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Summary

In frequentist inference, we commonly use a single point (point estimator) or an interval
(confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question
is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest
in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence
distribution is a natural choice of such a “distribution estimator”. The concept of a confidence
distribution has a long history, and its interpretation has long been fused with fiducial inference.
Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the
frequentist framework. In recent years, confidence distribution has attracted a surge of renewed
attention, and several developments have highlighted its promising potential as an effective inferential
tool.

This article reviews recent developments of confidence distributions, along with a modern
definition and interpretation of the concept. It includes distributional inference based on confidence
distributions and its extensions, optimality issues and their applications. Based on the new
developments, the concept of a confidence distribution subsumes and unifies a wide range of
examples, from regular parametric (fiducial distribution) examples to bootstrap distributions,
significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors
and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis
on applications providing useful statistical inference tools for problems where frequentist methods
with good properties were previously unavailable or could not be easily obtained. Although it also
draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian
approaches, the review is not intended to re-open the philosophical debate that has lasted more than
two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between
these different statistical procedures.

Key words: Confidence distribution; statistical inference; fiducial distribution; Bayesian method;
likelihood function; estimation theory.

1 Introduction

In Bayesian inference, researchers typically rely on a posterior distribution to make inference
on a parameter of interest, where the posterior is often viewed as a “distribution estimator”
for the parameter. A nice aspect of using a distribution estimator is that it contains a wealth
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of information for almost all types of inference. In frequentist inference, however, we often
use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to
estimate a parameter of interest. A simple question is:

Can we also use a distribution function, or a “distribution estimator”, to estimate a
parameter of interest in frequentist inference in the style of a Bayesian posterior?

The answer is affirmative and, in fact, confidence distribution (CD) is one such a “distribution
estimator”, that can be defined and interpreted in a frequestist (repetition) framework, in which
the parameter is a fixed and non-random quantity.

The concept of confidence distribution has a long history, especially with its early interpreta-
tion associated with fiducial reasoning (see, e.g., Fisher, 1973; Efron, 1993; Cox, 2006; Hampel,
2006). Historically, it has been long misconstrued as a fiducial concept, and has not been fully
developed under the frequentist framework—perhaps partly due to Fisher’s “stubborn insistence”
and his “unproductive dispute” with Neyman (Zabell, 1992). In recent years, the confidence
distribution concept has attracted a surge of renewed attention, and the recent developments have
based on a redefinition of the confidence distribution as a purely frequentist concept, without
any fiducial reasoning. The goal of these new developments is not to derive a new fiducial
theory that is paradox free. Rather, it is on providing a useful statistical tool for problems where
frequentist methods with good properties were previously unavailable or could not be easily
obtained. One nice aspect of treating a confidence distribution as a purely frequentist concept
is that the confidence distribution is now a clean and coherent frequentist concept (similar to
a point estimator) and it frees itself from those restrictive, if not controversial, constraints set
forth by Fisher on fiducial distributions.

A confidence distribution can often be loosely referred to as a sample-dependent distribution
that can represent confidence intervals of all levels for a parameter of interest. One such
distribution estimator, that is well known and extremely popular in modern statistical application,
is Efron’s bootstrap distribution, albeit the concept of a confidence distribution is much broader.
Efron (1998) stated that a bootstrap distribution is a “distribution estimator” and a “confidence
distribution” of the parameter that it targets. Clearly, the implementation of a bootstrap method
is done entirely within the frequentist domain and it does not involve any fiducial or Bayesian
reasoning. The same is true for a confidence distribution.

A basic example, which was also used by Fisher (1935, 1973) to illustrate his fiducial
function, is from the normal mean inference problem with sample xi ∼ N (μ, σ 2), i = 1, . . . , n.
Under this setting, N (x̄, σ 2) or more formally in its cumulative distribution function form
H�(μ) = �(

√
n(μ− x̄)/σ ) is a “distribution estimator” or a confidence distribution for μ,

when σ 2 is known. See Example 1 later for more details. Also, the distribution function Ht (μ) =
Ftn−1 (

√
n(μ− x̄)/s) can be used to estimate and make inference for μ, when σ 2 is not known,

and N (x̄, s2) can be used to estimate and make inference for μ when the sample size n is large,
regardless of whether σ 2 is known or not. Here, x̄ and s2 are the sample mean and variance,
and � and Ftn−1 stand for the cumulative distribution functions of the standard normal and the
t-distribution with n − 1 degrees of freedom, respectively.

The introduction of the confidence distribution concept is arranged in two sections. Section 2
reviews and introduces the concept of confidence distribution, along with some examples.
Section 3 provides further in-depth discussions on the concept, in which we underscore an
intimate connection between bootstrap and confidence distributions, and explore the relations
and distinctions between the confidence distributions, fiducial distributions and Bayesian
inference. Specifically, Section 2.1 briefly reviews the history of confidence distribution and its
classical definition. Section 2.2 provides a modern definition of a confidence distribution, and
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Confidence Distribution, the Frequentist Distribution Estimator 5

Section 2.3 provides several illustrative examples. Section 3.1 introduces the concept of CD-
random variable and explores an underlying similarity between inference based on a general
confidence distribution and inference based on a bootstrap distribution. Section 3.2 notes that
confidence and fiducial distributions have been always linked since their inception, and provides
a further discussion which brings out the intertangled relationship between confidence and
fiducial distributions. Section 3.3 is devoted to stress a unity between confidence distribution
and Bayesian inference and also their differences. From Sections 2 and 3, we can see that the
concept of confidence distribution is purely a frequenstist notion. It is also very broad and
subsumes many well-known notions in statistics. Indeed, a main theme throughout the paper
is that any approach that can build confidence intervals for all levels, regardless of whether
they are exact or asymptotically justified, can potentially be unified under the confidence
distribution framework. The approaches discussed in Sections 2 and 3 include the classical
fiducial examples from pivotal functions, p-value functions from one-sided hypothesis tests,
bootstrap distributions, likelihood approaches and, even sometimes, the Bayesian method.

A confidence distribution is a probability distribution function on the parameter space. It
contains a wealth of information for inference; much more than a point estimator or a confidence
interval. For instance, in the above normal example, the mean/median/mode of the distribution
estimator N (x̄, σ 2/n) when σ 2 is known provides a point estimator x̄ for μ, and its α/2 and 1 −
α/2 quantiles

(
H−1
� (α/2), H−1

� (1 − α/2)
) = (

x̄ +�−1(α/2)σ/
√

n, x̄ +�−1(1 − α/2)σ/
√

n
)

provide a level (1 − α)100% confidence interval, for every 0 < α ≤ 1. Furthermore, its tail mass
H�(b) = �

{
(b − x̄)/(σ/

√
n)
}

provides a p-value for the one-sided hypothesis test K0 : μ ≤ b
versus K1 : μ > b, for a given b. In Section 4, we provide a systematic review on how we obtain
various types of inference under the frequentist framework from a confidence distribution. It
reveals that the CD-based inference is similar in style to that of a Bayesian posterior. It also
underscores the well-known duality between tests and confidence sets in which one can be
derived from the other and vice-versa.

Unlike classical fiducial inference, more than one confidence distributions may be available
to estimate a parameter under any specific setting (“non-uniqueness” in estimation). A natural
question related to decision theory is “which one is better?” or “which one to use?” Section 5
reviews some optimality results for confidence distributions. These findings suggest that, in
many cases, there are optimality results for confidence distributions just like those in point
estimation theory. Depending on the setting and the criterion used, sometimes there is an unique
“best” (in terms of optimality) confidence distribution and sometimes there is no optimal
confidence distribution available. This is not different from the practice of point estimation, but
is certainly different from the practice of fiducial inference.

The concept of a confidence distribution has a long history. But perhaps due to its historic
connection to fiducial distribution, little attention has been paid to it in the past, especially
in applications. This has changed in recent years with many new developments emphasizing
applications of CD-based inferences. In Sections 6 and 7, we provide a review of several
recent studies involving confidence distributions, ranging from combination of information
from independent studies, incorporation of expert opinions with data in a frequentist setting,
approximate likelihood calculations, confidence curves, CD-based Monte Carlo methods to
applications in financial statistics, biomedical research and others. Section 6 focuses on
the topic of combining information from independent sources, with which our group is
most involved. Section 7 reviews several developments on CD-based likelihood calculations,
confidence curves and CD-based Monte Carlo methods, and also provides a survey of several
more-applied applications. From the examples in Sections 6 and 7, we can see that the CD-
based inference can provide useful statistical approaches for many problems and it has broad
applications.
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To end this Introduction section, we cite from Efron (1998) on Fisher’s contribution of the
fiducial distribution which is quite relevant in the context of confidence distributions: “ . . . but
here is a safe prediction for the 21st century: statisticians will be asked to solve bigger and more
complicated problems. I believe there is a good chance that objective Bayes methods will be
developed for such problems, and that something like fiducial inference will play an important
role in this development. Maybe Fisher’s biggest blunder will become a big hit in the 21st
century!” It is our hope that recent emerging developments on confidence distributions, along
with recent surge of publications on generalized fiducial distributions and objective Bayes, will
stimulate further explorations that can enrich statistical sciences.

