+2 · · · .σ̃n Ωσ̃n+1 Ω2σ̃n+2

Let Tn := hocolimkΩkEn+k. Explicitly, we have the mapping cylinder as a pushout for all k :

ΩkEn+k ΩkEn+k × [k, k + 1]

Ωk+1En+k+1 Mk+1.

Ωkσ̃n+k

Define the double mapping cylinder of σ̃k as : Y0 = En × {0}, Y1 = M1 and for k ≥ 1 :

Yk+1 = M1
∐

ΩEn+1×{1}
M2

∐
Ω2En+2×{2}

. . .
∐

Ωk−1En+k−1×{n−1}
Mk.

We obtain homotopy equivalences : Yk −→ ΩkEn+k, for each k. Therefore :

Tn := hocolimkΩkEn+k = colimkY
k.

Let us prove now that T = {Tn} is a Ω-prespectrum. We need to define the adjoints of the its
structure maps. Proposition C.4.4 gives a homotopy equivalence

hocolimkΩkEn+k
'−→ hocolimkΩk+1En+k+1.
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Then the adjoints of the structure maps are given by the composite :

Tn = hocolimkΩkEn+k hocolimkΩk+1En+k+1 Ω(hocolimkΩkEn+k+1) = ΩTn+1
' ∼

where the weak equivalence stems from Lemma 2.3.4. Therefore T is a Ω-prespctrum.
For all r and n, we obtain :

πr(Tn) = πr(hocolimkΩkEn+k)
= πr(colimkY

k)
∼= colimkπr(Yk), using Theorem C.4.5,
∼= colimkπr(ΩkEn+k)
∼= colimkπr+k(En+k)
∼= colimkπr−n+k(Ek), using Propostion C.4.4,
= πr−n(E).

We therefore obtain :

πn(T ) = colimkπn+k(Tk)
∼= colimkπn(E)
= πn(E).

Therefore E and T share the same homotopy groups.
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CHAPTER 3

Brown Representability Theorem

In the previous chapter, we have seen that each Ω-prespectrum determines a reduced cohomology
theory. This chapter is devoted to prove the converse : each reduced cohomology theory defines
an Ω-prespectrum. This will stem from the fact that every reduced cohomology theory is
representable, in a sense to be defined. Actually we will carry out our work and prove the Brown
Representability Theorem, which identifies which contravariant homotopy functors defined on
the category of based CW-complexes CW∗ are representable. We follow [Kochman, 1996],
[Hatcher, 2002] and [Aguilar et al., 2002].

3.1. Representable Functors

We begin by defining what representable means in the categorical sense. Our result will be
stated for the contravariant case. However, all the work in this section can be dualized for
covariant functors.

Let C be a locally small category, i.e., a category such that for any object C and C ′ in C , the
class of morphisms C (C,C ′) is a set. Let C0 be a fixed object of C . We define the contravariant
functor :

C (−, C0) : C −→ Set
C 7−→ C (C,C0)

C
f→ C ′ 7−→ f∗ : C (C ′, C0)→ C (C,C0),

where f∗(ϕ) = ϕ ◦ f , for any ϕ in C (C ′, C0).

Definition 3.1.1 (Representable Contravariant Functor).
Let C be a locally small category. A contravariant functor F : C → Set is said to be repre-
sentable if there is an object C0 in C and a natural isomorphism :

e : C (−, C0)⇒ F.

We say that C0 represents F , and C0 is a classifying object for F .

The following lemma, known as the Yoneda Lemma, relates natural transformations e :
C (−, C0)⇒ F with elements of F (C0).
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Lemma 3.1.2 (Yoneda).
Let C be a locally small category. Let F : C → Set be a contravariant functor. For any object
C0 in C , there is a one-to-one correspondance between natural transformation e : C (−, C0)⇒ F
and elements u in F (C0), which is given, for any object C in C , by :

eC : C (C,C0) −→ F (C)
ϕ 7−→ F (ϕ)(u).

Proof : Suppose we are given a natural transformation e : C (−, C0)⇒ F . In particular, for
any morphism ϕ in C (C,C0), the following diagram commutes :

C (C0, C0) F (C0)

C (C,C0) F (C).

ϕ∗

eC0

F (ϕ)
eC

Evaluating with the identity morphism idC0 , we obtain an element u = eC0(idC0) in F (C0); and
commutativity of the previous diagram gives : eC(ϕ) = F (ϕ)(u).
Conversely, if we are given u in F (C0), define eC : C (C,C0) −→ F (C) as before, for all objects
C. Naturality follows directly.

The Yoneda Lemma leads to the following definition.

Definition 3.1.3 (Universal Elements).
Let C be a locally small category. If F : C → Set is a representable contravariant functor,
given a natural isomorphism e : C (−, C0)⇒ F , the associated element according to the Yoneda
Lemma uF := eC0(idC0) ∈ F (C0) is called the universal element of F .

Notice that we said «the» universal element. This suggests some kind of relations between
universal elements, and so between classifying objects. We start by the following proposition,
that will be crucial subsequently.

Proposition 3.1.4.
Let C be a locally small category. Let F,G : C → Set be contravariant functors represented by
C0 and C ′0 with natural isomorphisms e : C (−, C0) ⇒ F and e′ : C (−, C ′0) ⇒ G. If there is a
natural transormation κ : F ⇒ G, then there exists a unique morphism ρ : C0 → C ′0 such that
the following diagram commutes :

C (C,C0) C (C,C ′0)

F (C) G(C),

∼=eC

ρ∗

e′C
∼=

κC

(3.1)

for any object C in C . Moreover, if κ is a natural isomorphism, then ρ is an isomorphism in
C .

Proof : Let us first define ρ : C0 → C ′0. The universal element of F is given by : uF =
eC0(idC0) ∈ F (C0). Taking its image with κC0 , we obtain an element κC0(uF ) in G(C0). Since
e′C0

: C (C0, C
′
0) → G(C0) is a bijection, there is a unique element ρ in C (C0, C

′
0), such that

e′C0
(ρ) = κC0(uF ).

We now prove the commutativity of the diagram (3.1). Let ϕ be any morphism in C (C,C0).
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On the one hand we have :

κC ◦ ec(ϕ) = κCF (ϕ)(uF ), by Yoneda Lemma,
= G(ϕ)κC0(uF ), by naturality of κ,
= G(ϕ)e′C0(ρ), by definition of ρ,

and on the other hand, we have :

e′C ◦ ρ∗(ϕ) = e′C(ρ ◦ ϕ),
= G(ρ ◦ ϕ)(uG), by Yoneda Lemma,
= G(ϕ) ◦G(ρ)(uG)
= G(ϕ)e′C0(ρ), by Yoneda Lemma.

We have just proved that the commutativity of diagram (3.1).
Uniqueness of ρ follows immediately from its construction since ρ is the unique morphism mak-
ing the diagram commute in the case C = C0.

Let κ be a natural isomorphism. This means that for any object C in C , the morphism
κC : F (C)→ G(C) is bijective. So there exists an inverse κ−1

C : G(C)→ F (C), for each object
C. This obviously defines a natural transformation κ : G⇒ F , where κC = κ−1

C . Applying the
first part of this proof, there is a unique morphism ρ : C ′0 → C0 corresponding to κ. Moreover,
we have κC ◦ κC = idF (C) and κC ◦ κC = idG(C), for every object C. But these composites of
natural transformations correspond respectively to ρ ◦ ρ and ρ ◦ ρ. By uniqueness, we obtain
ρ ◦ ρ = idC0 and ρ ◦ ρ = idC′0 , and so ρ is an isomorphism.

We can now prove that classyfing objects are unique up to isomorphism.

Corollary 3.1.5.
Let C be a locally small category. Let F : C → Set be a representable contravariant functor. If
C0 and C ′0 are representing objects of F with universal elements uF and u′F resepctively, then
there is an isomorphism ρ : C0 → C ′0 in C such that F (ρ)(u′F ) = uF .

Proof : There are natural isomorphisms e : C (−, C0) ⇒ F and e′ : C (−, C ′0) ⇒ F . Taking
the composites, we obtain another natural transformation : λ := e′−1◦e : C (−, C0)⇒ C (−, C ′0),
which is obviously a natural isomorphism. By Proposition 3.1.4, λ determines a unique isomor-
phism ρ : C0 → C ′0, such that λC(f) = ρ ◦ f , for any object C and morphism f : C → C0. In
particular λC0(idC0) = ρ.
The universal elements uF and u′F are given respectively by eC0(idC0) and e′C′0(idC′0). We get :

F (ρ)(u′F ) = F (ρ) ◦ e′C0(idC′0)
= e′C0(ρ), by naturality of e′,
= e′C0 ◦ λC0(idC0)
= eC0(idC0), since e′ ◦ λ = e,
= uF ,

and so F (ρ)(u′F ) = uF as desired.

3.2. Brown Functors and The Representability Theorem
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Let us write hTop∗ the homotopy category with based spaces as objects, and based homo-
topy classes of based maps as morphisms. For any based spaces X and Y , we have written
hTop∗(X,Y ) as [X,Y ]∗. Therefore, a homotopical invariant (contravariant) functor Top∗ → C
is equivalent (i.e. there is a natural isomorphism) to a (contravariant) functor hTop∗ → C , for
any category C .

We introduce the following useful notation.

Notation 3.2.1 (x|A).
Let C be any category. Let h : Top∗ → C be a contravariant functor. For any spaces ∗ ∈ A ⊆ X,
we denote by x|A the image h(j)(x) ∈ h(A) of an element x in h(X), where j : A ↪→ X denotes
the inclusion.

Definition 3.2.2 (Brown Functor).
Let T be a full subcategory of Top∗. A Brown functor h : T → Set is a contravariant
homotopy functor, which respects the following axioms.

Additivity 1 For any collection {Xj | j ∈ J } of based spaces in T , the inclusion maps
ij : Xj ↪→

∨
j∈J Xj induce an isomorphism on Set :

(h(ij))j∈J : h

 ∨
j∈J

Xj

 ∼=−→
∏
j∈J

h(Xj).

Mayer-Vietoris For any excisive triad (X;A,B) in T , if a is in h(A), and b is in h(B), such
that a|A∩B = b|A∩B, then there exists x in h(X), such that x|A = a and x|B = b.

We first state and prove some properties of Brown functors.

Lemma 3.2.3.
Let T be a full subcategory of Top∗. Let h : T → Set be a Brown functor. Then h(∗) is a set
that consists of a single element, and h corestricts to the category of based sets : h : T → Set∗.

Proof : By the additivity axiom, there is an isomorphism of sets : h(∗ ∨ ∗) ∼= h(∗) × h(∗).
Since ∗ ∨ ∗ ∼= ∗, the isomorphism becomes the diagonal function h(∗) → h(∗) × h(∗), which is
an isomorphism only if h(∗) has a single element. Therefore, for any based space (X,x0), we
obtain a based set (h(X), h(x0)). For any based map (X,x0)→ (Y, y0), we get the commutative
diagram :

h(Y ) h(X)

h(y0) h(x0).

h(f)

Thus h(f) : (h(Y ), h(y0))→ (h(X), h(x0)) is a morphism of based sets.

The second axiom of a Brown functor is called Mayer-Vietoris, since it is a particular case
of the exactness of the Mayer-Vietoris sequence of a cohomology theory, as we prove in the
following lemma.

Lemma 3.2.4.
Any generalized reduced cohomology theory on CW∗ defines a Brown functor in each dimension.

1In most of the literature, this axiom is named the Wedge axiom.
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Proof : Let Ẽ∗ be a reduced cohomology theory. Each contravariant functor Ẽn, composed
with the forgetful functor Ab→ Set∗ that we shall omit from the notation, is a Brown functor.
The additivity is apparent, since Brown functors and reduced cohomology share the same axiom.
The Mayer-Vietoris axiom also holds. Indeed, take (X;A,B) an excisive triad. Then the Mayer-
Vietoris long exact sequence of Ẽ∗ :

· · · Ẽn−1(A ∩B) Ẽn(X) Ẽn(A)⊕ Ẽn(B) Ẽn(A ∩B) · · · ,

implies the Mayer-Vietoris axiom, as a particular case of the exactness of the sequence.

Brown functors respect some kind of an exactness axiom, as we show in the following lemma.

Lemma 3.2.5.
Let h : Top∗ → Set∗ be a Brown functor. Let f : X → Y be a based map. Then the following
sequence is exact in Set∗ :

h(Cf) h(Y ) h(X),
h(if ) h(f)

where if : Y → Cf is the canonical map.

Proof : Let us prove that im h(if ) = kerh(f). Recall that the mapping cone Cf is given by
the following pushout :

X Y

CX Cf.

f

if

Therefore the composite if ◦ f : X → Cf factors through the reduced cone CX, which is
contractible. Hence if ◦ f is nullhomotopic. Thus the composite h(if ◦ f) = h(f) ◦ h(if )
factors through h(∗) which is a singleton by Lemma 3.2.3. We have just proved the inclusion
im h(if ) ⊆ kerh(f).2
Let y be in h(Y ) such that h(f)(y) is the trivial element of h(X). Define A = ([1/4, 1]×X)/ ∼
and B = (([0, 3/4]×X) ∪ Y )/ ∼ with the appropriate equivalence relation ∼ making A and B
based subspaces of Cf . We obtain the following homotopy equivalences A '∗ ∗, B ' Y and
A∩B ' X. We emphazise that the previous homotopy equivalences are such that the following
diagram commutes :

X Y Cf

A ∩B B Cf.

f

'

if

'

We have obtained an excisive triad (Cf ;A,B). Since y|A∩B = h(f)(y) is the trivial element,
the Mayer-Vietoris axiom implies that there is z in h(Cf), such that z|A is the trivial element
and z|B = y, i.e., h(if )(z) = y. Therefore kerh(f) ⊆ im h(if ).

The last general property of Brown functors that we wish to emphasize tells us when this
contravariant functor takes values in the category of groups.

Lemma 3.2.6.
Let h be a Brown functor. If X is a co-H-group, then h(X) is a group.

2We recall that the kernel in Set∗ of a function f is defined as the preimage of the based element of the
codomain of f .
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In addition suppose that h corestricts to the category Ab of abelian groups. For any based map
f, g : ΣY → Z, we have : h(f + g) = h(f) + h(g).