2 The Concept of Confidence Distribution

2.1 A Classical Definition and the History of the CD Concept

The concept of “confidence” was first introduced by Neyman (1934, 1937) in his seminal
papers on confidence intervals, where frequentist repetition properties for confidence were
clarified. According to Fraser (2011), the seed idea of a confidence distribution can be even
traced back before Neyman (1934, 1937) to Bayes (1763) and Fisher (1922). The earliest use
of the terminology “confidence distribution” that we can find so far in a formal publication is
Cox (1958). But the terminology appears to have been used before, as early as in 1927; c.f.,
David & Edwards (2000), p. 191, for an excerpt of a letter from E.S. Pearson to W.S. Gossett.
Schweder & Hjort (2002) and Hampel (2006) suggested that confidence distributions are “the
Neymanian interpretation of Fisher’s fiducial distributions”, although Fisher furiously disputed
this interpretation.

As in the case of a fiducial distribution, for which Fisher did not give a general definition,
we can not find a precise yet general definition for a confidence distribution in the classical
literature. But, when discussing interval estimation, Cox (1958) suggested that a confidence
distribution “can either be defined directly, or can be introduced in terms of the set of all
confidence intervals at different levels of probability”. Cox (1958) further stated that “Statements
made on the basis of this distribution, provided we are careful about their form, have a
direct frequency interpretation”. The most commonly used approach to describe the concept
of a confidence distribution in the literature is via inverting the upper limits of a whole set
of lower side confidence intervals, often using some special examples. The following two
paragraphs are from Efron (1993), where he defined a confidence distribution using a set of
asymptotic normal confidence intervals. Similar approaches can be found in Cox (2006), among
others.

Suppose that a data set x is observed from a parametric family of densities gμ(x), depending
on an unknown parameter vectorμ, and that inferences are desired for θ = t(μ), a real-valued
function of μ. Let θx (α) be the upper endpoint of an exact or approximate one-sided level-α
confidence interval for θ . The standard intervals for example have

θx (α) = θ̂ + σ̂ z(α),

where θ̂ is the maximum likelihood estimate of θ , σ̂ is the Fisher information estimate
of standard error for θ̂ , and z(α) is the α-quantile of a standard normal distribution, z(α) =
�−1(α). We write the inverse function of θx (α) asαx (θ), meaning the value ofα corresponding
to upper endpoint θ for the confidence interval, and assume that αx (θ) is smoothly increasing
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in θ . For the standard intervals, αx (θ) = �((θ − θ̂)/σ̂ ), where � is the standard normal
cumulative distribution function.

The confidence distribution for θ is defined to be the distribution having density

π
†
x (θ) = dαx (θ)/dθ. (1.2)e

We shall call (1.2)e the confidence density. This distribution assigns probability 0.05 to θ
lying between the upper endpoints of the 0.90 and 0.95 confidence intervals, etc. Of course
this is logically incorrect, but it has powerful intuitive appeal. In the case where there are no
nuisance parameters the confidence distribution is exactly Fisher’s fiducial distribution for θ
based on θ̂ . Fisher proposed (1956) to use the fiducial distribution based on a primary sample
as a prior distribution for the Bayesian analysis of a secondary sample. Lindley (1958) showed
that this proposal leads to certain Bayesian incoherencies, setting off a vitriolic response from
Fisher (1960).

We take notice of two things from these paragraphs. First, the definition of the confidence
distribution itself (i.e., αx (θ)) is purely frequentist and it does not involve any fiducial argument.
In principle, piling up the boundaries of a set of confidence intervals of all levels for a parameter
can typically give us a confidence distribution for the parameter. In particular, to rephrase the
classical definition in the notation of this article and also in a slightly more general form, we
have

(CL) For every α in (0, 1), let (−∞, τn(α)] be a 100α% lower-side confidence interval for a
parameter θ , where τn(α) = τn(x, α) is continuous and increasing in α for each sample
x. Then, Hn(·) = τ−1

n (·) is a confidence distribution for θ .

Secondly, the interpretation of the confidence distribution is tangled with a fiducial reasoning,
even though it is defined purely in the frequenstist domain. Historically, researchers have tried
to interpret a confidence distribution as a sort of distribution of θ , which, typically, is the place
where the fiducial argument is involved. Noting that the parameter θ is a fixed and non-random
quantity in a frequentist setting, the interpretation (of treating a CD as an inherent distribution
of a non-random quantity) is not possible, unless the fiducial reasoning (that θ is now also a
random quantity) is invoked. In our view, this practice of adopting the fiducial argument has
prevented the development of confidence distributions as a valuable statistical tool in frequentist
inference. How to interpret a confidence distribution is one of the major departures of recent
developments from the classical assertions. In the new interpretation, a confidence distribution
is viewed as an estimator for the parameter of interest, instead of an inherent distribution of the
parameter. This point will be further elaborated in this article.

2.2 A Modern Definition and Interpretation

The concept of confidence distribution has attracted a surge of renewed attention in recent
years. We attribute the start of the renewed interest to Efron (1998), who “examined R.A. Fisher’s
influence on modern statistical thinking” and tried to “predict how Fisherian we can expect the
21st century to be”. In the same article, Efron stated that a bootstrap distribution is “a distribution
estimator” and “a confidence distribution”. The idea of viewing a bootstrap distribution function
as a (frequentist) distribution estimator of an unknown parameter has helped shape the viewpoint
of treating a confidence distribution as a frquentist distribution estimator, instead as a fiducial
distribution.
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A confidence distribution is a “distribution estimator” and, conceptually, it is not different
from a point estimator or a confidence interval. But it uses a sample-dependent distribution
function on the parameter space to estimate a parameter of interest. As in the point estimation
where any single point (a real value or a statistic) on the parameter space can in principle be
used to estimate a parameter, any sample-dependent distribution function on the parameter
space can in principle be used to estimate the parameter as well. But we impose some
requirement on a confidence distribution to ensure that a statistical inference (e.g., point
estimation, confidence interval, p-value, etc.) derived from it has desired frequentist properties.
This practice is not different from the practice in the point estimation where we also set
restrictions to ensure certain desired properties, such as unbiasedness, consistency, efficiency,
etc.

The following definition is proposed and utilized in Schweder & Hjort (2002) and Singh et al.
(2005, 2007). In the definition, � is the parameter space of the unknown parameter of interest
θ , and X is the sample space corresponding to sample data x = {x1, . . . , xn}.
Definition 1: A function Hn(·) = Hn(x, ·) onX ×� → [0, 1] is called a confidence distribution
(CD) for a parameter θ , if R1) For each given x ∈ X , Hn(·) is a cumulative distribution function
on �; R2) At the true parameter value θ = θ0, Hn(θ0) ≡ Hn(x, θ0), as a function of the sample
x, follows the uniform distribution U [0, 1].
Also, the function H (·) is an asymptotic confidence distribution (aCD), if the U [0, 1]
requirement is true only asymptotically.

In non-technical terms, a confidence distribution is a function of both the parameter and the
random sample, with two requirements. The first R1) is simply that, for each given sample, a
confidence distribution should be a distribution function on the parameter space. The second
R2) imposes a restriction to this sample-dependent distribution function so that inference based
on it has desired frequentist properties. In essence, one requires that the distribution estimator is
“coverage proper”. Section 3 illustrates how to utilize the R2) requirement to extract information
from a confidence distribution to make inference, including point estimation, confidence
interval, p-value, etc.

Note that, when θ = θ0 the true parameter value, R2) implies Hn(θ0)
sto=1 − Hn(θ0), but

Hn(θ)
sto≤1 − Hn(θ) for θ < θ0, and 1 − Hn(θ)

sto≤ Hn(θ) for θ > θ0 (see, Singh et al., 2005).

Here, “sto” means stochastic comparison between two random variables; i.e., Y1
sto≤Y2 means

P(Y1 ≤ t) ≥ P(Y2 ≤ t) for all t . We may interpret this stochastic balancing equality at θ0 and
R2) to mean that the distribution estimator Hn(θ) contains “right” (or “balanced”) information
for making correct frequentist inference about the parameter.

Definition 1 is consistent with the classical definition of a confidence distribution. In
particular, recall (CL) of Section 2.1 that a confidence distribution Hn(·) is defined as
the inverse function of the upper limit of a lower-side confidence interval, i.e., Hn(·) =
τ−1

n (·). It follows that {x : Hn(θ) ≤ α} = {x : θ ≤ τn(α)}, for any α ∈ (0, 1) and θ ∈ � ⊆
IR. Thus, at θ = θ0, Pr{Hn(θ0) ≤ α} = Pr{θ0 ≤ τn(α)} = α and Hn(θ0) = τ−1

n (θ0) is U [0, 1]
distributed.

2.3 Illustrative Examples

The concept of a confidence distribution as defined in Section 2.2 subsumes and unifies a
wide range of examples. We present next several illustrative examples, and more examples will
be in Section 3.
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2.3.1 Basic parametric examples

Example 1: ( Normal mean and variance) Suppose that we have a sample

xi ∼ N (μ, σ 2), i = 1, . . . , n. (1)

When σ is known, it is clear that both

H�(μ) = �

(
μ− x̄

σ/
√

n

)
and Ht (μ) = Ftn−1

(
μ− x̄

s/
√

n

)
(2)

satisfy the requirements in Definition 1; thus, both are confidence distributions for μ.
Furthermore, HA(μ) = �(

√
n(μ− x̄)/s) satisfies the definition of an asymptotic confidence

distribution for μ, when n → ∞; thus, it is an asymptotic confidence distribution for μ. Since
H�(μ) and HA(μ) are cumulative distribution functions of N (x̄, σ 2) and N (x̄, s2), the uses of
H�(μ) and HA(μ) are equivalent to stating that we use N (x̄, σ 2) and N (x̄, s2) to estimate μ,
respectively.

When σ is not known, H�(μ) is no longer a confidence distribution for μ, since it involves
the unknown σ and it violates the requirements in Definition 1. But we can still verify that
Ht (μ) and HA(μ) are a confidence distribution and an asymptotic confidence distribution for
μ , respectively. Also, in this case, the sample-dependent distribution function on the parameter
space of σ 2, Hχ2 (θ) = 1 − Fχ2

n−1
((n − 1)s2/θ) is a confidence distribution for σ 2. Here, Fχ2

n−1

is the cumulative distribution function of the χ2
n−1-distribution.

In Fisher’s fiducial inference, H�(μ) is the fiducial distribution for the location parameter μ,
when σ is known; and Ht (μ) is the fiducial distribution for μ, when σ is unknown. This is no
coincidence and, in Section 3, we further demonstrate that many fiducial distributions satisfy the
conditions required for being a confidence distribution. As in Fisher’s fiducial development, a
quantity known as a pivotal function plays an important role, especially in parametric examples
like Example 1. In general, suppose ψ(x, θ) is a pivot function and it is monotonic (without loss
of generality, assume it is increasing) in θ . Then, the sample-dependent distribution function
on the parameter space H (θ) = F

(
ψ(x, θ)

)
is a confidence distribution for θ , where F is the

cumulative distribution function of the pivot quantity ψ(x, θ). This device covers a large class
of parameter examples.

2.3.2 Significant ( p-value) functions

Consider a one-sided hypothesis test K0: θ ≤ b versus K1: θ > b, for a given b in the parameter
space �. Let pn = pn(b) = pn(x, b) be the p-value from a testing method. When b varies, this
pn = pn(b) forms a function on�, called a significance function or a p-value function; see, e.g.,
Fraser (1991). In most cases, this function pn(·) is a cumulative distribution function, for every
fixed sample x. Also, at the true value θ = θ0, pn(θ0), as a function of x, is U [0, 1]-distributed
or asymptotically U [0, 1]-distributed, provided that the tests achieve the nominal level of Type
I error at least asymptotically. Thus, usually pn(·) satisfies the requirements for a confidence
distribution (or an asymptotic confidence distribution). The next example contains two such
examples, one from a parametric test and the other from a non-parameteric test.

Example 2: (p-value functions) This first parametric test example is due to Fraser (2011).
Consider the model x = μ+ z where z has the standard extreme value (Gumbel) distribution
with density g(z) = e−ze−e−z

and cumulative distribution function G(z) = e−e−z
. Suppose that

we have a single sample x from this model. Based on a class of tests for one-sided hypothesis
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K0: μ ≤ θ versus K1: μ > θ for a given θ , we can get a p-value function

He(θ) =
∫ ∞

x
g(z − θ)dz = 1 − G(x − θ) = 1 − e−e−(x−θ )

.

Clearly, He(θ) is a sample-dependent distribution function on the parameter space of the location
parameter μ. Also, given θ = μ the true parameter value, He(μ) = 1 − G(x − μ) ∼ U [0, 1],
as a function of the random sample x . Thus, it is a confidence distribution for the location
parameter μ.

Now let us turn to a different non-parametric testing problem. Denote by μ the center of
symmetry of an unknown symmetric continuous distribution. Suppose there is an independently
identically distributed sample x available from this population. A convenient confidence
distribution in the context can be constructed through the p-value function

Hp(θ) = p-value of the one-sample signed rank test for hypothesis K0 : μ ≤ θ vs. K1 : μ > θ.
(3)

It is not a hard exercise to show that such a function Hp(·) is typically non-decreasing, ranging
from 0 to 1. But this Hp(·) is not an exact confidence distribution, since, although Hp(θ) is
usually continuous in θ for the given sample x, the distribution of Hp(θ) (as a function of x) is
discrete for a given θ . However, as n → ∞, the discreteness vanishes and, when θ = μ the true
parameter value, Hp(μ) converges rapidly to U [0, 1], under some mild conditions. Thus, Hp(·)
is an asymptotic confidence distribution for the center parameter μ.

A p-value function pn(·) is not a confidence distribution only in some unusual cases.
For instance, a p-value function associated with a strictly conservative one-sided test does
violate the requirements of being a confidence distribution. An example is the one-sided
test for μ = max{μ1, μ2} where μ1 and μ2 are population means of two separate studies.
A conservative test based on Bonferroni adjustment would give rise to the p-value function
p(θ) = 2 min{p1(θ), p2(θ)} for the hypotheses K0 : μ ≤ θ vs. K1 : μ > θ , where p1(θ) and
p2(θ) are the corresponding p-value functions from individual studies. Clearly, p(·) violate
the CD requirements, although the function can still be utilized to make inference (leading to
conservative conclusions).

2.3.3 Bootstrap distributions

A bootstrap distribution is often an (asymptotic) confidence distribution. In any situations
where one can construct a bootstrap distribution, one can construct a confidence distribution
or an asymptotic confidence distribution. The following example is from Singh et al. (2001,
2007), who showed that a bootstrap distribution typically satisfies the definition of a confidence
distribution.

Example 3: (Nonparametric bootstrap) Let θ̂ be an estimator of θ , and θ̂∗ be the estimator
of θ̂ computed on a bootstrap sample. In the case when the limiting distribution of θ̂ ,
properly normalized, is symmetric, the sampling distribution of θ̂ − θ is estimated by the
bootstrap distribution of θ̂ − θ̂∗ (c.f., Efron & Tibshirani, 1994). Then, an asymptotic confidence
distribution is given by

Hn(θ) = 1 − P(θ̂ − θ̂∗ ≤ θ̂ − θ |x) = P(θ̂∗ ≤ θ |x),

which is also the raw bootstrap distribution of θ̂ . In the case when the symmetry fails, the
distribution of θ̂ − θ can be estimated by the bootstrap distribution of θ̂∗ − θ̂ (c.f., Efron &
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Tibshirani, 1994). Then, the corresponding asymptotic confidence distribution is

Hn(θ) = 1 − P(θ̂∗ − θ̂ ≤ θ̂ − θ |x) = P(θ̂∗ ≥ 2θ̂ − θ |x).

We also consider another bootstrap-based confidence distribution by the bootstrap-t method,
where the distribution of (θ̂ − θ)/ŜE(θ̂ ) is estimated by the bootstrap distribution of (θ̂∗ −
θ̂)/ŜE

∗
(θ̂∗). Here ŜE

∗
(θ̂∗) is the estimated standard error of θ̂∗, based on the bootstrap sample.