Sketch of the Proof : Let ψ : X → X ∨X be the comultiplication map. The additivity
axiom gives a map : h(ψ) : h(X)× h(X) ∼= h(X ∨X)→ h(X) which gives a multiplication on
h(X). The co-H-group structure on X induces a group structure on h(X), since h is homotopy
invariant.
Suppose now that we have based maps f, g : ΣY → Z. The map f + g is the composite :

ΣY ΣY ∨ ΣY Z ∨ Z Z,
p f∨g ∇

where p : ΣY → ΣY ∨ ΣY is the pinch map. Let i1, i2 : ΣY ↪→ ΣY ∨ ΣY be the two inclusions
and q1, q2 : ΣY ∨ ΣY → ΣY be the quotient maps restricting to the identity on the summand
indicated by the subscript and collapsing the other summand to a point. From the wedge axiom
we have the isomorphisms of abelian groups :

(h(i1), h(i2)) : h(ΣY ∨ ΣY ) h(ΣY )× h(ΣY ).
∼=

We have the commutative diagram for any j = 1, 2 :

h(Z) h(Z ∨ Z) h(ΣY ∨ ΣY ) h(ΣY )

h(Z)× h(Z) h(ΣY )× h(ΣY ) h(ΣY ∨ ΣY )

h(∇)

∆

h(f∨g)

∼=

h(p)

h(qj)
h(f×g)

(h(i1),h(i2))−1 ∼=

(h(i1),h(i2))
∼=

where the dashed map is the map y 7→ (y, 0) if j = 1, and the map y 7→ (0, y) if j = 2.
Indeed, take z in h(Z). We have : h(f × g) ◦ ∆(z) = (h(f)(z), h(g)(z)). But we also have
h(i1, i2) ◦ h(∇ ◦ f ∨ g)(z) = (h(f)(z), h(g)(z)) since (f ∨ g) ◦ i1 = f and (f ∨ g) ◦ i2 = g. An
element (y, 0) in h(ΣY )× h(ΣY ) is sent to y in h(ΣY ) by the composite h(p) ◦ (h(i1), h(i2))−1

since q1 ◦ p is homotopic to the identity. Similarly, an element (0, y) in h(ΣY × ΣY ) is sent to
y in h(ΣY ). This proves the commutativity of the diagram. Therefore the previous element
(h(f)(z), h(g)(z)) in h(ΣY )×h(ΣY ) is sent to h(f)(z) +h(g)(z), where the addition law comes
from the functor h. But this composition is precisely h(f + g)(z) where the addition law
on maps comes from the co-H-structure of ΣY . Since addition is defined component wise in
h(ΣY )× h(ΣY ), this proves : h(f + g) = h(f) + h(g).

We now restrict our attention to the full subcategory CW∗ of based CW-complexes. The
Brown Representability Theorem says that a Brown functor h on CW∗ is representable. More
specifically there exists a based CW-complex E such that there is a natural isomorphism :

e : [−, E]∗ ⇒ h,

which is given by eX([f ]∗) = h(f)(u), for any based CW-complex X and any based map
f : X → E, where u ∈ h(E) is the universal element of h.
Applying Corollary 3.1.5, the previous CW-complex E and universal element u ∈ h(E) are
unique up to homotopy, in the sense that if E′ and u′ ∈ h(E′) are another based CW-complex
and universal element that represent h, then there is a homotopy equivalence, unique up to
homotopy, ρ : E → E′ such that h(ρ)(u′) = u.

The idea to prove the Brown Representability Theorem is to represent h first on spheres, and
then to construct the desired based CW-complex E skeleton-by-skeleton, with elements un ∈
h(En) that represent h on spheres of dimension at most n.
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Definition 3.2.7 (n-Universal Elements, ∞-Universal Elements).
Let n ≥ −1. Given a Brown functor h : CW∗ → Set∗ and a based CW-complex K, we say
that an element u in h(K) is an n-universal element, if the function :

ϕu : πk(K) = [Sk,K]∗ −→ h(Sk)
[f ]∗ 7−→ h(f)(u),

is an isomorphism for k < n, and a surjection for k ≤ n. By convention any element of h(K)
is (−1)-universal. An element u in h(K) is an ∞-universal element if it is n-universal for all
n ≥ −1.

The first step of the proof is to construct n-universal elements of h inductively. This will
lead to a construction of an ∞-universal element of h.

Lemma 3.2.8.
Let h : CW∗ → Set∗ be a Brown functor. Let K be any based CW-complex. If un in h(K) is
n-universal, then there is a based space L constructed from K by attaching (n + 1)-cells to K,
and a (n+ 1)-universal element un+1 in h(L) such that un+1|K = un.

Proof : If n = −1, let B = ∅, while if n ≥ 0, let B denote a set of representative based maps
of the kernel of ϕun : πn(K)→ h(Sn). Define the spaces :

X :=
∨
β∈B

Sn, and, Y := K ∨
∨

α∈h(Sn+1)
Sn+1,

and let f : X → Y be the composite :

X =
∨
β∈B S

n K Y = K ∨
∨
α∈h(Sn+1) S

n+1.

∨
β∈B β

Consider the pushout :
X Y

CX Cf =: L.

f

if

Notice that for the particular case n = −1, we have X = ∅, and L ∼= Y .
By the wedge axiom, there is a bijection :

h(Y )
∼=−→ h(K)×

∏
α∈h(Sn+1)

h(Sn+1).

Let u′n in h(Y ) be the element corresponding to (un, (α)) under the bijection above. We have
the following commutative diagram :

h(Y ) h(X)

h(K)×
∏
α∈h(Sn+1) h(Sn+1) h(X)

h(f)

∼=
h(
∨
β)◦projh(K)

Therefore h(f)(u′n) is the trivial element, since β ∈ B. By Lemma 3.2.5, there is un+1 in h(L)
such that h(if )(un+1) = u′n. Let j : K ↪→ L be the inclusion map. We have the following
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commutative diagram for all k :

πk(K) πk(L)

h(Sk).

j∗

ϕun ϕun+1

Since un is n-universal, the function ϕun+1 is an isomorphism for k < n and a surjection for
k = n.

For n ≥ 0, let us prove that ϕun+1 is an isomorphism for k = n. Let x be an element of the
kernel of ϕun+1 : πn(L) → h(Sn). Since j is an n-equivalence, there is y in πn(K) such that
j∗(y) = x. So ϕun(y) is the trivial element by commutativity of the diagram, and so y lies in
the kernel B of ϕun . So there exists a representative in B, say β0 : Sn → K, which corresponds
to the class y. Let us name ιβ0 : Sn →

∨
β∈B S

n =: X the inclusion of Sn in the β0 component.
By definiton of f , we have f∗([ιβ0 ]∗) = y. We get :

x = j∗(y)
= (if |K )

∗
(y)

= (if |K ◦ f)
∗
([ιβ0 ]∗).

Since if ◦ f is nullhomotopic, we get that x is the trivial element. Therefore ϕun+1 is an iso-
morphism for k = n.

Let us prove now that ϕun+1 is surjective for k = n + 1, where n ≥ −1. For any element α in
h(Sn+1), let us name ια : Sn+1

α → Y the inclusion of the sphere to its α component. We get :

h(Y ) h(Sn+1
α )

h(K)×
∏

α∈h(Sn+1)
h(Sn+1) h(Sn+1

α ),

h(ια)

∼=

projα

where projα is the projection onto the α component. We get :

ϕun+1([if ◦ ια]∗) = h(if ◦ ια)(un+1)
= h(ια) ◦ h(if )(un+1)
= h(ια)(u′n)
= projα(un, (α))
= α.

Therefore ϕun+1 is surjective for k = n+ 1. Thus un+1 is (n+ 1)-universal.

Proposition 3.2.9.
Let h : CW∗ → Set∗ be a Brown functor, let K be a based path-connected CW-complex, and v
an element of h(K). Then there is a based space L obtained from K by attaching cells and an
∞-universal element u in h(L) such that u|K = v.
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Proof : Let L−1 = K and u−1 = v. By induction on n ≥ 0, from Lemma 3.2.8, there are
CW-complexes Ln and n-universal element un ∈ h(Ln), such that un|Ln−1

= un−1. Define L as
the colimit :

L−1 L0 L1 · · · Ln Ln+1 · · · ,

that is L =
⋃
n≥−1 Ln endowed with its weak topology. Let us prove that there is an element u

in h(L) such that u|Ln = un, for all n ≥ −1. We first take the homotopy colimit of the sequence
(see the proof of Theorem C.4.7) :

L′ =
⋃

n≥−1
Ln × [n, n+ 1]/ ∼,

where we identified elements (xn, n+ 1) in Ln × [n, n+ 1], with the same elements (xn, n+ 1)
but seen in Ln+1 × [n + 1, n + 2]. We have proved (in Theorem C.4.7) that there is a weak
equivalence r : L′ → L. Since L and L′ are both CW-complexes, Whitehead Theorem implies
that r : L′ → L is actually a homotopy equivalence. Define :

A =
⋃

n≥−1
L2n+1 × [2n+ 1, 2n+ 2]/ ∼⊆ L′,

B =
⋃
n≥0

L2n × [2n, 2n+ 1]/ ∼⊆ L′.

Since L−1 is path-connected, we get : A '
∨
n≥−1 L2n+1, B '

∨
n≥0 L2n, and A∩B '

∨
n≥−1 Ln.

Now let us apply the additivity axiom. Define a ∈ h(A), with a|L2n+1
= u2n+1, for n ≥ −1.

Define b ∈ h(B), with b|L2n
= u2n, for n ≥ 0. Define c ∈ h(A ∩B), with c|Ln = un, for n ≥ −1.

Then we obtain :
a|A∩B = b|A∩B = c.

The triad (L′;A,B) is excisive. By Mayer-Vietoris axiom, there is an element u ∈ h(L) ∼= h(L′)
such that u|A = a and u|B = b. Therefore, we get u|Ln = un for all n ≥ −1. In particular
u|K = v.
Let us now prove that u is an ∞-universal element. Let in : Ln ↪→ L denote the inclusion map.
We have the following commutative diagram :

πk(Ln) πk(L)

h(Sk).

(in)∗

ϕun ϕu

Since in is an n-equivalence (Ln has no relative cell of dimension greater than n), we get that
ϕu is an isomorphism for k < n. Since this is true for any n ≥ −1, it follows that u is
∞-universal.

Proposition 3.2.10.
Let Y be a CW-complex with u ∈ h(Y ) an ∞-universal element. Let (X,A) be a relative CW-
complex, with basepoint in A, and let g : A → Y be a based map. If w ∈ h(X) is such that
w|A = h(g)(u), then there is a based map G : X → Y extending g such that h(G)(u) = w :

A Y

X.

g

G
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Proof : Use the reduced mapping cylinder factorisation of g :

A Y

Mg.

g

i '∗

Let us define :
Z = X ∪Mg/(a ∼ i(a)).

We now define :

B = X ∪A× [0, 3/4]/ ∼,
C = A× [1/4, 1] ∪ Y/ ∼,

with the appropriate equivalence relations ∼ such that B and C are based subspaces of Z. The
triad (Z;B,C) is excisive. We have the homotopy equivalences : B '∗ X and C '∗ Y , and
B ∩ C '∗ A. Since Mg '∗ Y , we get h(Mg) ∼= h(Y ), and the assumption w|A = h(g)(u)
becomes :

w|B∩C = u|B∩C .

By the Mayer-Vietoris axiom, there is z ∈ h(Z) such that z|X = w and z|Y = u. Since Z is
path-connected, by Proposition 3.2.9 we can embed Z in a CW-complex Y ′ with ∞-universal
element u′ ∈ h(Y ′) such that u′|Z = z. Let j : Y → Y ′ be the inclusion map obtained as the
composite :

Y Mg Z Y ′.
'∗

We have h(j)(u′) = u. Since u and u′ are both ∞-universal, the map j is a weak equivalence.
Since Y and Y ′ are CW-complexes, the Whitehead Theorem implies that j is actually an
homotopy equivalence. The structure of the mapping cylinder Mg gives a based map H :
A× I → Y ′, defined as the composite :

A× I Mg Z Y ′,

which can be regarded as a homotopy from the restriction of the inclusion g′ : X ↪→ Z ↪→ Y ′ to
A given by the composite (recall that g(a) ∼ (a, 0) for any a in A) :

A ∼= A× {0} A× I Mg Z Y ′,

to the composite j ◦ g :
A Y Y ′.

g j

The inclusion A ↪→ X is a cofibration since (X,A) is a relative CW-complex. The homotopy
extension property of (X,A) gives a homotopy Ĥ : X × I → Y ′ :

A A× I

Y ′

X X × I,

H

g′ Ĥ
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which extends H, and therefore gives an extension G′ : X → Y ′ of the composite j ◦ g, such
that G′ '∗ g′ through Ĥ. Since j : Y ↪→ Y ′ is a homotopy equivalence, there exists a homotopy
inverse, say r : Y ′ → Y . Composing G′ with r, we obtain a map G : X → Y . We have
j ◦G = j ◦ r ◦G′ '∗ G′. We obtain :

h(G)(u) = h(G)(h(j)(u′))
= h(j ◦G)(u′)
= h(G′)(u′)
= h(g′)(u′)
= u′|X
= (u′|Z)|X
= z|X
= w,

and so we proved : h(G)(u) = w.

Theorem 3.2.11 (Brown Representability Theorem).
Let h : CW∗ → Set∗ be a Brown functor. Then h is representable.

Proof : From Lemma 3.2.3, h(∗) contains a single element, say v. By Proposition 3.2.9, there
exists a CW-complex E and an ∞-universal element u in h(E) such that u|{∗} = v. To prove
that E represents h, it suffices to prove, by the Yoneda Lemma, that u is an universal element
of F , i.e., we need to show that the function :

eX : [X,E]∗ −→ h(X)
[f ]∗ 7−→ h(f)(u),

is a bijection, for all based CW-complexes X.

Surjectivity of eX Let w be in h(X). Let us apply Proposition 3.2.10 for the relative CW-
complex (X, ∗) and the obvious map g : {∗} → E. There exists a based map G : X → E
such that w = h(G)(u) = eX([G]∗). Thus eX is surjective for all X.

injectivity of eX Let g0, g1 : X → E be based maps such that eX([g0]∗) = eX([g1]∗). For
convenience, we introduce the following notation :

V oW = V ×W
{∗} ×W

,

for any based spaces V andW .3 Returning to our task, consider the based spaceXoI, this
is the reduced cylinder of X. It is a based CW-complex with k-skeleton Xko I ∪Xko∂I,
where Xk denotes the k-skeleton of X. Let A = Xo∂I, so we get a relative CW-complex
(X o I, A). Let :

g : A −→ E

(x, 0) 7−→ g0(x)
(x, 1) 7−→ g1(x).

3This is called the half-smash product of V with W .
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and let :

p : X o I −→ X,

be the projection. It is obviously a based homotopy equivalence, with homotopy inverse
the inclusion X ↪→ X o I. Thus we obtain the equality :

h(p) ◦ h(g0)(u) = h(p) ◦ h(g1)(u),

from eX([g0]∗) = eX([g1]∗). Define w = h(p) ◦ h(g0)(u) = h(p) ◦ h(g1)(u) the element
in h(X o I). Notice that A is homeomorphic to X ∨ X, whence by the wedge axiom :
h(A) ∼= h(X) × h(X) ∼= h(X o I) × h(X o I). Moreover w|A = h(g)(u). By Proposition
3.2.10, there exists a based map G : XoI → E that extends g and such that h(G)(u) = w.
The map G can be regarded as a based homotopy from g0 to g1. Therefore : g0 '∗ g1,
and so eX is injective for all X.

Thus eX is a bijection for all based CW-complex X.

We can now present the most important application of the Brown Representability Theorem
which is to represent reduced cohomology theories by Ω-prespectra.

Corollary 3.2.12.
Let h̃∗ be a reduced cohomology theory on CW∗. Then there is an Ω-prespectrum E and an
equivalence of cohomology theories T : Ẽ∗ → h̃∗.