Such an approximation has so-called, second order accuracy (i.e., asymptotic error of order
O(n−1); see, e.g., Babu & Singh, 1983). The resulting asymptotic confidence distribution is

Hn(θ) = 1 − P

(
θ̂∗ − θ̂

ŜE
∗
(θ̂∗)

≤ θ̂ − θ

ŜE(θ̂)

∣∣∣∣x
)
.

At θ = θ0, this confidence distribution typically converges to U [0, 1] at the rate of Op(n−1) and
the confidence distribution is asymptotically second-order accurate.

2.3.4 Likelihood functions

Fiducial inference and likelihood functions are closely related. For instance, Fisher (1973)
discussed extensively the connection between a likelihood function and a fiducial distribution,
and Kendall & Stuart (1974) used a likelihood function to illustrate the concept of fiducial
distribution. It is not surprising that a confidence distribution may also be closely related
to a likelihood function. Welch & Peers (1963) and Fisher (1973) provided earlier accounts
of likelihood-based confidence distributions in single parameter families. In particular, if
we normalize a likelihood function curve with respect to its parameter(s) (provided that the
normalizing is possible) so that the area underneath the curve is one, the normalized likelihood
function curve is typically a density curve. Under some mild general conditions, Fraser &
McDunnough (1984) showed that this normalized likelihood function is the density function
of an asymptotic normal confidence distribution. Example 4 next is from Singh et al. (2007),
who provided a formal proof that a profile likelihood function is proportional to an asymptotic
normal confidence density for the parameter of interest.

Example 4: (Profile likelihood function) Suppose that there is an independently identically
distributed sample of size n from a parametric distribution involving multiple parameters. Let
�n(θ) be the log profile likelihood function and i−1

n = −n−1�
′′
n(θ̂) with ni−1

n being the observed
Fisher information for a scalar parameter of interest θ . Denote by θ̂ = argmaxθ �n(θ). Under
the regularity conditions that ensure

√
n(θ̂ − θ0)/

√
in → N (0, 1), plus some additional mild

assumptions, Singh et al. (2007, theorem 4.1) proved that, for each given θ ,

Gn(θ) = Hn(θ) + op(1), where Gn(θ) =

∫
(−∞,θ]∩�

e�n (y)dy∫
�

e�n (y)dy
and Hn(θ) = �

(
θ − θ̂√

in/n

)
.

Since, at the true parameter value θ = θ0, Hn(θ0) converges to U [0, 1], as n → ∞. It follows
that Gn(θ0) converges to U [0, 1], as n → ∞. Thus, Gn(θ) is an asymptotic confidence
distribution.

As functions of θ , the density function of Gn(θ) is proportional to e�n (θ). Thus, based on
Gn(θ), we can provide an inference for θ that is asymptotically equivalent to that based on the
profile likelihood function e�n (θ). From this observation and also Fraser & McDunnough (1994),
we argue that a CD-based inference may subsume a likelihood inference in many occasions,
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12 M. XIE & K. SINGH

especially when the standard asymptotic theory for the likelihood is involved. For practical
purposes, normalizing a likelihood function with respect to the parameter(s) is a systematic
scheme to obtain a confidence distribution, albeit it is usually an asymptotic normal confidence
distribution under mild conditions.

In Section 7.1, we will further explore the connection between confidence distributions and
likelihood functions. Specifically, we will discuss Efron’s implied likelihood (Efron, 1993) and
Schweder and Hjort’s reduced likelihood (Schweder & Hjort, 2002), and illustrate how one can
start with a confidence distribution to perform likelihood calculations.

2.3.5 Asymptotically third-order accurate confidence distributions

We end this section with two accounts of asymptotically third-order accurate (i.e., error of
order O(n−3/2)) confidence distributions, one using a non-parametric construction and the other
using a parametric construction. The techniques described here can be used to obtain versions
of higher order improvement of Examples 3 and 4, and also to other settings.

Example 5: (Third order accurate confidence distributions) On the non-parametric side, there
is a monotonic transformation, usually referred to as Hall’s transformation (Hall, 1992), which
combined with the bootstrap can produce a third order accurate confidence distribution. For a
set of n sample x from an underlying distribution F , consider an asymptotic pivot of the form
Tn = (θ̂ − θ)/ŜE , which admits Edgeworth expansion of the typical form

P(Tn ≤ y) = �(y) + n−1/2
(
aF y2 + bF

)
φ(y) + O(n−1),

where aF and bF are smooth functions of the moments of F . Then, the monotonically
transformed pivot ψ(x, θ) = Tn + n−1/2

(
âF T 2

n + b̂F

)+ n−1

3 â2
F T 3

n is free of the n−1/2 term in its
Edgeworth expansion (Hall, 1992). Here, âF and b̂F are the sample estimates of aF and bF . The
bootstrap-based approximation of P(ψ(x, θ) ≤ y) matches the O(n−1) term, thus it is accurate
up to an error of order O(n−3/2). The third-order accurate confidence distribution would be
given as

1 − Ĝn(ψ(x, θ))

where Ĝn is bootstrap-based estimate of the cumulative distribution function of the pivotψ(x, θ).
In the special case for the population mean μ, the monotonically transformed pivot isψ(x, μ) =
t + λ̂

6
√

n
(2t2 + 1) + 1

27n λ̂
2t3, where t = √

n(x̄ − μ)/s, λ = μ3/σ
3, x̄ is the sample mean, s2 is

sample variance and λ̂ is a sample estimate of λ. It follows that a third-order correct confidence
distribution for μ is given by Hn(μ) = 1 − Ĝn

(
ψ(x, μ)

)
.

On the parametric side, Reid & Fraser (2010) considered the standard exponential family with
the log likelihood written in the form of

�(γ |x) =
p∑

i=1

ti (x)si (γ ) − C(γ ) − h(x).

Here, canonical variables t(x) = (t1(x), . . . , tp(x))T are sufficient and s(γ ) = (s1(γ ), . . . ,
sp(γ ))T are known functions of the vector of parameters γ = (θ,�), where θ is a scaler
parameter of interest and the nuisance parameter � has (p − 1) components. Reid & Fraser
(2010, p. 162) provided an explicit and general formula of a third-order accurate confidence
distribution (or p -value function) for θ . This formula is accurate up to relative error of order
O(n−3/2) with the confidence distribution expressed as Hn(θ) = �(r∗), where r∗ = r∗(θ, x) is
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defined as

r∗ = r + 1

r
log

( |q|
|r |
)
, with r = sign(θ̂ − θ)

[
2�(γ̂θ )

] 1
2 and q = |A|

|S(γ̂ )|
{J (γ̂ )}1/2

|J��(γ̂θ )|1/2 .

In the formula, γ̂ is the maximum likelihood estimator, γ̂θ = (θ, �̂θ ) is the constrained maximum
likelihood estimator given a value of θ , S(γ ) = {∂/∂γ }s(γ ), J��(γ ) is the submatrix of J (γ ) =
{∂2/∂γ ∂γ T }�(γ |x) corresponding to �, and A is a p × p matrix whose first column is s(γ̂ ) −
s(γ̂θ ) and the remaining (p − 1) columns are the last (p − 1) columns of S(γ̂ ).

3 Confidence Distribution, Bootstrap, Fiducial, and Bayesian Approaches

3.1 CD-Random Variable, Bootstrap Estimator, and Fiducial-less Interpretation

For each given sample x, Hn(·) is a cumulative distribution function on the parameter space. We
can construct a random variable ξ defined on X ×� (with a suitable probability measure) such
that, conditional on the sample data, ξ has the distribution Hn(·). For example, let U be a U [0, 1]
random variable that is independent of sample data x. Then, given x, ξ = H−1

n (U )|x ∼ Hn(·).
We call this random variable ξ a CD-random variable (see, e.g., Singh et al., 2007).

Definition 2: We call ξ = ξHn a CD-random variable associated with a confidence distribution
Hn(·), if the conditional distribution of ξ given the data x is Hn(·).