Proof : From Lemma 3.2.4, the contravariant functors h̃n : CW∗ → Ab are Brown functors,
for every n. Therefore, by the Brown Representability Theorem, there are CW-complexes En
that represent h̃n, and universal elements un in hn(En), i.e., we have natural isomorphisms :

enX : [X,En]∗
∼=−→ h̃n(X)

[f ]∗ 7−→ h̃n(f)(un)

for any based CW-complex X, and every n ∈ Z. By Proposition 3.1.4, there exists a unique
based homotopy equivalence σ̃n : En → ΩEn+1 such that the following diagram commute :

[X,En]∗ [X,ΩEn+1]∗

[ΣX,En+1]∗

h̃n(X) h̃n+1(ΣX),

∼=enX

(σ̃n)∗

∼=

en+1
ΣX

∼=

Σ
∼=

(?)

for any based CW-complex X and for each n in Z. We have defined (up to homotopy) the
adjoints σ̃n of the structure maps of the Ω-prespectrum E obtained.4
We must prove that the isomorphism [X,En]∗ ∼= h̃n(X) on Set∗ is actually an isomorphism of
abelian groups, where the group structure of [X,En]∗ is given by the bijection with [X,ΩEn+1]∗ ∼=
[ΣX,En+1]∗. Therefore, it suffices to prove that [ΣX,En+1]∗ ∼= h̃n+1(X) is an isomorphism of
groups, for any n and any based CW-complex X. We have to prove that :

en+1
ΣX : [ΣX,En+1]∗ −→ h̃n+1(ΣX)

[f ]∗ 7−→ h(f)(un+1),
4We implicitly used the Milnor Theorem (Theorem 2.1.11) which proves that ΩEn+1 is a CW-complex
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is an isomorphism of group. Recall that addition on [ΣX,En+1]∗ is given in the following way.
Let [f ]∗ and [g]∗ be elements of [ΣX,En+1]∗. The addition [f ]∗ + [g]∗ is represented by the
composite :

ΣX ΣX ∨ ΣX En+1 ∨ En+1 En+1.
p f∨g ∇

Therefore, we have to prove that :

h(f + g)(un+1) = h(f)(un+1) + h(g)(un+1).

But this follows directly from Lemma 3.2.6.
From Theorem 2.3.1, the Ω-presepctrum E defines a reduced cohomology theory Ẽ∗ on CW∗
exactly by Ẽn(X) = [X,En]∗ for any X and n, and the suspension homomorphism is given
precisely by :

Ẽn(X) = [X,En]∗ [X,ΩEn+1]∗ [ΣX,En+1]∗ = Ẽn+1(ΣX).
(σ̃n)∗
∼=

∼=

Therefore, defining T : Ẽ∗ → h̃∗ as the collection of natural isomorphisms {en : Ẽn ⇒ h̃n}, the
diagram (?) gives the compatibility of the natural suspension homomorphisms of h̃∗ and Ẽ∗,
making T : Ẽ∗ → h̃∗ an equivalence of reduced cohomology theories, as desired.

We wish that the previous procedure of associating to each generalized reduced cohomology
theory an Ω-prespectrum defined a functor F : coH −→ ΩP, i.e., a converse of Addendum
2.3.2, but this is not possible since Ω-prepsectra are defined only up to homotopy. In more
detail, let T : h̃∗ → h̃′∗ is a transformation on cohomology theories on CW∗, let E and E′

be the corresponding Ω-prespectra. Let us define f : E → E′ to be the corresponding map of
Ω-prespectra. From Proposition 3.1.4, there exists a unique based map fn : En → E′n such that
the following diagram commutes :

[X,En]∗ [X,E′n]∗

h̃n(X) h̃′n(X),

∼=enX

(fn)∗

∼=e′nX

TnX

for any based CW-complex X. Then by applying again repeatedly Proposition 3.1.4, we see
that Σfn : ΣEn → ΣE′n is the unique map, up to homotopy, such that the following diagram
commutes for any n and based CW-complex X :

[X,En]∗ [X,En]∗ [X,E′n]∗ [X,En]∗

[ΣX,ΣEn]∗ [ΣX,ΣE′n]∗

[X,ΩEn+1]∗ [ΣX,En+1]∗ [ΣX,E′n+1]∗ [X,ΩE′n+1]∗

h̃n+1(ΣX) h̃′n+1(ΣX)

h̃n(X) h̃′n(X).

(σ̃n)∗

Σ

(fn)∗

Σ

(σ̃′n)∗
(Σfn)∗

(σn)∗ (σ′n)∗
∼= (fn+1)∗

∼=en+1
ΣX e′n+1

ΣX
∼=

∼=

Tn+1
ΣX

Σ−1∼= Σ−1∼=
enX TnX e′nX
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Let us take the particular case where X = En and we evaluate with the element [idEn ]∗ in
[En, En]∗. We get that [σ′n ◦ Σfn]∗ = [fn+1 ◦ σn]∗. Therefore, the following diagram is homotopy
commutative only :

ΣEn ΣE′n

En+1 E′n+1.

Σfn

σn σ′n

fn+1

We can make this diagram commutative by applying the HELP theorem (suppose that σn is
a cofibration, if it isn’t, use the reduced mapping cylinder factorization). So f : E → E′ is a
map of prepsectra. The problem of functoriality is that composition are preserved only up to
homotopy. Indeed, let h̃∗ T→ k̃∗

U→ r̃∗ be a composition of transformations of reduced cohomology
theories. Let E, P and L be the corresponding Ω-prespectra of the reduced cohomology theories
h̃∗, k̃∗ and r̃∗. Let F (T ) =: f : E → P and F (U) =: g : P → L be the corresponding map of
prespectra. Using Proposition 3.1.4, we get that :

[X,En]∗ [X,Pn]∗ [X,Ln]∗

h̃n(X) k̃n(X) r̃n(X).

(fn)∗

∼=

F (Un◦Tn)

(gn)∗

∼= ∼=
TnX UnX

Therefore the map F (Un ◦ Tn) : En → Ln is homotopic to gn ◦ fn, for each n, but they cannot
be equal strictly in general.

We now give a nice result of this homotopy description of reduced cohomology theories.

Theorem 3.2.13 (Eilenberg-Steenrod).
Let h̃∗ and k̃∗ be generalized reduced cohomology theories on CW∗. Let T : h̃∗ → k̃∗ be a
transformation of reduced cohomology theories. If TnS0 : h̃n(S0) → k̃n(S0) is an isomorphism
for all n, then T is an equivalence of cohomology theories.

Proof : For any k in Z, the following diagram commutes :

h̃n−k(S0) h̃n(S0)

k̃n−k(S0) k̃n(Sk).

Σ
∼=

∼=Tn−k
S0 Tn

Sk

Σ
∼=

Therefore Tn
Sk

: h̃n(Sk) → k̃n(Sk) is an isomorphism, for all k and n. Let E be the associated
Ω-prespectrum of h̃∗ and P the associated Ω-prespectrum of k̃∗. Recall that En and Pn are
based CW-complexes for all n in this case. Using Proposition 3.1.4, there exists a unique based
map ρn : En → Pn up to homotopy, such that the following diagram commutes for all based
CW-complex X :

[X,En]∗ [X,Pn]∗

h̃n(X) k̃n(X).

(ρn)∗

∼= ∼=

TX
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In particular, for X = Sk, we get that (ρn)∗ : πk(En) → πk(Pn) is an isomorphism for all k,
and so ρn is a weak equivalence. Since En and Pn are CW-complexes, the map ρn is actually a
homotopy equivalence. Hence (ρn)∗ : [X,En]∗ → [X,Pn]∗ is an isomorphism for all for all based
CW-complex X. Therefore TnX : h̃n(X)→ k̃n(X) is an isomorphism for all based CW-complex
X and all n. Thus T is an equivalence of reduced cohomology theories.

Theorem 3.2.14 (Eilenberg-Steenrod).
Let h̃∗ and k̃∗ be ordinary reduced cohomology theories such that there is an isomorphism :

τ : h̃0(S0)
∼=−→ k̃0(S0).

Then τ induces an equivalence of reduced cohomology theories : T : h̃∗ → k̃∗.

Proof : Let E be the associated Ω-prespectrum of h̃∗ and P the associated Ω-prespectrum
of k̃∗. Let G = h̃0(S0) and G′ = k̃0(S0). For all n, we get :

πk(En) = [Sk, En]∗
∼= h̃n(Sk)
∼= h̃n−k(S0)

∼=
{
G, if k = n,
0, if k 6= n.

Therefore En is an Eilenberg-MacLane space of type (G,n) for all n. Similarly, Pn is an
Eilneberg-MacLane space of type (G′, n) for all n. Using Theorem 2.1.7, for each n, there exists
a unique based homotopy equivalence ρn : En → Pn such that the following diagram commutes :

πn(En) πn(Pn)

G G′.

(ρn)∗

∼= ∼=

τ
∼=

This defines an equivalence of reduced cohomology theories T : h̃∗ → k̃∗.

We end this chapter by stating the dual theorem of Brown for homology theories. This was
done by Adams, in [Adams, 1962]. This is not done in our work since it involves the concept
of Spanier-Whitehead duality that would lead us too far.

Theorem 3.2.15 (Adams).
Let h̃∗ be a reduced homology theory defined on based CW-complexes. Then there is an Ω-
prespectrum E such that there is an equivalence of reduced homology theories : h̃∗ → Ẽ∗.

Proof : Omitted, a proof can be found in [Switzer, 1975].
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Conclusion

We have succeeded in describing homotopically generalized homology and cohomology theories
in terms of objects of stable homotopy theory : the prespectra. For any (reduced) homology
theory Ẽ∗ and cohomology theory Ẽ∗, there exists an Ω-prespectrum, unique up to homotopy,
that is often named also E, such that :

Ẽn(X) = colimkπn+k(X ∧ Ek), Ẽn(X) = [X,En]∗,

for any n and any CW-complex X. We have seen also that ordinary homology and cohomology
theories are characterized by the Eilenberg-MacLane Ω-prespectrum HG. The fundamental
results needed were the Blakers-Massey theorem and the Freudenthal suspension theorem. The
required language was the colimit, provided by category theory.
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APPENDIX A

Homotopy of Simplicial and CW
Complexes

In this appendix, we gather the main results on CW-complexes needed throughout this paper.
We also give an introduction to simplicial complexes, needed for the proof of Blakers-Massey
Theorem (in Lemma 1.1.6).

A.1. Attaching Cells

Definition A.1.1.
From any space X, one say that a space Y is obtained by attaching a (n+ 1)-cell if there exists
a map ϕ : Sn → X, called an attaching map, such that Y is the following pushout :

Sn X

Dn+1 Y.

ϕ

ϕ̃

The resulting map ϕ̃ is an embedding and is called a characteristic map of Y , we denote
its (closed) image in Y by en+1, and it is called a (n + 1)-cell of Y . One usually denotes
Y = X ∪ en+1. The interior e̊n+1 of the cell en+1, is the image of the open n-disk, i.e.
e̊n = ϕ̃(D̊n+1).

Recall that a subspace A of a space X is a strong deformation retract of X if there exists a
homotopy H : X × I → X such that H(x, 0) = x, H(x, 1) ∈ A and H(a, t) = a, for all x in X,
a in A and t in I. If such happens, it is easy to see that A and X are homotopy equivalent.

Proposition A.1.2.
If Y = X ∪ en+1, and y ∈ e̊n+1, then X is a strong deformation retract of Y − {y}.

Proof : Let us prove first that if x0 is in D̊n+1, then Sn is a strong deformation retract of
Dn+1−{x0}. One can easily see that every point z in Dn+1−{x0} has a unique representation
of the form z = sx0 + (1− s)az for some az in Sn, and 0 ≤ s < 1. Define the map :

Hx0 :
(
Dn+1 − {x0}

)
× I −→ Dn+1 − {x0}

(z = sx0 + (1− s)az, t) 7−→ (1− t)sx0 + (1− s(1− t))az
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which is clearly continuous. We get Hx0(z, 0) = z, Hx0(z, 1) ∈ Sn and Hx0(z′, t) = z′, for any z
in Dn+1 − {x0}, any z′ in Sn and any t in I.
Name ϕ : Dn+1 → en+1 the characteristic map. Denote now x0 := ϕ−1(y), and define the map :

H : (Y − {y})× I −→ Y − {y}

(x, t) 7−→
{
x if x ∈ X,
ϕ(Hx0(ϕ−1(x), t)) if x /∈ X.

It is the required homotopy.

A.2. The Simplicial Approximation Theorem

Simplices The following discussion is based on [Rotman, 1998]. A subset A of Rn is called
affine if, for every pair of distinct points x, x′ ∈ A, the line determined by x, x′ is contained in
A. In particular, the empty set ∅ and the point-set {∗} are affine. It is easy to see that any
intersection of affine subsets of Rn is also an affine subset. Thus, one can define the affine set
in Rn spanned by a subset X of Rn, by the intersection of all affine subsets of Rn containing X.
Similarly for convex sets, the convex set spanned by a subset X (also called the convex hull of X)
is the intersection of all convex subsets containing X. We denote it by 〈X〉, or Convex hull(X).
An affine combination of points p0, p1, . . . , pm in Rn is a point x with x =

∑m
i=0 tipi, where∑m

i=0 ti = 1. If moreover ti ≥ 0 for all i, it is a convex combination. One can prove that the affine
(respectively convex) set spanned by {p0, p1, . . . , pm} ⊂ Rn consists of all affine (respectively
convex) combinations of these points. An ordered set of points {p0, . . . , pm} ⊂ Rn is affine
independent if {p1− p0, . . . , pm− p0} is a linearly independent subset of Rn. One can prove the
following result.

Proposition A.2.1.
The following conditions on an ordered set of points {p0, . . . , pm} in Rn are equivalent :

(i) the set {p0, . . . , pm} is affine independent;

(ii) if {s0, . . . , sm} ⊂ R satisfies
∑m
i=0 sipi = 0 and

∑m
i=0 si = 0, then si = 0 for all i;

(iii) each x in the affine set spanned by {p0, . . . , pm} has unique expression as an affine com-
bination x =

∑m
i=0 tipi, where

∑m
i=0 ti = 1.

Thus affine independence is a property of the set {p0, . . . , pm} that is independent of the given
ordering. The entries ti mentioned are called the barycentric coordinates of x, relative to the
set {p0, . . . , pm}, whence we have the following definition.

Definition A.2.2.
Let {p0, . . . , pm} be an affine independent subset of Rn. The convex set spanned by this set,
denoted by 〈p0, . . . , pm〉, is called the (affine) m-simplex with vertices p0, . . . , pm. We often
write σ for 〈p0, . . . , pm〉, and we say that σ has dimension m : dim(σ) = m.

Hence, each x in the m-simplex 〈p0, . . . , pm〉 has a unique expression of the form :

x =
m∑
i=0

tipi, where
∑

ti = 1and each ti ≥ 0.

For instance, a 0-simplex is just a point, a 1-simplex is a line segment, a 2-simplex is a triangle
with interior, a 3-simplex is a tetrahedron, and so on.
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Definition A.2.3.
Let σ = 〈p0, . . . , pm〉 be a m-simplex. A k-face of σ is a k-simplex spanned by k + 1 of the
vertices {p0, . . . , pm}, where 0 ≤ k ≤ m− 1. The (m− 1) face opposite pi is 〈p0, . . . , p̂i, . . . pm〉,
where the circumflex notation means "delete". The boundary ∂σ of σ is the union of its faces.
The interior σ̊ of the simplex σ is defined by σ − ∂σ.

Definition A.2.4.
The barycenter of a m-simplex σ = 〈p0, . . . , pm〉 is defined by : bσ =

∑m
i=0

1
m+1pi. In particular,

if m = 0, then bσ = p0.

Finite Simplicial Complexes All the details of the following discussion can be found
in [Munkres, 1984]. A finite simplicial complex K in Rn is a finite collection of simplices in
Rn, such that every face of a simplex of K is in K, and the intersection of any two simplices of
K is a face of each them. For instance, every simplex together with its faces forms a simplicial
complex. The dimension of K is the maximum dimension of any of its simplices. For any finite
simplicial complex K, let us denote |K| the underlying space, or polytope, or realization, of K,
which is defined as the union of all the simplices of K, endowed with the topology inherited as a
subspace of Rn. The realization |K| is then a compact metric space. A space X is a polyhedron
if there exists a simplicial complex K and a homeomorphism h : |K| → X. The ordered pair
(K,h) is called a triangulation of X. A map f : |K| → RN for some finite simplicial complex
K and some natural integer N , is said to be affine if for any simplex σ = 〈p0, . . . , pm〉 in K,
and any x =

∑m
i=0 tipi in σ, with

∑m
i=0 ti = 1, we have f(x) =

∑m
i=0 tif(pi). Such maps are

always continuous. If L is a subcollection of K that contains all faces of its elements, then it is
also a simplicial complex, and we call it a subcomplex of K. In that case, the realization |L| of
L is a closed subspace of |K|. A finite simplicial complex K ′ is a subdivision of another finite
simplicial complex K if |K ′| = |K|, and every simplex in K ′ is contained in a simplex of K. For
instance, the barycentric subdivision of a finite simplicial complex K in Rn is a finite simplicial
complex K ′ where its vertices {bσ} are the barycenters of the simplices {σ} of K, and where
the simplices of K ′ are :

{〈bσ0 , . . . , bσm〉 | σi ( σi+1 ∈ K, i = 0, . . . ,m− 1}.

Notation A.2.5.
For a space X, let Y = X ∪ en+1. For any 0 < r < 1, denote Dn+1

r = {x ∈ Dn+1 | ‖x‖ ≤ r}.
Let ϕ : Dn+1 → en+1 be the characteristic map. Denote en+1

r := ϕ(Dn+1
r ).

We now prove the following simplicial approximation theorem; our discussion will be based
on [Dodson and Parker, 1997].

Theorem A.2.6 (Simplicial Approximation Theorem).
Assume that (X,A) is a relative CW-complex where X is obtained from A by attaching a m-cell
X = A ∪ em, and let K be a finite simplicial complex with a subcomplex L. Then given a
map of pairs f : (|K|, |L|) → (X,A), there exists a subdivision (K ′, L′) of (K,L) and a map
g : (|K|, |L|)→ (X,A) such that :

(i) f(x) = g(x) for any x in f−1(A);

(ii) f 'f−1(A) g;

(iii) for any simplex σ in K ′, if g(|σ|) meets em1/4, then g(|σ|) is contained in the interior of
the m-cell, and g is a affine map when restricted to |σ|.
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Proof : Denote by ϕ : Dm → em the characteristic map of X. Since |K| is a compact metric
space, and f−1(em3/4) is closed in |K|, the restricted composite :(

ϕ−1 ◦ f
)
|f−1(em3/4)

: f−1(em3/4) −→ Dm
3/4,

is uniformly continuous. By Lebesgue covering Lemma, we may subdivide K into K ′ (using
barycentric subdivision) such that no simplex of K ′ has diameter more than δ, where δ > 0
satisfies : for any x and y in f−1(em3/4), if ‖x − y‖ ≤ δ, then ‖ϕ−1(f(x)) − ϕ−1(f(y))‖ ≤ 1/4,
where ‖ · ‖ denotes the usual euclidean metric.
There are three disjoint classes of simplices of K ′ : C1 = {σ ∈ K ′ | f(|σ|) ⊆ X − em1/2},
C2 = {σ ∈ K ′ | f(|σ|) ⊆ e̊m1/2}, C3 = {σ ∈ K ′ | f(|σ|) ∩ ∂em1/2 6= ∅}. We now define g on each of
these sets as follows.

• For any σ in C1, define g(σ) := f(σ).

• For σ = 〈p0, . . . , pk〉 in C2, and x =
∑k
i=0 tipi in |σ|, with

∑k
i=0 ti = 1, define :

g(x) :=
k∑
i=0

tif(pi),

so that g is constructed affinely from f .

• For σ in C3, we proceed inductively on dim(σ). If dim(σ) = 0, let g(σ) := f(σ). Suppose
that g is defined on |σ|, for all σ in C3 with dim(σ) < k such that g(σ) ⊆ 〈(f(σ)〉. Take
σ in C3, with dim(σ) = k. Write σ = 〈p0, . . . , pk〉. Then g is defined on |∂σ|. Define
bσ =

∑k
i=0

1
k+1pi as the barycenter. Each x in |σ| − {bσ} has a unique expression of the

form x = tbσ + (1 − t)yx, for some t in I and yx in |∂σ|. Define g(bσ) := f(bσ) and
g(x) := tf(bσ) + (1− t)g(yx). We get that g is continuous on |σ| and g(σ) ⊆ 〈f(σ)〉.

The map g has the desired property. It is continuous by the gluing Lemma. Define a homotopy :

H : |K| × I −→ X

(x, t) 7−→
{
f(x) if x ∈ σ ∈ C1,
(1− t)f(x) + tg(x) if x ∈ σ /∈ C1.

On can easily see thatH has the desired properties, that is f '∗ g, viaH, relative to f−1(A).

A.3. CW-Approximation Theorems

Definition A.3.1.
A CW-approximation of a pair of spaces (X,A) is a CW-complex X̃, and a subcomplex Ã of
X̃, together with a weak equivalence (X̃, Ã) ∼→ (X,A).

We recall the following theorem.

Theorem A.3.2 (Cellular Approximation of Maps).
Any map f : (X,A) → (Y,B) between relative CW-complexes is homotopic relative to A to a
cellular map.
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Proposition A.3.3.
Let X be a based CW-complex and let (Y,B) be a based relative CW-complex. If i : (Y,B)n → Y
is the inclusion, then the induced function i∗ : [X, (Y,B)n]∗ → [X,Y ]∗ is injective if dimX < n
and surjective if dimX ≤ n. In particular, if X and Y are based CW-complexes, then the
function i∗ : [X,Yn]∗ → [X,Y ]∗ induced by the inclusion map is injective if dimX < n and
surjective if dimX ≤ n. In particular, for any CW-complex Y , the inclusion Yn ↪→ Y is an
n-equivalence.

Proof : Let f : X → Y be any map. Then, by the cellular approximation Theorem, it is
homotopic to a cellular map g : (X, ∗) → (Y,B). If dimX ≤ n, then im g ⊆ (Y,B)n. So
g = i ◦ g′ for some map g′ : X → (Y,B)n, and so i∗ is surjective. Let now f, g : X → (Y,B)n be
cellular maps such that i◦f ' i◦g, via a homotopy H : X×I → Y . By cellular approximation,
since (X × I,X × ∂I ∪ {∗} × Y ) is a relative CW-complex, there is a homotopic cellular map
G : X × I → Y which is a homotopy from i ◦ f to i ◦ g. If dimX < n, then im G ⊆ (Y,B)n.
Thus when corestricted, the map G : X × I → (Y,B)n is a homotopy from f to g, and so i∗ is
injective.

Lemma A.3.4.
For any based map f : Sn → X, [f ]∗ = 0 in πn(X) if and only if there exists a based map
f̂ : Dn+1 → X such that the following diagram commutes :

Sn X.

Dn+1

f

f̂

Sketch of the Proof : Suppose f̂ exists. Define the map :

H : Sn × I −→ X

(x, t) 7−→ f̂((1− t)x+ ts0),

where s0 is the basepoint of Sn. It is a homotopy from f to the identity idSn .
Conversly, suppose [f ]∗ = 0 through a based homotopy H : Sn × I → X. Define the map :

f̂ : Dn+1 −→ X

x 7−→
{
∗ if ‖x‖ ≤ 1/2,
H( x
‖x‖ , 2− 2‖x‖) if ‖x‖ ≥ 1/2.

Then : f̂(x) = H(x, 0) = f(x) for any x in Sn.

Lemma A.3.5 (Killing homotopy).
Let X be any CW-complex and n > 0. There exists a relative CW-complex (X ′, X) with cells
in dimension (n+ 1) only, such that : πn(X ′) = 0, and πk(X) ∼= πk(X ′) for k < n.

Proof : Let the generators of πn(X) be represented by {fj : Sn → X | j ∈ J }. Define X ′
as the pushout : ∐

j∈J Sn X

∐
j∈J Dn+1 X ′.

∑
j∈J

fj

i
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The resulting map i : X → X ′ is a n-equivalence. By the previous lemma, we get that
πn(i)([g]∗) = 0 for any [g]∗ in πn(X). Hence im πn(i) = 0. Since the homomorphism is
surjective, we obtain πn(X ′) = 0.

Theorem A.3.6 (Approximation of spaces by CW-complexes).
For any space X, there is a CW-approximation X̃

∼→ X. If X is n-connected, n ≥ 1, then X̃
can be chosen to have a unique vertex and no k-cells for 1 ≤ k ≤ n. For a map f : X → Y
and another CW-approximation Ỹ

∼→ Y , there is a cellular map f̃ : X̃ → Ỹ , unique up to
homotopy, such that the following diagram is homotopy commutative :

X̃ X

Ỹ Y.

f̃

∼

f

∼

Sketch of the Proof : We give an explicit construction of X̃. We first build a CW-
complex for which the homotopy surjects to π∗(X) and then we kill the homotopy in excess, di-
mension by dimension. We may assume that X is path connected, working one path component
at a time. For any k ≥ 1, let the generators of πk(X) be represented by {fkj : Sk → X | j ∈Jk}.
Let K1 be the wedge of spheres :

K1 =
∨

j∈Jk

k≥1

Sk.

We giveK1 the CW-structure induced by the usual CW-decomposition of the spheres Sk. Notice
that if X is n-connected, with n ≥ 1, then K1 has no k-cells for 1 ≤ k ≤ n. Define the map
γ1 : K1 → X on each (k, j)-th wedge summand as the map fkj : Sk → X. It is indeed continuous
by the gluing Lemma. The induced homomorphism (γ1)∗ is surjective on each dimension : for a
fixed k, each generator fkj is given by (γ1)∗([idSk ]∗). Inductively, suppose we have constructed
Km and maps γm for m ≤ n such that (γm)∗ is surjective in every dimension, and a bijection
for dimensions strictly inferior to m. Let Hn be the subgroup of πn(Kn) defined as the kernel of
(γn)∗. As in the proof of Lemma A.3.5, we kill the homotopy in excess, making (γn)∗ injective.
Let the generators of Hn be represented by {gj : Sn → Kn | j ∈ H }. For each j, by Lemma
A.3.4, since γn ◦ gj is nullhomotopic, there is a map ĝj : Dn+1 → X which restricts to γn ◦ gj .
Define Kn+1 as the pushout : ∐

j∈H

Sn Kn

∐
j∈H

Dn+1 Kn+1.

∑
j∈H

gj

in

It is a CW-complex. Define γn+1 : Kn+1 → X to be γn on Kn and ĝj on the j-th coproduct
Dn+1. Then (γn+1)∗ is surjective on every dimension, since (γn)∗ is. Since in : Kn → Kn+1 is
an n-equivalence, (γn+1)∗ : πk(Kn+1)→ πk(X) is a bijection for k ≤ n−1. By our construction
of Kn+1, ker (γn+1)∗ = 0 in dimension n, which makes (γn+1)∗ also a bijection for n. Notice
that γn+1 ◦ in = γn. This allows us to define X̃ as

⋃
n≥1Kn, which is a CW-complex and to

define the weak equivalence X̃ ∼→ X which is induced by the maps {γn}. It is indeed a weak
equivalence (use theorem C.4.5).
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Existence and uniquess of a map f̃ : X̃ → Ỹ stem from the Whitehead theorem which states
that the weak equivalence Ỹ ∼→ Y induces a bijection from [X̃, Ỹ ]∗ to [X̃, Y ]∗.

Theorem A.3.7 (Approximation of space by CW-pairs).
For any pair of spaces (X,A), and any CW-approximation Ã→ A, there is a CW-approximation
X̃
∼→ X such that (X̃, Ã) ∼→ (X,A) is a CW-approximation. If (X,A) is n-connected, then

(X̃, Ã) can be chosen to have no relative k-cells for k ≤ n. If f : (X,A)→ (Y,B) is a map, and
(Ỹ , B̃) ∼→ (Y,B) is another CW-approximation, there is a cellular map f̃ : (X̃, Ã) ∼→ (Ỹ , B̃),
unique up to homotopy, such that the following diagram is homotopy commutative :

(X̃, Ã) (X,A)

(Ỹ , B̃) (Y,B).

f̃

∼

f

∼

Sketch of the Proof : The argument is similar to theorem A.3.6. We may assume that
X has a basepoint in A, and that X is path connected. For any k ≥ 1, let the generators of
πk(X) be represented by {fkj : Sk → X | j ∈Jk}. Let K0 be defined as :

K0 = Ã ∨

 ∨
j∈Jk

k≥1

Sk

 .
Define γ0 : K0 → X with the weak equivalence Ã ∼→ A and the maps {fkj }. Construct K1

from K0 by attaching 1-cells connecting the vertices in the non-basepoint components of Ã to
the base vertex. The paths in X that connect the images under Ã ∼→ A of the non-basepoint
vertices to the basepoint of X give γ1 : K1 → X. The construction then follows the one of
theorem A.3.6. To construct f̃ : (X̃, Ã) → (Ỹ , B̃), first build f̃ : Ã → B̃, and use the HELP
theorem to extend it to X̃.

Corollary A.3.8.
Let X be a based, path-connected space. Then there exists a CW-approximation X̃ ∼→ X, such
that X̃ has a unique vertex and based attaching maps. In particular, the (n+ 1)-skeleton of X̃
is obtained as the pushout : ∨

Sn X̃n

∨
Dn+1 X̃n+1.

Proof : The first statement follows directly from previous theorem, where we set A = {∗},
the basepoint of X. For the sake of clarity, rename X̃ as X. Recall that the (n+ 1)-skeleton of
X is given by the following pushout :

∐
j∈J Sn Xn

∐
j∈J Dn+1 Xn+1.

∑
j∈J

ϕj

(?)
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Let us recall that for s0 the basepoint of Sn, we have :∨
j∈J

Sn = (
∐
j∈J

Sn)/((s0)j ∼ (s0)j′ , ∀j, j′ ∈J ).

Since the attaching maps {ϕj} are based, they induce a unique map
∑
j∈J ϕ̂j :

∨
j∈J Sn → Xn,

such that the following diagram commutes :

∐
j∈J

Sn Xn.

∨
j∈J

Sn

∑
j∈J

ϕj

∑
j∈J

ϕ̂j

We thus get the following commutative diagram :

∐
j∈J

Sn
∨
j∈J

Sn Xn

∐
j∈J

Dn+1 ∨
j∈J

Dn+1 Xn+1.

∑
j∈J

ϕj

∑
j∈J

ϕ̂j

Since the first square of the last diagram and the diagram (?) are pushouts, we get that the
second square of the last diagram is a pushout, by the universal property of pushouts.

Definition A.3.9 (CW-triad).
A CW-triad (X;A,B) is a CW-complex X, together with subcomplexes A and B, such that
A ∪B = X.

Proposition A.3.10.
Let (X;A,B) be a CW-triad. Then the map A/A ∩ B → X/B is an isomorphism of CW-
complexes.