Unlike the case of fiducial inference, the CD-random variable ξ is not a “random parameter”
(a random version of θ). Rather it may be viewed as a CD-randomized estimator of θ0. As an
estimator, ξ is median unbiased, i.e., Pθ0 (ξ ≤ θ0) = Eθ0{Hn(θ0)} = 1

2 .
To better understand the concept of the CD-random variable, we explore its close association

with a bootstrap estimator. Consider first the simple normal case of Example 1 with a known
variance σ 2. The mean parameter μ is estimated by the distribution N (x̄, σ 2). A CD-random
variable ξ follows ξ |x̄ ∼ N (x̄, σ 2) and we have

ξ − x̄

σ/
√

n

∣∣∣∣ x̄ ∼ x̄ − μ

σ/
√

n

∣∣∣∣μ (both ∼ N (0, 1)).

This statement is exactly the same as the key justification for bootstrap, replacing ξ by a bootstrap
sample mean x̄∗. So in essence ξ is the same as the bootstrap estimator x̄∗. Now, consider more
generally a typical setup for a bootstrap procedure, as in Example 3. Let x be the data, θ̂ be an
estimator of θ and θ̂∗ be the estimator of θ̂ computed on a bootstrap sample. As illustrated in
Example 3, in the case when the sampling distribution of θ̂ − θ is estimated by the bootstrap
distribution of θ̂ − θ̂∗, Hn(θ) = 1 − P(θ̂ − θ̂∗ ≤ θ̂ − θ |x) = P(θ̂∗ ≤ θ |x) turns out to be an
asymptotic confidence distribution for θ . In this case, given x,

ξ = θ̂∗ ∣∣ x ∼ Hn(·).
Thus, ξ = θ̂∗ is a CD-random variable associated with Hn(θ). In the case when the sampling
distribution of θ̂ − θ is estimated by the bootstrap distribution of θ̂∗ − θ̂ , we have that Hn(θ) =
1 − P(θ̂∗ − θ̂ ≤ θ̂ − θ |x) = P(θ̂∗ ≥ 2θ̂ − θ |x) is an asymptotic confidence distribution and,
given x,

ξ = 2θ̂ − θ̂∗ ∣∣ x ∼ Hn(·).
Thus, ξ = 2θ̂ − θ̂∗ is a CD-random variable. Clearly, when a bootstrap procedure applies,
the bootstrap estimator θ̂∗ is closely related to a CD-random variable. Loosely speaking, the
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14 M. XIE & K. SINGH

CD-random variable ξ is in essence the same as a bootstrap estimator. This close connection
between the CD-random variable and a bootstrap estimator may inspire a possible view of
treating the concept of confidence distribution as an extension of a bootstrap distribution, albeit
the concept of confidence distribution is much broader.

The connection to bootstrap mentioned above and the well-developed theory of bootstrap
distributions can help us understand inference procedures involving confidence distributions
and develop new methodologies. For instance, the CD-random variable may also be utilized to
offer a new simulation mechanism, which can broaden applications of the standard bootstrap
procedures, especially when only a data summary is available. The CD-random variable ξ is
in essence a bootstrap estimator, but its interpretation is not limited to being just a bootstrap
estimator. This freedom allows us to use ξ more liberally, which in turn allows us to develop
more flexible approaches and simulations. See Section 7.3 for such examples. Also, just like a
bootstrap estimator, the CD-random variable can be extended to the case of parameter vectors.
This clue may help us develop the concept of a multi-dimensional confidence distribution. See
Section 8 for further discussions on the topic of multi-dimensional confidence distributions.

Viewing a CD-random variable as a quantity similar to a bootstrap estimator can also help
us further clarify the concept of a confidence distribution by avoiding the confusing fiducial
interpretation that the parameter is both a fixed and a random quantity. It is well known that a
fiducial distribution is not an ordinary probability distribution function in the frequentist sense
(e.g., Kendall & Stuart, 1974, chapter 21). Since a confidence distribution has been historically
interpreted as a fiducial distribution, it is also a common assertion that a confidence distribution
is not a proper distribution in the frequentist sense (see, e.g., Cox, 2006, p. 66; Schweder &
Hjort, 2002, p. 310, 328). We think this assertion about confidence distributions could perhaps
be modified, if we treat and interpret a confidence distribution as a purely frequenist concept
without any fiducial reasoning (as we do in the current context). Our view is that, like a bootstrap
distribution, a confidence distribution is an ordinary probability distribution function for each
given sample. However, since we no longer view a confidence distribution as an inherent
distribution of θ , we can not manipulate it as if it is a distribution of θ to automatically reach a
conclusion. For instance, we may manipulate a confidence distribution of θ , for example using
a variable transformation g(θ) of θ , to get another sample-dependent distribution function on
the corresponding parameter space. In general, this new sample-dependent distribution function
may not be a confidence distribution for g(θ), unless g(·) is monotonic. For an asymptotic
confidence distribution, the monotonicity is only needed locally in a neighborhood of the true θ
value thus it covers a large class of smooth function g(·). This equivariant property with respect
to a monotone transformation of θ is the same as that of a confidence interval.

The following example was brought to our attention by Professor David R. Cox in our email
communications. We think it provides a good example to illustrate the above viewpoint.

Example 6: (Ratio of two normal means) Suppose we have two sets of independent normal
samples from N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ). For simplicity, let us assume that both σ 2

1 and σ 2
2 are

known. From Example 1, N (x̄1, σ
2
1 /n1) and N (x̄2, σ

2
2 /n2) are confidence distributions for μ1

and μ2, respectively. In fact, they are also the fiducial distributions of μ1 and μ2. Here, x̄i and
ni , i = 1, 2, are the sample means and sample sizes of the two samples, respectively. In the
fiducial inference, N (x̄1, σ

2
1 /n1) and N (x̄2, σ

2
2 /n2) are treated as inherent distributions of μ1

and μ2. Thus, if we treat them as the usual distributions of two independent random variables,
a distribution of δ = μ1/μ2 can be easily obtained by the standard manipulation, assuming
the true μ2 �= 0. However, this distribution of δ is not good for exact fiducial inference,
and this discrepancy is typically explained in the classical literature by the assertion that
fiducial distributions are not and can not be manipulated as proper distribution functions. It
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Confidence Distribution, the Frequentist Distribution Estimator 15

remains unclear how to manipulate the two normal distributions to obtain the (unique) fiducial
distribution of δ, in the classical sense.

In the CD-inference, we do not encounter the same interpretation problem, as we treat
N (x̄1, σ

2
1 /n1) and N (x̄2, σ

2
2 /n2) as distribution estimators for μ1 and μ2 which happen to

have the property of “proper coverage probability”. We can manipulate N (x̄1, σ
2
1 /n1) and

N (x̄2, σ
2
2 /n2) to get one or more a sample-dependent distribution functions on the parameter

space of δ = μ1/μ2. For example, among other possibilities, we may use a direct result from
the standard manipulation of the two independent normal confidence distributions to estimate
δ, Hr (δ) = �

{
(δ − x̄1/x̄2)/sr

}
, where s2

r = (1/x̄2
2 )σ 2

1 /n1 + (x̄2
1/x̄4

2 )σ 2
2 /n2. It is true that Hr (δ),

a sample-dependent distribution function on (−∞,∞), has lost the exact coverage property.
But this phenomenon is not different from what we see in some point estimation practices. For
instance, the sample means x̄1 and x̄2 are unbiased estimators of μ1 and μ2, and their ratio x̄1/x̄2

is still a decent point estimator of δ = μ1/μ2 but no longer unbiased. When both ni → ∞,
x̄1/x̄2 is a consistent (also “asymptotically unbiased”) estimator of δ = μ1/μ2. Similarly, Hr (δ)
still offers proper coverage asymptotically when both ni → ∞ and thereby is still an asymptotic
confidence distribution for δ = μ1/μ2.

3.2 Confidence Distribution, Fiducial Distribution, and Belief Function

Both the approach of confidence distribution and Fisher’s fiducial approach share a common
goal to provide a “distribution estimator” for a parameter of interest. As stated in a review
article by Hannig (2009), a fiducial inference can be “viewed as a procedure that obtains
a measure on a parameter space”; also “statistical methods designed using the fiducial
reasoning have typically very good statistical properties as measured by their repeated sampling
(frequentist) performance”. The same two considerations are those behind the modern definition
of confidence distribution, expressed as the two requirements in Definition 1. It is not surprising
that many fiducial distributions meet the conditions required for being a confidence distribution.

The next example is a fiducial distribution used by Kendall & Stuart (1974, example 21.2,
p. 144) to illustrate the fiducial method for “a non-symmetrical sampling distribution”. We
use it to demonstrate that the fiducial distribution satisfies the requirements as a confidence
distribution.