Proof : The map A/A ∩B → X/B is a homemorphism since it is obtained as :

A ∩B B

A X

A/A ∩B X/B,
∼=

where the top square is the description of X as a pushout.
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Theorem A.3.11 (Approximation of excisive triads by CW-triads).
Let (X;A,B) be an excisive triad and let C = A ∩ B. Then there is a CW-triad (X̃; Ã, B̃),
such that, with C̃ = Ã ∩ B̃, the maps C̃ ∼→ C, Ã ∼→ A, B̃ ∼→ B, and X̃

∼→ X are all weak
equivalences. If (A,C) is n-connected, then (Ã, C̃) can be chosen to have no k-cells for k ≤ n,
and similarly for (B,C).

Sketch of the Proof : There is CW-approximation C̃ ∼→ C that can be extended to the
pairs (Ã, C̃) ∼→ (A,C) and (B̃, C̃) ∼→ (B,C) such that Ã ∩ B̃ = C̃. Define X̃ as the following
pushout :

C̃ Ã

B̃ X̃ A

B X.

∼

∼

Define the desired weak equivalence X̃ → X as the (unique) dashed map of the above diagram,
given by the universal property of pushouts. It only remains to prove that the map X̃ ∼→ X is
indeed a weak equivalence, and the reader can find a full detailed proof in chapter 10, paragraph
7, of [May, 1999].
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APPENDIX B

Axiomatic (Co)homology Theories

We present in this appendix the definition of a generalized (co)homology theory in the sense of
the axiomatic work of Eilenberg-Steenrod in [Eilenberg and Steenrod, 1952]. We suppose
that the reader is familiar with this approach so that we don’t present the consequences of
these axioms (such as the Mayer-Vietoris sequence). Full details can be found in [May, 1999].
The important result of this appendix is the fact that one can fully determined a generalized
(co)homology theory on Toprel is completely determined by its associated reduced (co)homology
theory defined on CW∗, the category of based CW-complexes.

B.1. Axioms for Homology

Let us write Toprel the category of pairs. Recall that a functor F : Toprel → C is homotopy
invariant if : f 'A g : (X,A)→ (Y,B)⇒ F (f) = F (g) : F (X,A)→ F (Y,B).

Definition B.1.1 (The Eilenberg-Steenrod Axioms for a Homology Theory).
A generalized homology theory E∗ is a family {En : Toprel → Ab | n ∈ Z} of homotopy invariant
functors, together with a family {∂ : En ◦ U ⇒ En−1 | n ∈ Z} of natural transformations,
where U : Toprel → Toprel is a functor which sends any pairs (X,A) to (A, ∅), and any map
f : (X,A) → (Y,B) to its restriction (A, ∅) → (B, ∅), such that the following axioms are
satisfied.

(H1) Exactness For any pair (X,A), let i : A ↪→ X and j : (X, ∅) ↪→ (X,A) be the inclusions.
The following sequence is exact :

· · · En(A, ∅) En(X, ∅) En(X,A) En−1(A, ∅) · · · .En(i) En(j) ∂

(H2) Excision For any excisive triad (X;A,B), the inclusion (A,A ∩ B) ↪→ (X,B) induces
isomorphisms for any n :

En(A,A ∩B)
∼=−→ En(X,B).

(H3) Additivity For any collection {(Xj , Aj)}j∈J of pairs, the inclusions ij : (Xj , Aj) ↪→∐
j∈J (Xj , Aj) induce isomorphisms for any n :

∑
j∈J

En(ij) :
⊕
j∈J

En(Xj , Aj)
∼=−→ En

 ∐
j∈J

(Xj , Aj)

 .
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(H4) Invariance with Respect to Weak Equivalences If f : (X,A)→ (Y,B) is a weak
equivalence, then En(f) : En(X,A)→ En(Y,B) is an isomorphism.

The homology theory E∗ is ordinary if moreover, there exists an abelian group G such that the
following axiom is satisfied.

(H5) Dimension En({∗}) =
{
G, if n = 0,
0, otherwise.

We will write then H∗(−, G) := E∗.

In [Eilenberg and Steenrod, 1952], and most of the literrature, a generalized homology
theory need not satisfy the additivity axiom. This axiom was introduced by Milnor in order to
treat infinite dimensional CW-complexes. This was then called an "additive homology theory".
However, throughout this paper we always deal with additive homology theories, and so we
follow May’s convention [May, 1999] and require generalized homology theories to be additive.
As we will see, the "invariance with respect to weak equivalence" axiom is introduced in order
to pass from homology theory on Toprel to an equivalent homology theory on pairs of CW-
complexes.

Definition B.1.2.
A transformation of homology theories on Toprel T : E∗ → E′∗ is a family of natural trans-
formations {T : En ⇒ E′n} that are compatible with ∂, i.e., such that the following diagram
commutes for all pairs (X,A) and for all n ∈ Z :

En(X,A) En−1(A)

E′n(X,A) E′n−1(A).

∂

T (X,A) T (A)

∂

The transformation T is called an equivalence if each En ⇒ E′n is a natural equivalence.

Proposition B.1.3.
Let T : E∗ → E′∗ be a morphism of homology theories. If for all spaces X, the homomorphism
T (X) : En(X) → E′n(X) is an isomorphism for each n in Z, then T is an equivalence of
homology theories.

Proof : The proof follows directly from the exactness axiom and the 5-Lemma.

Before introducing the notion of reduced homology, we begin with a disgression on well-
pointed spaces.

Well-Pointed Spaces In many constructions of algebraic topology, such as the cone,
the suspension, the mapping cylinder, etc, there are always a reduced and a unreduced case.
Usually one uses the reduced case when dealing with based spaces, and the unreduced case for
unbased spaces. However when are these constructions equivalent, at least homotopically ? A
sufficient answer is given by well-pointed spaces. A well-pointed space (or nondegenerately based
space) is a based space (X, ∗), such that the inclusion {∗} ↪→ X is a cofibration. For instance,
a CW-complex is well-pointed for any based point in its 0-skeleton (since the inclusion of any
n-skeleton to the CW-complex is a cofibration).
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Lemma B.1.4.
Suppose we have the following pushout :

A X

B Y.

i

f g

j

If i : A → X is a cofibration and f : A → B is a homotopy equivalence, then g : X → Y is a
homotopy equivalence.

Proof : Omitted.

Hence we often have a homotopy equivalence between reduced and unreduced construction. For
instance, if one denotes SX the unreduced suspension of a space X, the reduced suspension
ΣX is given by the pushout :

{∗} × I SX

{∗} ΣX.

The top map is a cofibration since q × id is always a cofibration if q is a cofibration. Therefore
the induced map SX → ΣX is a homotopy equivalence, since {∗} × I → {∗} is a homotopy
equivalence.

Lemma B.1.5.
Suppose we have the commutative diagram :

A X

B Y,

i

f g

j

in which i and j are cofibrations, and f and g are homotopy equivalences. Then (g, f) : (X,A)→
(Y,B) is a homotopy equivalence of pairs.

Proof : Omitted, see [May, 1999] page 45.

We introduce now the notion of reduced homology theory. Let us write wellTop∗ the category
of well-pointed spaces.

Definition B.1.6 (The Eilenberg-Steenrod Axioms for a Reduced Homology Theory).
A generalized reduced homology theory Ẽ∗ is a family {Ẽn : wellTop∗ → Ab | n ∈ Z} of
homotopy invariant functors that satisfy the following axioms.

(H̃1) Exactness If i : A� X is a cofibration, then the following sequence is exact, for any n :

Ẽn(A) −→ Ẽn(X) −→ Ẽn(X/A).

(H̃2) Suspension For any n and any space X, there is a natural isomorphism :

Σ : Ẽn(X)
∼=−→ Ẽn+1(ΣX).
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(H̃3) Additivity For any collection {Xj | j ∈ J } of based spaces, the inclusions ij : Xj ↪→∨
j∈J Xj induce an isomorphism for every n :

∑
j∈J

Ẽn(ij) :
⊕
j∈J

Ẽn(Xj)
∼=−→ Ẽn

 ∨
j∈J

Xj

 .
(H̃4) Invariance with Respect to Weak Equivalences If f : X → Y is a weak equiva-

lence, then Ẽnf : Ẽn(X) −→ Ẽn(Y ) is an isomorphism, for any n.

The reduced homology theory is ordinary if moreover, there exists an abelian group G such
that the following axiom is satisfied.

(H̃5) Dimension Ẽn(S0) =
{
G, if n = 0,
0, otherwise.

We will write then H̃∗(−, G) := Ẽ∗.

Definition B.1.7.
A transformation of reduced homology theories T : Ẽ∗ → Ẽ′∗ is a family of natural transfor-
mations {T : Ẽn ⇒ Ẽ′n} that are compatible with Σ, i.e., such that the following diagram
commutes for every well-pointed space X and n ∈ Z :

Ẽn(X) Ẽn+1(ΣX)

Ẽ′n(X) Ẽ′n(ΣX).

Σ

T (X) T (ΣX)

Σ

The transformation T is called an equivalence if each Ẽn ⇒ Ẽ′n is a natural equivalence.

Theorem B.1.8.
For any based map f : A→ X, we have the following exact sequence :

· · · −→ Ẽn(A) −→ Ẽn(X) −→ Ẽn(Cf) −→ Ẽn−1(A) −→ · · · ,

where Cf denotes the reduced mapping cone of f .

Proof : Factor f using the reduced mapping cylinder :

A X

Mf,

f

pf

where pf is a homotopy equivalence. Recall that the reduced mapping cone Cf is defined as
the pushout :

A X

CA Cf.

f
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Recall that we get the based homotopy equivalence : X/A '∗ Cf . The Barratt-Puppe sequence :

A→ X → Cf → ΣA→ ΣX → Σ(Cf)→ · · · ,

together with the suspension axiom (H̃2) and the exactness axiom (H̃1) establish the desired
exact sequence.

Theorem B.1.9.
A generalized homology theory E∗ on Toprel determines and is determined by its restriction to
a generalized homology theory E∗ on pairs of CW-complexes. A generalized reduced homology
theory Ẽ∗ on wellTop∗ determines and is determined by its restriction to a generalized homology
theory Ẽ∗ of based CW-complexes.

Proof : This follows directly from the CW-approximation theorems of appendix A and the
invariance with respect to weak equivalences axiom of Eilenberg-Steenrod.

Theorem B.1.10.
A generalized homology theory E∗ on Toprel determines and is determined by a generalized
reduced homology theory Ẽ∗ on wellTop∗.

Sketch of the Proof : Suppose first that we have a generalized homology theory E∗ on
pairs. For any based space X, we define Ẽ∗ by :

Ẽn(X) := En(X, ∗),

for any n in Z. We need to check the Eilenberg-Steenrod axioms.

(H̃1) Apply exactness of E∗ to the pair (X, ∗). The map X → ∗ is a retraction, hence the long
exact sequence splits in each degree, so that En(X) ∼= Ẽn(X)⊕En(∗), for each n. When
∗ ∈ A ⊆ X, on obtain the long exact sequence :

· · · Ẽn(A) Ẽn(X) En(X,A) Ẽn−1(A) · · ·∂

If i : A � X is a cofibration, then the quotient map (X,A) → (X/A, ∗) induces an
isomorphism En(X,A)

∼=→ Ẽn(X/A) for each n. Indeed, let us use excision of E∗ to prove
it. Let Ci = X ∪i CA be the mapping cone of i. We have an excisive triad :(

Ci; X ∪i A× [0, 2/3]
{∗} × [0, 2/3] ,

A× [1/3, 1]
A× {1} ∪ {∗} × [1/3, 1]

)
.

Let us callX1 andX2 the two components of the triad. Notice thatX1∩X2 = A×[1/3,2/3]
{∗}×[1/3,2/3] .

We have the following commutative diagram :

(X1, X1 ∩X2) (Ci,X2)

(X,A) (X/A, ∗).

' '

The usual homotopy equivalence Mi → X induces the left homotopy equivalence when
restricted. We conclude using excision.
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(H̃2) Since CX is contractible, use the previous sequence to get the natural isomorphism
Ẽn+1(ΣX) ∼= Ẽn+1(CX/X) ∼= Ẽn(X).

(H̃3) The wedge
∨
j∈J Xj is the quotient

∐
j Xj with its basepoints of each Xj . Since the spaces

are well-pointed, we use the previous exact sequence to obtain the desired isomorphism
using additivity of E∗.

(H̃4) It follows directly from (H4) of E∗.

(H̃5) It follows from En(S0) ∼= Ẽn(S0)⊕ En({∗}), for each n.

Conversely, suppose we are given a reduced homology theory Ẽ∗. Define a functor :

(−)+ : Top −→ Top∗
X 7−→ X+ := X t {∗}

X
f→ Y 7−→ f+ : X+ → Y+.

For any pair (X,A), let i : A ↪→ X be the inclusion, we define :

En(X,A) := Ẽn(C(i+)).

Notice that if A = ∅, then En(X, ∅) = Ẽn(X+). So if we have E∗ and define Ẽ∗ as before,
we recover E∗ with the above definition. In other words, we have defined an equivalence of
homology theories where each En(X,A) is maped to Ẽn(C(i+)) (we use Proposition B.1.3), and
an equivalence of reduced homology theories where each Ẽn(X) is maped to En(X, ∗) (because
Ci ∼= X if i is the inclusion {∗} ↪→ X). Although X+ is not well-pointed, but one can use CW-
approximations and work with weakly equivalent CW-complexes which are always well-pointed
and use (H̃4), i.e., use Theorem B.1.9.
Let us prove now the Eilenberg-Steenrod axioms.

(H1) For any pair (X,A), the sequence associated to the induced inclusion i+ : A+ → X+ of
theorem B.1.8 gives the long exact sequence :

· · · En(A, ∅) En(X, ∅) En(X,A) En−1(A, ∅) · · ·∂

where the natural transformation ∂ : En ◦ U ⇒ En−1 can be given explicitly as follows.
From (H̃2), we have an isomorphism Σ−1 : Ẽn+1(ΣX)

∼=→ Ẽn(X) for any well-pointed space
X. For any pair (X,A), using possibly a weak equivalence, we have that C(i+) is homotopy
equivalent to X+/A+ = X/A through a map ψ. Define a map p : C(i+) → Σ(A+) by
collapsing X+ to a point1. The homomorphism ∂ : En(X,A)→ En−1(A, ∅) is then given
by the composite :

En(X,A) = Ẽn(C(i+)) Ẽn(Σ(A+)) Ẽn−1(A+) = En−1(A, ∅).En(p◦ψ) Σ−1

∼=

(H2) For any excisive triad (X;A,B) there is a weakly equivalent CW-triad that we shall rename
(X;A,B) (see theorem A.3.11). Since in this case A/(A ∩B)→ X/B is an isomorphism
of CW-complexes (by Proposition A.3.10), the result follows.

(H3) Let {(Xj , Aj)}j∈J be a collection of based spaces; and ij : (Xj , Aj) ↪→
∐
j∈J (Xj , Aj) the

inclusions. Notice that we have the equality of mapping cones C(
∐
j∈J ij) =

∨
j∈J C(ij)

(use Theorem C.3.4). Using (H̃3) of Ẽ∗, the result follows.

The weak equivalence and dimension axioms are proved in the same way as before.

1This is done when one proves the Baratt-Puppe sequence.
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B.2. Axioms for Cohomology

Generalized cohomology theory is the dual notion of generalized homology theory. Therefore
all the following results are proved in the exact same procedure, and we shall omit the proofs.

Definition B.2.1 (The Eilenberg-Steenrod Axioms for a Cohomology Theory).
A generalized cohomology theory E∗ is a family {En : Toprel → Ab | n ∈ Z} of homotopy
invariant contravariant functors, together with a family {δ : En ◦U ⇒ En+1 | n ∈ Z} of natural
transformations, where U : Toprel → Toprel is a covariant functor which sends any pairs (X,A)
to (A, ∅), and any map f : (X,A) → (Y,B) to its restriction (A, ∅) → (B, ∅), such that the
following axioms are satisfied.

(CoH1) Exactness For any pair (X,A), let i : A ↪→ X and j : (X, ∅) ↪→ (X,A) be the
inclusions. The following sequence is exact :

· · · En(X,A) En(X, ∅) En(A, ∅) En+1(X,A) · · · .En(j) En(i) δ

(CoH2) Excision For any excisive triad (X;A,B), the inclusion (A,A ∩B) ↪→ (X,B) induces
isomorphisms for any n :

En(X,B)
∼=−→ En(A,A ∩B).

(CoH3) Additivity For any collection {(Xj , Aj)}j∈J of pairs, the inclusions ij : (Xj , Aj) ↪→∐
j∈J (Xj , Aj) induce isomorphisms for any n :

(En(ij))j∈J : En
 ∐
j∈J

(Xj , Aj)

 ∼=−→
∏
j∈J

En(Xj , Aj).

(CoH4) Invariance with Respect to Weak Equivalences If f : (X,A) → (Y,B) is a
weak equivalence, then En(f) : En(Y,B)→ En(X,A) is an isomorphism.

The cohomology theory E∗ is ordinary if moreover, there exists an abelian group G such that
the following axiom is satisfied.

(CoH5) Dimension En({∗}) =
{
G, if n = 0,
0, otherwise.

We will write then H∗(−, G) := E∗.

Definition B.2.2 (The Eilenberg-Steenrod Axioms for a Reduced Cohomology Theory).
A generalized reduced cohomology theory Ẽ∗ is a family {Ẽn : wellTop∗ → Ab | n ∈ Z} of
homotopy invariant contravariant functors that satisfy the following axioms.

(CoH̃1) Exactness If i : A � X is a cofibration, then the following sequence is exact, for
any n :

Ẽn(X/A) −→ Ẽn(X) −→ Ẽn(A).

(CoH̃2) Suspension For any n and any space X, there is a natural isomorphism :

Σ : Ẽn(X)
∼=−→ Ẽn+1(ΣX).
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(CoH̃3) Additivity For any collection {Xj | j ∈ J } of based spaces, the inclusion maps
ij : Xj ↪→

∨
j∈J Xj induce an isomorphism for every n :

(Ẽn(ij))j∈J : Ẽn
 ∨
j∈J

Xj

 ∼=−→
∏
j∈J

Ẽn(Xj).

(CoH̃4) Invariance with Respect to Weak Equivalences If the map f : X → Y is a
weak equivalence, then Ẽnf : Ẽn(Y ) −→ Ẽn(X) is an isomorphism, for any n.

The reduced cohomology theory is ordinary if moreover, there exists an abelian group G such
that the following axiom is satisfied.

(CoH̃5) Dimension Ẽn(S0) =
{
G, if n = 0,
0, otherwise.

We will write then H̃∗(−, G) := Ẽ∗.

Definition B.2.3.
A transformation of cohomology theories on Toprel T : E∗ → E′∗ is a family of natural trans-
formations {T : En ⇒ E′n} that are compatible with δ, i.e., such that the following diagram
commutes for all pairs (X,A) and for all n ∈ Z :

En(X,A) En−1(A)

E′n(X,A) E′n−1(A).

δ

T (X,A) T (A)

δ

A transformation of reduced cohomology theories T : Ẽ∗ → Ẽ′
∗
is a family of natural trans-

formations {T : Ẽn ⇒ Ẽ′
n
} that are compatible with Σ, i.e., such that the following diagram

commutes for every well-pointed space X and n ∈ Z :

Ẽn(X) Ẽn+1(ΣX)

Ẽ′
n
(X) Ẽ′

n
(ΣX).

Σ

T (X) T (ΣX)

Σ

The transformation T is called an equivalence if each natural transformation is a natural equiv-
alence.

Theorem B.2.4.
For any based map f : A→ X, we have the following exact sequence :

· · · ←− Ẽn(A)←− Ẽn(X)←− Ẽn(Cf)←− Ẽn−1(A)←− · · · .

Theorem B.2.5.
A generalized cohomology theory E∗ on Toprel determines and is determined by its restriction
to a generalized cohomology theory E∗ on pairs of CW-complexes. A generalized reduced coho-
mology theory Ẽ∗ on wellTop∗ determines and is determined by its restriction to a generalized
cohomology theory Ẽ∗ of based CW-complexes.
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Theorem B.2.6.
A generalized cohomology theory E∗ on Toprel determines and is determined by a generalized
reduced cohomology theory Ẽ∗ on wellTop∗.

We end this appendix by the following theorem, where a proof can be found in [May, 1999]
or [Eilenberg and Steenrod, 1952]. It justifies the notation H∗(−, G) and H∗(−, G). We
give an alternative proof for cohomology in page 48, using our work on Ω-prespectra.

Theorem B.2.7 (Eilenberg-Steenrod).
Let T : h→ k be a map of reduced homology or cohomology theories. If T (S0) is an isomorphism,
then T is an equivalence of reduced homology or cohomology theories.
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APPENDIX C

Limits and Colimits

In this appendix, we define the categorical notion of limits and colimits. A wide diversity of
objects in algebraic topology are built using limits and colimits. Our summary is based on
[Strom, 2011], [May, 1999], [MacLane, 1971] and [Borceux, 1994].

C.1. Definitions and Examples

Throughout this appendix, let C be any category and J be a small category. Denote by
C J the functor category from J to C , whose objects are functors F : J → C , and whose
morphisms are natural transformations F ⇒ F ′, between functors F, F ′ : J → C . We call an
object of C J a diagram in C of shape J , or simply a J -shaped diagram in C . This change
of terminology reflects the fact that we think of a functor from J to C as indexing a family of
objects and morphisms in C , as the category J would often be thought as an index category.

Definition C.1.1 (Cones and Co-cones).
Let F be a J -shaped diagram in C . Let C be an object in C . A cone from C to F is a family
of morphisms {ϕJ : C → F (J) | J ∈ ObJ } in C such that for every morphism j : J → J ′ in
J , the following diagram commutes :

C

F (J) F (J ′).

ϕJ ϕJ′

F (j)

Dually, a co-cone from F to C is a family of morphisms {ϕJ : F (J) → C | J ∈ ObJ } in C
such that for every morphism j : J → J ′ in J , the following diagram commutes :

F (J) F (J ′)

C.

ϕJ

F (j)

ϕJ′

We also say that (C,ϕ) is a (co-)cone of the J -shaped diagram F .

Definition C.1.2 (Limits).
Let F : J → C be a J -shaped diagram in C . The limit of the J -shaped diagram F is a cone
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(L,ϕ) of F such that for any other cone (N,ψ) of F , there exists a unique morphism N
u→ L in

C , such that ϕJ ◦ u = ψJ , for any object J in J . In other words, for any morphism j : J → J ′

in J , we have the commutative diagram :

N

L

F (J) F (J ′).

u
ψJ ψJ′

ϕJ ϕJ′

F (j)

The object L is unique up to isomorphism in C , and will be denoted limF := L.

Definition C.1.3 (Colimits).
The colimit of a J -shaped diagram F in C is a co-cone (L,ϕ) of F , such that for any other
co-cone (N,ψ) of F , there exists a unique morphism L

u→ N in C such that u◦ϕJ = ψJ , for any
object J in J . In other words, for any morphism j : J → J ′ in J , we have the commutative
diagram :

F (J) F (J ′)

L

N.

ϕJ

F (j)

ψJ

ϕJ′

ψJ′
u

The object L is unique up to isomorphism in C , and will be denoted colimF := L.

Example C.1.4 (Products and Coproducts).
Let J be any (small) discrete category, that is, a category whose only morphisms are the
identity morphisms. Then a J -shaped diagram F in C is just a family of objects in C , indexed
by objects of J . Let us write F = {Cj}j∈ObJ for such a family. If C = Set, the category of
sets, then the limit of F is just the cartesian product :

limF =
∏

j∈ObJ

Cj ,

together with the projections {
∏
j∈ObJ Cj → Cj}j∈ObJ

. If C is the category of topologi-
cal spaces, based topological spaces, groups or abelian groups, the previous statement still
holds. For instance, when we endow the cartesian product with the product topology, it is
the product in Top. More generally, for any category C , the limit in this case is the usual
definition of the product in category theory. We call the natural projections the collection
{prj :

∏
j∈ObJ Cj → Cj}j∈ObJ

associated to the definition of the product.
Similarly, the colimit of such a family is the coproduct in category theory. Therefore, if C equals
Set or Top, the category of topological spaces, then the colimit is the disjoint union :

colimF =
∐

j∈ObJ

Cj ,

together with the inclusions {ιj : Cj ↪→
∐
j∈ObJ Cj}j∈ObJ

. If C equals the category of based
topological spaces Top∗, then the colimit is the wedge : colimF =

∨
j∈ObJ Cj . If C equals
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the category of groups Gr, then the colimit is the free product : colimF = ∗j∈ObJ Cj . If C
equals the category of abelian groups Ab, then the colimit is the free abelian group : colimF =⊕
j∈ObJ Cj . We call the canonical inclusions the collection {ιj : Cj ↪→

∐
j∈ObJ Cj}j∈ObJ

as-
sociated to the definition of the coproduct, in any category.

Example C.1.5 (Pullbacks and Pushouts).
Let J be the category whose objects are given by the set {−1, 0, 1}, and whose morphisms are
(−1) → 0, 1 → 0, and the identities. One shorthand schematically the description of such a
category by : J := {−1→ 0← 1}. Then a J -shaped diagram F in a category C is given by :

B → A← C,

where A, B and C are objects in C . Its limit is given, by definition, by an object P = limF in C
together with morphisms P → B and P → C, such that for any other object P ′, and morphisms
P ′ → B and P ′ → C, there exists a unique morphism P ′ → P , such that the following diagram
commutes :

P ′

P

B A C.

This is precisely the definition of the pullback of the diagram B → A← C.
Similarly, if J = {−1 ← 0 → 1}, then the colimit of a J -shaped diagram in a category C is
a pushout in C .

C.2. The Existence Theorem

This section is not necessary to understand this paper. However, we do this detour as it is much
enlightening and helpful to understand the concept of limits and colimits.

Equalizers and Coequalizers If J = {0 ⇒ 1}, then a J -shaped diagram F in a
category C is given by a diagram A ⇒ B, where A and B are objects in C . The limit of F is
called an equalizer, and the colimit of F is called a coequalizer. If we name f, g : A → B the
morphisms in C in F , then we denote Equ(f, g) := limF , and Coequ(f, g) := colimF . We write
e : Equ(f, g) → A and q : B → Coequ(f, g) the induced morphisms in C , forming the cone
(Equ(f, g), e) and the co-cone (Coequ(f, g), q). If pullbacks exist in C , then equalizers exist
since they are given by the following pullback :

Equ(f, g) B

A B ×B.

e ∆
(f,g)

Conversly, if products and equalizers exist, then pullbacks exist. Indeed, suppose we have the
diagram : B f→ A

g← C. Then the product B × C induces two parallel diagonal morphisms
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to A :
B × C C

B A.

p2

p1 g

f

We take the equalizer of these morphisms :

Equ(f ◦ p1, g ◦ p2)

B × C C

B A.

e

p1◦e

p2◦e

p2

p1 g

f

Then one can easily check that Equ(f ◦ p1, g ◦ p2) is the pullback of B f→ A
g← C.

Similarly, if pushouts exist, then coequalizers exist. If coequalizers and coproducts exist, then
pushouts exist.

We now state the main theorem of this appendix which states that it suffices to know
(co)-products and pushouts/pullbacks in a category to build any (co)-limits.

Definition C.2.1.
A category C is said to be complete if every J -shaped diagram has a limit in C , for any
small category J . The category C is said to be cocomplete if every J -shaped diagram has a
colimit in C , for any small category J . The category C is bicomplete if it is both complete
and cocomplete.

Theorem C.2.2 (A Criterion for Bicompleteness).
A category C is complete if and only if C has pullbacks and products. The category C is
cocomplete if and only if C has pushouts and coproducts.

Sketch of the Proof : Let us prove only the completeness, as the proof of the cocom-
pleteness is similar. Let F : J → C be a J -shaped diagram. We construct the limit of F
as follows : we take two products and find two arrows between them, of which we take the
equalizer. Indeed, first take the product of all objects in C in the image of F :

∏
J∈ObJ F (J),

then take the product of all objects in C which are in the image of codomains of all morphisms
in J :

∏
j∈MorJ F (cod j). Let us name {pJ}J∈ObJ and {pj}j∈MorJ the projections of the

products. We thus have the following commutative diagram, for any morphism j in J :

F (cod j)

∏
J∈ObJ

F (J)
∏

j∈MorJ
F (cod j)

F (dom j) F (cod j).

f

g

pcod j

pdom j

pj

pj

F (j)
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The universal property of products gives two morphisms f and g, dashed in the diagram. We
then take the equalizer :

Equ(f, g)
∏

J∈ObJ

F (J)
∏

j∈MorJ
F (cod j)

F (J).

e

ϕJ
pJ

f

g

Name ϕJ the composite pJ ◦ e, for every object J in J . We get a cone (Equ(f, g), ϕ), as one
can easily check. The limit of F is the cone (Equ(f, g), ϕ).

Therefore, the categories of sets, topological spaces, pointed topological spaces, CW-complexes,
groups, abelian groups, modules over a ring and vector spaces over a field, are all bicomplete.
However, the category of fields is neither complete or cocomplete. For instance, the product
fails : the cartesian product R× R is not a field with the laws induced by the projections.

C.3. Interchange in Limits and Colimits

Let J and K be small categories. We want to prove in this part that for any given functor
F : J ×K −→ C , there is a interchange property :

limJ∈J (limK∈K F (J,K)) ∼= limK∈K (limJ∈JF (J,K)),

as long as the involved limits exist. Before showing this statement, we define all the notations
used. We start with the following definition.

Definition C.3.1.
The product of two categories C and D is the category C ×D defined in the following way.

(i) The objects of C ×D are the pairs (C,D) with C object in C and D object in D .

(ii) The morphism (C,D) → (C ′, D′) of C × D are the pairs (c, d), where c : C → C ′ is a
morphism in C and j : D → D′ is a morphism in D .

(iii) The composition in C × D is that induced by the compositions of C and D , in other
words : (c′, d′) ◦ (c, d) = (c′ ◦ c, d′ ◦ d).

We emphasize the following argument that we shall used in our next discussion.

Lemma C.3.2.
Let C be a category, and J be a small category. If a cone (L,ϕ) is a limit of a J -shaped
diagram F in C , then two morphisms f, g : C → L in C are equal as long ϕJ ◦ f = ϕJ ◦ g, for
every object J in J .