Example 7: (Scale parameter of gamma distribution) Consider a Gamma(p0, θ) distribution,
f (x |θ, p0) = {x p0−1e−x/θ }/{θ p0�(p0)}, where the scale parameter θ is the unknown parameter
of interest and the shape parameter p0 is known. Here, �(·) is the gamma function. Kendall
& Stuart (1974, example 21.2, p. 144) provided the fiducial distribution for θ with a density(
nx̄/θ

)np0
{
e−nx̄/θ /�(np0)

}
(1/θ)dθ , or in a cumulative distribution function form,

Hn(θ) =
∫ θ

0

(
nx̄

t

)np0 e−nx̄/t

�(np0)t
dt,

where x̄ is the sample mean. Clearly, this Hn(θ) is a cumulative distribution function on the
parameter space� = (0,∞). Also, by the variable transformation t̃ = nx̄θ/t in the integration,
the function Hn(θ) can be re-expressed as

Hn(θ) =
∫ ∞

nx̄

(
t̃

θ

)np0 e−t̃/θ

�(np0)t̃
d t̃ = 1 − F�(np0,θ)(nx̄),

where F�(np0,θ)(·) is the cumulative distribution function of a Gamma(np0, θ) distribution. At the
true parameter value θ = θ0, nx̄ follows Gamma(np0, θ0) distribution. It follows immediately that
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16 M. XIE & K. SINGH

Hn(θ0) = 1 − F�(np0,θ0)(nx̄) ∼ U [0, 1]. Thus, by Definition 1, the fiducial distribution Hn(θ) is
a confidence distribution for the scale parameter θ .

See, also, Wong (1993, 1995) for formulas of confidence distributions for unknown parameters
of a Gamma distribution, when both the scale and shape parameters are unknown.

Although fiducial distributions are confidence distributions in many examples, the develop-
ments of confidence distributions, especially the recent efforts, are not a part of any fiducial
developments. The concept of a confidence distribution by its definition is very broad, and
the definition itself does not provide a standard procedure how it can be constructed (e.g.,
Definition 1, or in other forms). Singh & Xie (2011) described the relation between the concepts
of confidence and fiducial distributions using an analogy in point estimation: a consistent
estimator versus a maximum likelihood estimator (MLE). A confidence distribution is analogous
to a consistent estimator which is defined to ensure a certain desired property for inference;
a fiducial concept is analogous to an MLE which provides a standard procedure to find an
estimator which often happens to possess desirable frequentist properties. A consistent estimator
does not have to be an MLE; but, under some regularity conditions, the MLE typically has
consistency and the MLE method thus provides a standard procedure to obtain a consistent
estimator. In the context of distribution estimation, a confidence distribution does not have to
be a fiducial distribution or involve any fiducial reasoning. But, under suitable conditions, a
fiducial distribution may satisfy the required “good properties (as measured by coverage and
length of confidence intervals based on the fiducial distribution)” (c.f., Hannig, 2009), which
thereby establishes it as a confidence distribution.

There has been also renewed interest in fiducial inference and its extensions, notably the
recent developments on “generalized fiducial inference” by S. Weerahandi, J. Hannig, H. Iyer,
and their colleagues and the developments of belief functions under Dempster-Shafer theory
by Arthur Dempster, Glenn Shafer, Chuanhai Liu, and others. See, e.g., review articles by
Hannig (2009), Dempster (2008), and Martin et al. (2010). These developments, together with
the new developments of confidence distributions, represent an emerging new field of research
on distributional inferences. A confidence distribution as defined, interestingly, can fit into the
framework of generalized fiducial inferences (c.f., Hannig, 2009), since a fiducial distribution
Q(U , x) can be obtained by solving a generalized fiducial equation H (·) = U with H (·) =
H (x, ·) being a confidence distribution and U being a U [0, 1]-distributed random variable,
provided it exits. However, the development of confidence distributions are distinct from the
developments of fiducial and belief functions in that it is developed strictly within the frequentist
domain and resides entirely within the frequentist logic, without involving any new theoretical
framework such as fiducial reasoning or Dempster-Shafer theory. Contrary to the belief function,
the CD-based approaches are easy to implement and can be directly related to a vast collection
of examples used in classical and current statistical practices. Nevertheless, fiducial inference
provides a systematic way to obtain a confidence distribution. Additionally, its development
provides a rich class of literature for CD inference, and can generate new insight and development
beyond frequentist inference.

3.3 Confidence Distribution and Bayesian Inference

A Bayes posterior can provide credible intervals that often have no assurance of (exact)
frequentist coverage. Fraser (2011) expounded the basic fact that, in the presence of linearity in
a model (e.g., a location model), a Bayes posterior with respect to the flat prior can be exactly
a confidence distribution, which appears to be a mathematical coincidence. Fraser (2011) also
demonstrated how the departure from the linearity induces the departure of a posterior from
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being a confidence distribution, in a proportionate way. But on asymptotic grounds, researchers
have treated Bayes credible intervals as confidence intervals in many applications. As is well
known, when more and more data accumulates, the prior effect fades away and a posterior density
typically converges to a normalized likelihood function; see, e.g., LeCam (1953, 1958), Johnson
(1967) among others. Since a normalized likelihood function is typically a confidence density
in the limit, we argue that a posterior distribution can be treated as a (first-order) asymptotic
confidence distribution as well. Because in many situations a Bayesian approach, especially an
objective Bayesian approach, can often obtain a posterior distribution whose credible intervals
have exact or asymptotic frequentist coverages, we also view the Bayes method as one of the
machineries that can potentially produce confidence distributions.

Next Example 8 is from Xie et al. (2011), who argued from the angle of a confidence
distribution that an informative normal prior and its corresponding posterior after incorporating
a normal sample can sometimes be viewed as frequentist confidence distributions. The argument
helped bring the conventional normal-model-based Bayesian meta-analysis under a unifying
meta-analysis framework in Xie et al. (2011). The example is a mathematical coincidence,
hinged on the normal assumption.

Example 8: (Informative prior and posterior distribution) Suppose π(θ) ∼ N (μ0, σ
2
0 ) is an

informative prior of a parameter θ of interest. Assume this informative prior is formed on the
basis of extensive prior information of θ from past results of the same or similar experiments.
Suppose Y0 is a normally distributed summary statistic from these past experiments, with a
realization Y0 = μ0 and an observed variance var(Y0) = σ 2

0 , respectively. If we denote by X0

the sample space of the past experiments and by � the parameter space of θ , we can show by
the definition that H0(θ) = �((θ − Y0)/σ0) is a confidence distribution on X0 ×�. Thus, we
consider H0(θ) = �((θ − μ0)/σ0) as a distribution estimate from the past experiments. That is,
the past experiments produced N (μ0, σ

2
0 ) as a distribution estimate for θ .

Now, suppose that we have a set of observed sample from N (θ, σ 2). Based on the sample
data and as in Example 1, we can obtain a confidence distribution for θ , H�(θ) = �

(√
n(θ −

x̄)/σ
)
, when σ 2 is given, or an asymptotic confidence distribution HA(θ) = �

(√
n(θ − x̄)/s

)
,

regardless of whether σ 2 is known or not. Here, x̄ is the sample mean and s2 is the sample
variance. Using a recipe for combining confidence distributions (see, e.g., Singh et al., 2005
and Xie et al., 2011, also Section 6 of this article), we can combine the prior confidence
distribution H0(θ) with the confidence distribution from the data, either H�(θ) or HA(θ), to
obtain a combined function (defined on {X0 × X } ×�),

H (c)
� = �

(
θ − μ̂�

σ̂�

)
or H (c)

A = �

(
θ − μ̂A

σ̂A

)
,

where μ̂� = (μ0/σ
2
0 + x̄/σ 2)/(1/σ 2

0 + 1/σ 2), σ̂ 2
� = (1/σ 2

0 + 1/σ 2)−1 and μ̂A = (μ0/σ
2
0 +

x̄/s2)/(1/σ 2
0 + 1/s2), σ̂ 2

A = (1/σ 2
0 + 1/s2)−1. By the definition, we can show that H (c)

� (θ) is
a confidence distribution for θ when σ 2 is known and H (c)

A (θ) is an asymptotic confidence
distribution for θ regardless of whether σ 2 is known or not. In other words, the confidence
distributions N (μ̂�, σ̂ 2

�) or N (μ̂A, σ̂
2
A) can be used to estimate the mean θ . The confidence

distribution N (μ̂�, σ̂ 2
�) is identical in form to the posterior distribution when σ 2 is known,

and the asymptotic confidence distribution N (μ̂A, σ̂
2
A) is asymptotically equivalent to the

posterior distribution obtained using the Bayes formula, regardless of whether σ 2 is known
or not.

In general, an approach based on a confidence distribution is a frequentist procedure, and
it inherits properties of frequentist procedures. Wasserman (2007) re-examined Efron’s 1986
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paper titled “Why not everyone is a Bayesian?”. He summarized from Efron (1986) four aspects
of difference between the frequentist and Bayesian approaches: “easy of use”, “model building”,
“division of labor”, and “objectivity”. He also added the extra item of “randomization”, and stated
that “things haven’t changed much” since Efron (1986), “with the possible exception of (2)”
on model building. Generally speaking, modelling and making inference based on confidence
distributions are different from a Bayesian procedure in these four or five aspects. Here, we
examine only the aspect “division of labor”, which is highlighted in several developments on
confidence distributions.

Under the item “division of labor”, Wasserman (2007) stated that “The idea that statistical
problems do not have to be solved as one coherent whole is anathema to Bayesian but is liberating
for frequentists. To estimate a quantile, an honest Bayesian needs to put a prior on the space of
all distributions and then find the marginal posterior. The freuqentist need not care about the rest
of the distribution and can focus on much simpler tasks”. This aspect underscores a difference
on how to handle nuisance parameters between a Bayesian and a frequentist approach, and
some of the CD-based developments have indeed keyed on the feature of not involving nuisance
parameters. For instance, the main selling point of the CD-based likelihood calculations in Efron
(1993) and Schweder & Hjort (2002), as well as the development of Singh & Xie (2012), is the
avoidance of nuisance parameters. The “discrepant posterior phenomenon” reported in Xie et al.
(2013) in a binomial clinical trial from a real pharmaceutical application can also shed further
insight and generate discussion on this aspect of division of labor. A concrete example of this
discrepant posterior phenomenon and Xie et al. (2013) will be further discussed in details later
in Section 6.2.

Finally, it is beneficial for the field of statistics to have both Bayesian and frequentist methods.
There are bridges between these different schools of inference, and the Bayesian and frequentist
methods can enrich themselves from taking inspiration from each other’s strong suit. For instance,
combining evidence from disparate sources of information has long been considered a weak
point of frequentist theory, while being a strong suit of Bayesian analysis. The flexibility of a
Bayesian approach in this and other areas have helped stimulate the development of CD-based
methods in related areas. Nevertheless, the CD development may also assist the development
of objective Bayesian approaches. For instance, a CD-based approach could potentially be a
good way to obtain an objective prior where we can use a variety of frequentist tool kits,
including robust inference. As Kass (2011) stated, statistics has moved beyond the frequentist-
Bayesian controversies of the past. It is our hope that evolving understanding and continuing
developments of confidence and fiducial distributions will stimulate further developments that
can enrich statistical theory and applications, and bridge the gaps among the Bayesian, fiducial,
and frequentist philosophies.

4 Inferences Using a Confidence Distribution

Just like a Bayesian posterior that contains a wealth of information for any type of Bayesian
inference, a confidence distribution contains a wealth of information for constructing any type
of frequentist inference. Discussions on how to make inference using a confidence distribution
have been scattered around in many publications, for examples, in Fisher (1973), Cox & Hinkley
(1974), Mau (1988), Fraser (1991), Barndorff-Nielsen & Cox (1994), Schweder & Hjort (2002),
Singh et al. (2001, 2005, 2007), Coudin & Dufour (2004), among others. Here, in a more
systematic fashion and under a general setting, we illustrate several aspects of making inference
using a confidence distribution. A simple graphical illustration of the main message is provided
in Figure 1 with mathematical details presented in the remaining of this section.
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Figure 1. The plot is a graphical illustration on making inference using a confidence distribution, including examples of
point estimators (mode θ̂ , median Mn and mean θ̄), a level 95% confidence interval and a one-sided p-value.

4.1 Confidence Interval

As mentioned before, a confidence distribution is a sample-dependent distribution function
that can represent confidence intervals of all levels for a parameter of interest. It is evident
from requirement R2) in Definition 1 that the intervals (−∞, H−1

n (1 − α)] and [H−1
n (α),+∞)

provide level 100(1 − α)% one-sided confidence intervals for the parameter of interest θ , for
any α ∈ (0, 1). Also, (H−1

n (α1), H−1
n (1 − α2)) is a level 100(1 − α1 − α2)% confidence interval

for the parameter θ , for any α1 > 0, α2 > 0, and α1 + α2 < 1. The same is true for an asymptotic
confidence distribution, where the confidence level is achieved in limit.

4.2 Point Estimation

A confidence distribution, say Hn(·), can also provide us a point estimator for the parameter
of interest. Natural choices of point estimators of the parameter θ given Hn(·), include the
median Mn = H−1

n (1/2), the mean θ̄n = ∫
t∈� t d Hn(t), and the mode θ̂n = arg maxθ hn(θ) of

the confidence density function hn(θ) = d
dθ Hn(θ). Under some modest conditions, we can

prove that these three point estimators are consistent estimators. In particular, we assume
that

(A) For any ε, 0 < ε < 1
2 , Ln(ε) = H−1

n (1 − ε) − H−1
n (ε) → 0, in probability, as the sample

size n → ∞.

This condition is equivalent to (see a proof in Xie et al., 2011)

(A′) For any fixed δ > 0, Hn(θ0 − δ) → 0 and Hn(θ0 + δ) → 1, in probability, as n → ∞.

We interpret these conditions as: as the sample size n increases, the (density) mass of the
confidence distribution Hn(θ) becomes more and more concentrated around the true value θ0.
We have the following theorem regarding the three point estimators. A proof of the theorem can
be found in Singh et al. (2007).
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THEOREM 1. Under Condition (A), as n → ∞, (i) Mn is consistent estimator and, moreover, if
Ln(ε) = Op(an), for a non-negative an → 0, then Mn − θ0 = Op(an); (ii) if rn = ∫

t∈� t2d Hn(t)
is bounded in probability, then θ̄n is a consistent estimator; and (iii) if there exists a fixed ε > 0
such that P

(
θ̂n ∈ [H−1

n (ε), H−1
n (1 − ε)

]) → 1, then θ̂n is a consistent estimator.

Furthermore, the median Mn is a median unbiased estimator with Pθ0 (Mn ≤ θ0) = Pθ0 (1/2 ≤
Hn(θ0)) = 1/2. The mean θ̄n is the frequentist analog of Bayesian estimator of θ under the
usual squared error loss. The mode θ̂n matches with the maximum likelihood estimator if hn(θ)
is from a normalized likelihood function. If Hn(·) is constructed from a hypothesis test, the
point estimators may also be related to a Hodges-Lehmann-type estimator (see, e.g., Coudin &
Dufour, 2004).

4.3 Hypothesis Testing

From a confidence distribution, we can make inference for various hypothesis testing
problems. Fraser (1991) developed several results on this topic through significance (p-value)
functions. Singh et al. (2001, 2007) also provided several results under the framework of
confidence distributions. See, also, e.g., Birnbaun (1961), Cox & Hinkley (1974), Mau (1988),
Barndorff-Nielsen & Cox (1994), Schweder & Hjort (2002) for discussions on related topics.

Let us start with a one-sided test K0 : θ ∈ C versus K1 : θ ∈ Cc, where C is an interval of
the type (−∞, b] or [b,∞), for a given b, and Cc is the complementary set of C . We like to
measure the “support” that Hn(·) lends to C , i.e., the probability content of C under Hn(·),

ps(C) =
∫
θ∈C

d Hn(θ) = Hn(C), (4)

which is also interpreted as a probability of belief under the framework of fiducial inference
(e.g., Kendall & Stuart (1974), chapter 21). We use the term “support”, instead of“belief”, to
highlight that the use of the confidence distribution does not involving any fiducial reasoning.
If the support on C is high, we choose C and, if it is low, we choose Cc. Specifically, we reject
the null hypothesis K0 if the support on C is less than α (or the support on Cc is greater than
1 − α), i.e., the rejection region is:

{x : ps(C) ≤ α} or, equivalently, {x : ps(Cc) ≥ 1 − α}. (5)

We can prove that supθ∈C Pθ
(

ps(C) ≤ α
) = α. This is because, for any θ ∈ C =

(−∞, b], Pθ
(

ps(C) ≤ α
) ≤ Pθ

(
ps((−∞, θ]) ≤ α

) = α, where the last equation holds because
ps((−∞, θ]) = Hn(θ) ∼ U [0, 1] under the assumption that θ is the true parameter, and also an
equality holds throughout when the true θ = b. The same argument also applies to the right-sided
test case with C = [b,∞). Thus, the rejection region (5) corresponds to a level α test.