Proof : It follows directly from universal property of the limits and the cones (C, {ϕJ◦f}J∈J )
and (C, {ϕJ ◦ g}J∈J ) of the functor F .

Next, we define the notation limJ∈J (limK∈K F (J,K)). The description of the other term
in the equation limK∈K (limJ∈JF (J,K)) will be completely analogous and shall be omitted.
Let J ×K −→ C be a fixed functor. For every object J in J , there is a functor :

F (J,−) : K −→ C ,
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defined by : F (J,−)(K) = F (J,K) for every object K in K , and F (J,−)(k) = F (idJ , k), for
every morphism k in K . By limK∈K F (J,K), we mean the limit of the K -shaped diagram
F (J,−) in C . Now every morphism j : J → J ′ in J induces a morphism F (j, idK) in C , for
every object K in K . This leads to a natural transformation F (j,−) : F (J,−) ⇒ F (J ′,−)
since we have the commutativity of the following diagram for every morphism k : K → K ′ in
K :

F (J,K) F (J ′,K)

F (J,K ′) F (J ′,K ′).

F (j,idK)

F (idJ ,k)
F (j,k)

F (idJ′ ,k)

F (j,idK′ )

For every K0 in K , we write ϕK0 : limK∈K F (J,K)→ F (J,K0) and ϕ′K0
: limK∈K F (J ′,K)→

F (J ′,K0) the family of morphisms in K , forming the cones of the limits of the K -shaped
diagrams F (J,−) and F (J ′,−). The composite :

limK∈K F (J,K) F (J,K0) F (J ′,K0),
ϕK0 F (j,idK0 )

constitutes a cone on the functor F (J ′,−). Hence, by the universal property of limits, there is
a unique morphism denoted :

limK∈K F (j, idK) : limK∈K F (J,K) −→ limK∈K F (J ′,K)

such that the following diagram commutes for every object K0 in K :

limK∈K F (J,K) limK∈K F (J ′,K)

F (J,K0) F (J ′,K0).

limK∈K F (j,idK)

ϕK0 ϕ′K0

F (j,idK)

(�)

If all the K -shaped diagrams F (J,−) have limits for every object J in J , we can define a
functor :

L : J −→ C ,

by L(J) = limK∈K F (J,K) and L(j) = limK∈K F (j, idK), for every object J in J and mor-
phism j in J .
It is indeed a functor. Let J j→ J ′

j′→ J ′′ be morphisms in J . Using commutativity of the
diagram (�), we have for all K in K :

ϕ′′K ◦ L(j′) ◦ L(j) = F (j′, idK) ◦ ϕ′K ◦ L(j)
= F (j′, idK) ◦ F (j, idK) ◦ ϕK
= F (j′ ◦ j, idK) ◦ ϕK

Hence L(j′)◦L(j) = L(j′◦j) by Lemma C.3.2. Similarly, we have L(idJ) = idL(J). So L is a func-
tor. We denote by : limJ∈J (limK∈K F (J,K)) the limit of the J -shaped diagram L, if it exists.

The interchange property :

limJ∈J (limK∈K F (J,K)) ∼= limK∈K (limJ∈JF (J,K)),
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means that the canonical morphisms connecting these two limits are in fact isomorphisms. Let
us define what we mean by canonical morphism. Starting with the limit of L defined above, we
have the composites for every J and K :

limL limK∈K F (J,K) F (J,K).ϕJ ϕK

Let K be a fixed object in K and j : J → J ′ be a fixed morphism in J . The composites
ϕK ◦ ϕJ form a cone of the functor F (−,K) since we have :

F (j, idK) ◦ ϕK ◦ ϕJ = ϕ′K ◦ limK∈K F (j, idK) ◦ ϕJ
= ϕ′K ◦ ϕJ ′ .

Therefore, there exists a unique morphism λK : limL→ limJ∈JF (J,K) such that the following
diagram commutes, for every J and K :

limL limJ∈JF (J,K)

limK∈K F (J,K) F (J,K).

λK

ϕJ ϕJ

ϕK

where ϕJ is the morphism which stems from the cone limJ∈JF (J,K). Let k : K → K ′ be a
morphism in K . Define ϕ′J the morphism constituting the cone limJ∈JF (J,K ′). We have :

ϕ′J ◦ limJ∈JF (idJ , k) ◦ λK = F (idJ , k) ◦ ϕJ ◦ λK
= F (idJ , k) ◦ ϕK ◦ ϕJ
= ϕK′ ◦ ϕJ
= ϕ′K ◦ λK′ .

Therefore we get : limJ∈JF (idJ , k) ◦ λK = λK′ , using Lemma C.3.2. Thus the morphisms
λK form a cone, and so there exists a unique morphism λ : limL→ limK∈K (limJ∈JF (J,K)),
which is one of the desired canonical morphism. Analogously we can define the other canonical
morphism :

µ : limK∈K (limJ∈JF (J,K)) −→ limJ∈J (limK∈K F (J,K)).

Theorem C.3.3 (Interchange Property of Limits).
Let C be a complete category. Let J and K be small categories. Given a functor F : J×K →
C , and using previous notations, the following interchange property holds :

limJ∈J (limK∈K F (J,K)) ∼= limK∈K (limJ∈JF (J,K)).

Proof : We want to prove that the canonical morphisms λ and µ defined in our previous
discussion are mutual inverse isomorphisms. Let us prove that µ ◦ λ = id. By Lemma C.3.2, it
suffices to prove :

ϕK ◦ ϕJ ◦ µ ◦ λ = ϕK ◦ ϕJ ,
for every objects J and K. But this is straightfoward from the definition of the canonical
morphisms. Similarly, we have λ ◦ µ = id.

Of course, all of our work can be dualized for colimits. We have therefore the dual theorem.

Theorem C.3.4 (Interchange Property of Colimits).
Let C be a cocomplete category. Let J and K be small categories. Given a functor F :
J ×K → C , the following interchange property holds :

colimJ∈J (colimK∈K F (J,K)) ∼= colimK∈K (colimJ∈JF (J,K)).
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C.4. Towers and Telescopes

In algebraic topology, we are often faced with special cases of diagrams called towers and
telescopes. For instance CW-complexes and stable homotopy groups are colimits of telescopes.

Towers If J = {0 ← 1 ← 2 ← 3 ← · · · }, then a J -shaped diagram F in a category C is
just a sequence of morphisms in C of the form :

C0
f0←− C1

f1←− C2 ←− · · · ←− Cn
fn←− Cn+1 ←− · · · .

We call such a diagram a tower and we denote its limit limF by limnCn. Let us emphasize
the universal property in this case. Write L the limit. There is a collection of morphisms
{ϕn : L→ Cn}n in C , satisfying fn−1 ◦ ϕn = ϕn−1 for any n ≥ 1, such that for any object Y
together with morphisms {ψn : Y → Cn}n in C with fn−1 ◦ ψn = ψn−1, there exists a unique
morphism u : Y → L in C , such that ϕn ◦ u = ψn, for any n, i.e., the following diagram
commutes :

...

Cn+1

Cn

Y L
...

C1

C0.

fn

u

f1

f0

Define the shift map :
sh :

∏
n≥0

Cn −→
∏
n≥0

Cn,

by the formula sh = (f0 ◦ pr1, f1 ◦ pr2, . . . , fn ◦ prn+1, . . .), where prj :
∏
n≥0Cn → Cj are the

natural projections given by the definition of the product. Then it easy to see that the limit
L = limnCn is given by the following pullback (actually an equalizer) :

L
∏
n≥0

Cn

∏
n≥0

Cn
∏
n≥0

Cn ×
∏
n≥0

Cn.

(sh,id)

∆

Indeed, name ϕj : L→ Cj the morphism defined as the composite :

L −→
∏
n≥0

Cn
prj−→ Cj ,
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where the unlabeled morphism is the one given by the pullback (they are both the same as
it is actually an equalizer). It follows that fn−1 ◦ ϕn = ϕn−1, for any n ≥ 1 (thanks to the
shift map). Now suppose we have an object Y together with morphisms {ψn : Y → Cn}n in
C with fn−1 ◦ ψn = ψn−1. By the universal property of products, there is a unique morphism
Ψ : Y →

∏
n≥0Cn such that prn ◦ Ψ = ψn, for any n ≥ 0. Hence, the universal property of

pullbacks (or equalizers) gives a unique morphism u : Y → L such that the following diagram
commutes :

Y

L
∏
n≥0

Cn

∏
n≥0

Cn
∏
n≥0

Cn ×
∏
n≥0

Cn.

u

Ψ

Ψ

(sh,id)

∆

It follows that ϕn ◦ u = ψn, for every n ≥ 0, and therefore L is indeed the limit of the tower.
Thus, in C = Set, the limit is given by L = {(xn)n≥0 ∈

∏
n≥0Cn | fn(xn) = xn, ∀n ≥ 0}. We

can carry out this construction for the categories Gr, Ab, Top, etc.

Telescopes If J = {0 → 1 → 2 → 3 → · · · }, then a J -shaped diagram F in a category
C is just a sequence of morphisms in C :

C0
f0−→ C1

f1−→ C2
f2−→ C3 −→ · · · −→ Cn

fn−→ Cn+1 −→ · · · .

We call such a diagram a telescope, and we denote its colimit colimF by colimnCn. We again
emphasize the universal property in this case. Let L denote the colimit. There is a collection
of morphisms {ϕn : Cn → L}n satisfying ϕn+1 ◦ fn = ϕn, for any n ≥ 0, such that for any other
object Y in C , together with morphisms {ψn : Cn → Y }n, such that ψn+1 ◦ fn = ψn, there
exists a unique morphism u : L → Y such that u ◦ ϕn = ψn, for any n ≥ 0, i.e., the following
diagram commutes :

C0 C1 · · · Cn Cn+1 · · ·

L

Y.

f0 f1 fn

u

Define the shift map :
sh :

∐
n≥0

Cn −→
∐
n≥0

Cn,

by the formula sh = (ι1 ◦ f0, ι2 ◦ f1, . . . , ιn+1 ◦ fn, . . .), where ιj : Cj →
∐
n≥0Cn are the

canonical inclusions given by the definition of the coproduct. Then it easy to see that the
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colimit L = colimnCn is given, by an argument dual to the previous case, by the following
pushout (again, actually a coequalizer) :

∐
n≥0

Cn t
∐
n≥0

Cn
∐
n≥0

Cn

∐
n≥0

Cn L.

∇

(sh,id)

Therefore, for C = Set, the colimit is given by L =
∐
n≥0Cn/ ∼, where ∼ is an equivalence

relation given by xn ∼ fn(xn), for every n ≥ 0 and (xn)n≥0 in
∐
n≥0Cn. We can carry out this

construction for the categories Gr, Ab, Top, etc.
For instance, if C = Top and the maps fn are inclusions, then the colimit of the telescope is
just the union

⋃
n≥0Cn endowed with its coarsest topology such that the canonical inclusion

ιj : Cj →
⋃
n≥0Cn are all continuous, i.e., its weak topology : A is closed in

⋃
n≥0Cn if and only

if A∩Cn is closed in Cn, for each n ≥ 0. This is exactly the construction used in the definition
of a CW-complex. Another example can be given for C = Ab, with the following proposition,
which is a just a reformulation of what we have just proved.

Proposition C.4.1.
Suppose we have a telescope A0

f0→ A1
f1→ A2

f2→ · · · of abelian groups. Then there is a short
exact sequence :

0
⊕
j≥0

Aj
⊕
j≥0

Aj colimjAj 0,α β

where α(aj) = aj − fj(aj) for each aj in Aj, and the restriction of β to Aj is the canonical
homomorphism ϕj : Aj → colimjAj, forming the co-cone (colimjAj , ϕj).1

We now present various useful results on telescopes. Let us first introduce the dual of Lemma
C.3.2.

Lemma C.4.2.
Let C be a category, and J be a small category. If a co-cone (L,ϕ) is a colimit of a J -shaped
diagram F in C , then two morphisms f, g : L→ C in C are equal as long f ◦ ϕJ = g ◦ ϕJ , for
every object J in J .

Proof : Follows directly from the universal property of colimits.

This argument leads to the following two results.

Theorem C.4.3 (Colimits of Telescopes Preserve Exactness).
Suppose C = Ab. Let A0

f0→ A1
f1→ A2

f2→ · · · , B0
g0→ B1

g1→ B2
g2→ · · · , and C0

h0→ C1
h1→ C2

h2→ · · ·
1The homomorphism β ◦ α is actually the coequalizer of the shift map with the identity.
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be telescopes such that there is a commutative diagram :

A0 A1 A2 · · · An An+1 · · ·

B0 B1 B2 · · · Bn Bn+1 · · ·

C0 C1 C2 · · · Cn Cn+1 · · · ,

f0

u0

f1

u1 u2

fn

un un+1

g0

v0

g1

v1 v2

gn

vn vn+1

h0 h1 hn

(C.1)

where Aj
uj→ Bj

vj→ Cj are exact, for each j ≥ 0. Then there is an exact sequence :

colimnAn
u−→ colimnBn

v−→ colimnCn.

Proof : We first begin by constructing the canonical homomorphism u and v. There exist
morphisms ϕj : Aj → colimnAn forming the co-cone with the colimit colimnAn of the telescope
A0

f0→ A1
f1→ A2

f2→ · · · . There exist morphisms ψj : Bj → colimnBn forming the co-cone
with the colimit colimnBn of the telescope B0

g0→ B1
g1→ B2

g2→ · · · . Hence, we have a co-cone
(colimnBn, {ψn ◦ un}n) of the telescope A0

f0→ A1
f1→ A2

f2→ · · · . By the universal property
of colimits, there exists a unique homomorphism u : colimnAn → colimnBn, such that : u ◦
ϕn = ψn ◦ un, for every n ≥ 0. Similarly, the universal property of colimits gives a unique
homomorphism v : colimnBn → colimnCn such that : v ◦ ψn = θn ◦ vn, for each n ≥ 0, where
θj : Cj → colimnCn are the morphisms forming the co-cone with the colimit colimnCn of the
telescope C0

h0→ C1
h1→ C2

h2→ · · · . Let us prove now the exactness.

im u ⊆ ker v We want to see that v ◦ u is the trivial homomorphism. From Lemma C.4.2, we
only need to see that v ◦ u ◦ ϕn is the trivial homomorphism, for each n. So let a be in
An. We have :

(v ◦ u ◦ ϕn)(a) = v(ψn(un(a)))
= θn((vn ◦ un)(a))
= 0.

Therefore im u ⊆ ker v.

ker v ⊆ im u From Lemma C.4.2, it suffices to suppose that we have b in Bn such that (v ◦
ψn)(b) = 0, i.e., (θn ◦ vn)(b) = 0. We get (θn+1 ◦ hn ◦ vn)(b) = 0. So (hn ◦ vn)(b) = 0
by Proposition C.4.1. From commutativity of (C.1), we have : (vn+1 ◦ gn)(b) = 0. By
exactness, there is a in An+1 such that un+1(a) = gn(b). Therefore we get :

(u ◦ ϕn+1)(a) = (ψn+1 ◦ un+1)(a)
= (ψn+1 ◦ gn)(b)
= ψn(b).

Thus im u ⊆ ker v.

Therefore im u = ker v.

Proposition C.4.4.
Let C be any category. Let A0

i0→ A1
i1→ A2

i2→ · · · and B0
j0→ B1

j1→ B2
j2→ · · · be telescopes in C ,
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whose colimits exist. Let (A = colimnAn, ι) and (B = colimnBn, λ) denote the co-cones forming
the colimit of the telescopes. Let r, s : N→ N be increasing functions. Let fn : An → Br(n) and
gn : Bn → As(n) be morphism in C for every n. As shown in the proof of Theorem C.4.3, they
induce canonical morphisms f : A→ B and g : B → A. Then we have the following results.

(i) The following diagrams commute for all n ≥ 0 :

An A B A, Bn B A B,
ιn

ιn

f g λn

λn

g f

if and only if f : A→ B is an isomorphism in C , with inverse g : B → A.

(ii) Suppose that r, or s, is a stricly increasing function. If for all n, the following diagrams
commute :

An Br(n) As(r(n)), Bn As(n) Br(s(n)),
fn

is(r(n))−1◦···◦in

gr(n) gn

jr(s(n))−1◦···◦jn

fs(n)

then f : A→ B is an isomorphism in C , with inverse g : B → A.

Proof : To prove that f and g are mutual inverses, we have to check that g ◦ f = idA and
f ◦g = idB. The first statement follows then directly from Lemma C.4.2. The second statement
follows from the first since we obtain the following commutative diagram :

A B A B A B

An Br(n) As(r(n)), Bn As(n) Br(s(n)),

f g g f

fn

ιn

is(r(n))−1◦···◦in

λr(n)
gr(n)

ιs(r(n)) λn

gn

jr(s(n))−1◦···◦jn

ιs(n)

fs(n)

λr(s(n))

for all n ≥ 0.

We now give the behavior of homotopy and homology groups with respect to particular
colimits of telescopes.

Theorem C.4.5 (The Homotopy of Telescopes).
Suppose there is a sequence of inclusions X0

i0
↪→ X1

i1
↪→ · · · ↪→ Xj

ij
↪→ Xj+1 ↪→ · · · of based

topological T1-spaces2, where the basepoint is chosen in X0. Then for each n ≥ 0, there exists a
natural isomorphism :

colimjπn(Xj)
∼=−→ πn(colimjXj).

Proof : We start by building the natural homomorphism colimjπn(Xj)→ πn(colimjXj). For
n ≥ 0 fixed, the colimit of the telescope :

X0 X1 X2 · · · Xj Xj+1 · · ·

colimjXj ,

i0

ι0

i1

ι1 ι2

ij

ιj ιj+1

2We only need that each point in the spaces are closed, but one can replace the T1-property by the Hausdorff
property if one is not familiar with T1-spaces
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induces the desired (unique) homomorphism Φ (or set map for the case n = 0), using the
universal property of colimits, which is obviously natural :

πn(X0) πn(X1) πn(X2) · · · πn(Xj) πn(Xj+1) · · ·

colimjπn(Xj)

πn(colimjXj).

ι0∗

i0∗

ι1∗

i1∗

ι2∗

ij∗

ιj∗ ιj+1∗

Φ

Here naturality means that if there is another telescope diagram Y0
g0→ Y1

g1→ Y2 → · · · in Top∗
such that there are based maps fj : Xj → Yj , for any j ≥ 0, provided that fj+1 ◦ ij = gj+1 ◦ fj ,
then there exist a map f : colimjXj → colimjYj induced by {fj} and a homomorphism f∗ :
colimjπn(Xj)→ colimjπn(Yj) induced by {fj∗} such that the following diagram commutes3 :

colimjπn(Xj) colimjπn(Yj)

πn(colimjXj) πn(colimjYj).

Φ

f∗

Φ

πn(f)

Let X := colimjXj =
⋃
j≥0Xj be the colimit. We have the following claim.

Claim For any compact space K, and for any map f : K → X, there exists
m ∈ N such that im(f) ⊆ Xm.

Proof of the Claim : Suppose that such a m does not exist. Since im(f)
is a compact subspace of X, let us use the characterisation of the compactness
by the finite intersection property (see theorem 26.9 in [Munkres, 2000]) to get a
contradiction. Since im(f) * Xm for any m, then there exists an element xm in
im(f) − (im(f) ∩ Xm), for every m. Since Xk ⊆ Xm if k ≤ m, we get xm /∈ Xk

whenever k ≤ m. Therefore we obtain |{Xm ∩ {xk | k ∈ N}}| < m for any m.
But, {xk} is closed in Xk, for all k in N. Hence Xm ∩ {xk | k ∈ N} is a closed
subset of Xm, for each m. Thus {xk | k ∈ N} is a closed subset of X, whence of
im(f) as well. Define Cm := {xk | k ≥ m}. We get a collection of closed subsets of
im(f) : {Cm}m∈N. Notice we have Cm1 ∩ . . . ∩ Cmr = Cmax(mk,1≤k≤r) 6= ∅, for any
m1, . . . ,mr. But

⋂
m∈NCm = ∅. We get a contradiction with the finite intersection

property of the compact subspace im(f).

We now prove that Φ is an isomorphism, using the claim. Let [f ]∗ be an element of πn(X).
Since Sn is compact, there existsm such that im(f) ⊆ Xm. Hence [f ]∗ is in πn(Xm). Surjectivity
follows when using the homomorphism πn(Xm)→ colimjπn(Xj). Suppose now Φ([f ]∗) = 0 for
some [f ]∗ in colimjπn(Xj). Then there exists a homotopy H : Sn×I → X from a representative

3Here the argument for an existence of a natural morphism Φ remains valid for any telescope diagram Xj →
Xj+1 (not necessarly inclusions). In fact, it holds for any colimit of any diagram (not necessarly in Top∗), and
any functor defined on the category (not necessarly πn).
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of Φ([f ]∗) to the identity. Using the compactness of Sn× I, we obtain a homotopy from a well-
chosen representative of [f ]∗ to the identity. Therefore [f ]∗ = 0. So Φ is injective.

Corollary C.4.6.
Let X and Y be CW-complexes. Let us denote (X × Y )w the product endowed with its weak
topology. Then we obtain the following isomorphism for all n ≥ 0 :

πn((X × Y )w) ∼= πn(X)⊕ πn(Y ).

Proof : For the sake of clarity, let us write X × Y instead of (X × Y )w. It is a CW-complex
with j-skeleton :

(X × Y )j =
j⋃
i=0

Xj × Yj−i,

where Xj and Yj denote the j-skeletons of the CW-complexes X and Y respectively. We first
show that : colimj(X × Y )j ∼= colimj(Xj × Yj). Consider the two telescopes induced by the
inclusions of skeletons :

X0 × Y0 X1 × Y1 · · · Xj × Yj Xj+1 × Yj+1 · · · ,

(X × Y )0 (X × Y )1 · · · (X × Y )j (X × Y )j+1 · · · .

Define for all j ≥ 0 the inclusions :

Xj × Yj
2j⋃
i=0

Xj × Y2j−i = (X × Y )2j ,
fj

and the inclusions :
(X × Y )j Xj × Yj .

gj

We obtain the following commutative diagrams for all j ≥ 0 :

Xj × Yj X2j × Y2j , (X × Y )j (X × Y )2j .

(X × Y )2j Xj × Yj ,
fj gjg2j fj

Therefore by Proposition C.4.4, we obtain the desired homeomorphism :

colimj(X × Y )j ∼= colimj(Xj × Yj).

Thus we get :

πn(X × Y ) = πn(colimj(X × Y )j)
∼= πn(colimj(Xj × Yj)), by previous homeomorphism,
∼= colimjπn(Xj × Yj), by Theorem C.4.5,
∼= colimj(πn(Xj)⊕ πn(Yj))
∼= colimjπn(Xj)⊕ colimjπn(Yj), by Theorem C.3.4,
∼= πn(X)⊕ πn(Y ), by Theorem C.4.5,

for all n ≥ 0.
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Theorem C.4.7 (The Homology of Telescopes).
Suppose there is a sequence of inclusions X0

i0
↪→ X1

i1
↪→ · · · ↪→ Xj

ij
↪→ Xj+1 ↪→ · · · of topological

T1-spaces. Let E∗ be a generalized homology theory. Then for each n in Z, there exists a natural
isomorphism :

colimjEn(Xj)
∼=−→ En(colimjXj).

Proof : Set X := colimjXj . Working with path components, we may assume that X and Xj

are path connected, by the additivity axiom. We can then work with based spaces with base
point chosen in X0. We construct what is called generally a homotopy colimit : special case of
a much more general construction. For j ≥ 0, let Mj+1 be the mapping cylinder, defined as the
pushout :

Xj Xj × [j, j + 1]

Xj+1 Mj+1,

ij

where the top row unlabeled map sends each x of Xj to (x, j+ 1). As usual, we have homotopy
equivalences : Mj+1

'−→ Xj+1, such that the following diagram commutes :

Mn Mn+1

Xn Xn+1.

'
in

'

We define a new telescope of spaces Y0 → Y1 → Y2 → · · · inductively. Set Y0 := X0 × {0}. Let
Y1 = M1. Of course X1 × {1} ⊆ Y1. Suppose we have constructed Yj ⊇ Xj × {j}. Let Yj+1 be
the double mapping cylinder defined as the pushout :

Xj × {j} Yj

Mj+1 Yj+1.

yj

Again, we have the usual homotopy equivalences Yj+1
'−→Mj+1, and Y0 ∼= X0. We get that :

Yn+1 = M1
∐

X1×{1}
M2

∐
X2×{2}

. . .
∐

Xn−1×{n−1}
Mn.

Define the space T := hocolimjXj := colimjYj as the homotopy colimit of X0 → X1 → · · · .
Therefore, we have :

T =
⋃
j≥0

Yj =

⋃
j≥0

Xj × [j, j + 1]

 / ∼,
where Xj × [j, j+ 1] 3 (xj , j+ 1) ∼ (ij(xj), j+ 1) ∈ Xj+1× [j+ 1, j+ 2] for each j and xj in Xj .
We have composites of homotopy equivalences that give homotopy equivalences rj : Yj

'−→ Xj ,
for all j ≥ 0, such that we have commutativity of the following diagram :

Yj Yj+1

Xj Xj+1.

yj

rj' rj+1'
ij
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The homotopy equivalences rj composed with the maps Xj → colimjXj induce a (unique) map :

r : T = colimjYj −→ colimjXj = X.

It induces isomorphisms on homotopy groups, since we have for all n :

πn(T ) = πn(colimjYj)
∼= colimjπn(Yj), by Theorem C.4.5,
∼= colimjπn(Xj), by the homotopy equivalences rj ,
∼= πn(colimjXj), by Theorem C.4.5,
= πn(X).

Hence r is a weak equivalence. By the invariance with respect to weak equivalences axiom,
r induces an isomorphism on homology, i.e., En(T )

∼=→ En(colimjXj) for all n. Therefore, it
suffices to prove that the natural homomorphism :

colimjEn(Xj) ∼= colimjEn(Yj)→ En(hocolimjXj) = En(T ),

is an isomorphism, for each n in Z. Define A and B to be open subspaces of T given by choosing
0 < ζ < 1 and setting :

A :=

X0 × I t
∐
j≥1

(X2j−1×]2j − ζ, 2j] ∪X2j × [2j, 2j + 1])

 / ∼,
and :

B :=

∐
j≥0

X2j×]2j + 1− ζ, 2j + 1] ∪X2j+1 × [2j + 1, 2j + 2]

 / ∼ .
The spaces A and B are indeed open in T , and A ∪ B = T . Let C be the intersection A ∩ B,
we get :

C =

∐
j≥0

Xj×]j + 1− ζ, j + 1]

 / ∼ .
We obtain an excisive triad (T ;A,B). The homotopy equivalence ]2j − ζ, 2j] → {2j} leads to
the homotopy equivalences : A '∗

∐
j≥0X2j , B '∗

∐
j≥0X2j+1 and C '∗

∐
j≥0Xj , such that

the inclusion C ↪→ A induces a map taht becomes under the homotopy equivalence above :∐
j≥0Xj →

∐
j≥0X2j which is id : X2j → X2j when restricted to X2j , and i2j+1 : X2j+1 ↪→

X2j+2 when restricted to X2j+1, for each j ≥ 0; and the inclusion C ↪→ B induces a map :∐
j≥0Xj →

∐
j≥0X2j+1 which is id : X2j+1 → X2j+1 when restricted to X2j+1, and i2j : X2j ↪→

X2j+1 when restricted to X2j , for each j ≥ 0.
Using that E∗ is a homotopy invariant functor, and the additivity axiom, we obtain for each n
on Z the isomorphisms :

En(A) ∼=
⊕
j≥0

En(X2j), En(B) ∼=
⊕
j≥0

En(X2j+1), and En(C) ∼=
⊕
j≥0

En(Xj).

We now obtain the following commutative diagram where the rows are exact, for each n ∈ Z;
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we shall explain it in details, row by row :

· · · En(C) En(A)⊕ En(B) En(T ) · · ·

· · ·
⊕
j≥0

En(Xj)
⊕
j≥0

En(Xj) En(X) · · ·

0
⊕
j≥0

En(Xj)
⊕
j≥0

En(Xj) colimjEn(Xj) 0.

∼=

ψn

∼=

ϕn

∼=En(r)

fn

alt∼=

gn

alt∼=

α β

(?)

First row of (?) It is the Mayer-Vietoris sequence, where ψn(e) = (En(`A)(e), En(`B)(e)),
for each e in En(C), with `A : C ↪→ A and `B : C ↪→ B the inclusions; and where
ϕn(a, b) = En(sA)(a)−En(sB)(b), for each a in En(A) and b in En(B), with the inclusions
sA : A ↪→ T and sB : B ↪→ T , as usual. This row is therefore exact.

Second row of (?) It is the previous Mayer-Vietoris sequence but seen via our homotopy
equivalences and the weak equivalence r. Recall that elements in

⊕
j≥0En(Xj) are

∑
j≥0 ej

where |{j ≥ 0 | En(Xj) 3 ej 6= 0}| <∞. We define the homomorphisms :

fn :
⊕
j≥0

En(Xj) −→
⊕
j≥0

En(Xj)∑
j≥0

ej 7−→
∑
j≥0

ej + En(ij)(ej),

and :

gn :
⊕
j≥0

En(Xj) −→ En(X)

∑
j≥0

ej 7−→
∑
j≥0

(−1)jEn(kj)(ej),

where kj : Xj ↪→ X = colimjXj is the inclusion, for each j ≥ 0. From our previous talk
about how the inclusions `A : C ↪→ A and `B : C ↪→ B restrict via the homotopy equiv-
alences, it follows that the upper lefthand square of (?) commutes. The upper righthand
square commutes since we have the following commutative diagrams :

A T B T

∐
j≥0

X2j X,
∐
j≥0

X2j+1 X.

sA

' r

sB

' r

∑
j≥0

k2j
∑
j≥0

k2j+1

Therefore, the second row is exact.

Third row of (?) It is the short exact sequence which stems from proposition C.4.1 applied
to the telescope En(X0) En(i0)−→ En(X1) En(i1)−→ · · · . We define the automorphism :

alt :
⊕
j≥0

En(Xj) −→
⊕
j≥0

En(Xj)∑
j≥0

ej 7−→
∑
j≥0

(−1)jej .
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It is easy to check that the bottom left square commutes. From the universal property
of colimits, there exists a homomorphism colimjEn(Xj)→ En(X) (dashed in (?)), which
makes the bottom right square commutes.

We get that the dashed map in (?) is an isomorphism, using an argument similar to the 5-
Lemma.
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