In the case of the one-sided tests with K0 being of the type (−∞, b] or [b,∞), the value of
ps(C) = Hn(C) is usually the conventional p-value. This is illustrated in the following example.

Example 9. Consider a set of sample from N (μ, σ 2), where both μ and σ 2 are unknown. As
stated in Examples 1, a confidence distribution for μ is Ht (μ) = Ftn−1

(√
n(μ− x̄)/s

)
. For a

one-sided test K0 : μ ≤ b versus K1 : μ > b, its support on the null set C = (−∞, b] is

ps(C) = ps((−∞, b]) = Ht (b) = Ftn−1

(√
n(b − x̄)/s

)
.

This is exactly the p-value using the t-test for the one-sided test K0 : μ ≤ b versus K1 : μ > b.
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Now, let us move to a two-sided point hypothesis K0 : θ = b versus K1 : θ �= b, for a fixed
b. In this case with the set C = {b} being a singleton, we like to measure the supports of
its two alternative sets ps(Cc

lo) and ps(Cc
up), where Cc

lo is the complementary set of Clo =
(−∞, b] and Cc

up is the complementary set of Cup = [b,∞). We define the rejection region as{
x : 2 max{ps(Cc

up), ps(Cc
lo)} ≥ 1 − α

}
or, equivalently,

{x : 2 min{ps(Clo), ps(Cup)} ≤ α} = {x : 2 min{Hn(b), 1 − Hn(b)} ≤ α}. (6)

It is immediate that, under K0 with the true θ = b, 2 min{ps(Clo), ps(Cup)} = 2 min{Hn(b), 1 −
Hn(b)} ∼ U [0, 1], since Hn(b) ∼ U [0, 1] by the definition of a confidence distribution. Thus,
PK0:θ=b

(
2 min{ps(Clo), ps(Cup)} ≤ α

) = PK0:θ=b

(
2 min{Hn(b), 1 − Hn(b)} ≤ α

) = α and the
rejection region (6) corresponds to a level α test. Again, the value of 2 min{ps(Clo), ps(Cup) =
2 min{Hn(b), 1 − Hn(b)} is in fact the conventional p-value, as illustrated in the next
example.

Example 10. (Continues from Example 9). If the null hypothesis is K0 : μ = μ0 versus
K1 : μ �= μ0, we have

2 min{ps(Clo), ps(Cup)} = 2 min{Ht (μ0), 1 − Ht (μ0)}

= 2 min

{
Ftn−1

(
μ0−x̄
s/

√
n

)
, 1 − Ftn−1

(
μ0−x̄
s/

√
n

)}
,

This expression agrees with the standard p-values based on the two-sided t test.

For the purpose of presentation, we summarize the above results in a formal theorem.

THEOREM 2. (i) For the one-sided test K0 : θ ∈ C versus K1 : θ ∈ Cc, where C is an interval
of the type of (−∞, b] or [b,∞), we have supθ∈C Pθ

(
ps(C) ≤ α

) = α and ps(C) = Hn(C)
is the corresponding p-value of the test. (ii) For the singleton test K0 : θ = b versus K1 :
θ �= b, we have P{K0:θ=b}

(
2 min{ps(Clo), ps(Cup)} ≤ α

) = α and 2 min{ps(Clo), ps(Cup)} =
2 min{Hn(b), 1 − Hn(b)} is the p-value of the corresponding test.

A limiting result of the same nature as Theorem 2 holds for some more general null hypotheses.
For instance, we can extend the above result to the case when K0 is the union of finitely many
disjoint closed intervals (bounded or unbounded) C = ⋃k

j=1 I j with I j being disjoint intervals
of the type (−∞, a] or [c, d] or [b,∞), or to the case when K0 is C = {θ1, θ2, . . . , θk}. In
the first case of C being a union of intervals (i.e., an intersection union test, see, Berger,
1982), both the rejection regions {x : ps(C) = ∑k

j=1 ps(I j ) ≤ α} and {x : max1≤ j≤k ps(I j ) ≤ α}
correspond to level α tests asymptotically, under Condition (A′); Among the two, the test based
on max1≤ j≤k ps(I j ) is more powerful. In the second case of C being a collection of disjoint
singletons, the rejection region

{
x : max1≤ j≤k

[
2 min{ps(C ( j)

lo ), ps(C ( j)
up )}] ≤ α

}
corresponds to

a level α test asymptotically. Here, C ( j)
lo = (−∞, θ j ] and C ( j)

up = [θ j ,∞), for 1 ≤ j ≤ k. The
claims are based on the following theorem.

THEOREM 3. Suppose that Condition (A′) holds uniformly in θ lying in a compact subset of
the parameter space. (i) For the test K0 : θ ∈ C = ⋃k

j=1 I j versus K1 : θ ∈ Cc, where I j are
disjoint intervals of the type (−∞, a] or [c, d] or [b,∞), we have supθ∈C Pθ

(
ps(C) ≤ α

) → α

and supθ∈C Pθ
(

max j ps(I j ) ≤ α
) → α, as n → ∞. (ii) For the test K0 : θ ∈ C = {θ1, . . . , θk}
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versus K1 : θ ∈ Cc, we have maxθ∈C Pθ
(

max j

[
2 min{ps(C ( j)

lo ), ps(C ( j)
up )}] ≤ α

) → α, as
n → ∞.

The proof of Theorem 3 is fairly straightforward, noting that under Condition (A′), the support
of any set on the parameter space, say B, vanishes, unless the set B contains the true parameter
value. This essentially reduces the problem to the cases discussed in Theorem 2. A formal proof
can be found in Singh et al. (2007).

From the theorem, we can conclude that
∑k

j=1 ps(I j ) = ∑k
j=1 Hn(I j ) and max1≤ j≤k ps(I j ) =

max1≤ j≤k Hn(I j ) are asymptotically equivalent p-values for tests involving a union of disjoint
intervals, although the latter p-value is always numerically smaller than the prior one. Also,
max1≤ j≤k [2 min{ps(C ( j)

lo ), ps(C ( j)
up )}] = max1≤ j≤k

[
2 min{Hn(θ j ), 1 − Hn(θ j )}

]
is an asymptotic

p-value for the test involving a collection of singletons. Such type of tests have applications in
bioequivalence problems and others.

5 Optimality (Comparison) of Confidence Distributions

As in the case of point estimation, we can have multiple confidence distributions for
the same parameter under any specific setting. It begs a comparison of these different confidence
distributions, in terms of their performance in statistical inference. Generally speaking, the
more concentrated a confidence distribution is near the true parameter value θ0, the more
informative it is. In particular, given two confidence distributions for θ , say H1(·) and H2(·), one
should compare H1(θ0 − ε) to H2(θ0 − ε) and also 1 − H1(θ0 + ε) to 1 − H2(θ0 + ε). In each
case, the smaller the better, which typically translates into smaller confidence intervals and more
powerful tests at the same level (or size). This reasoning motivates the following definition (see
Schweder & Hjort (2002) and Singh et al. (2001, 2007)).

Definition 3: Given two confidence distributions H1(·) and H2(·) for θ , we say H1(·) is superior

to H2(·) at θ = θ0, if for all ε > 0, H1(θ0 − ε)
sto≤ H2(θ0 − ε) and 1 − H1(θ0 + ε)

sto≤ 1 − H2(θ0 +
ε). Here, the symbol

sto≤ stands for stochastically less than or equal to.

Now, suppose H1(b) and H2(b) are simply p-values for the test K0 : θ ≤ b versus K1 : θ > b
for any given b. Let H1(·)-based tests be more powerful than H2(·)-based tests, for any given b
and at any level of significance. Moreover, assume a similar comparison holds for 1 − H1(b)
over 1 − H2(b) for the test K0 : θ ≥ b versus K1 : θ < b. Then, it is a straightforward exercise
to establish that H1(·) is superior to H2(·). This result leads to the following conclusion: The
confidence distribution arising from the p-value function of a one-sided UMP (uniformly most
powerful) family of tests is optimal in the sense that it is superior to any other exact confidence
distribution for θ . A detailed derivation of this optimality via a sufficient statistics having MLR
(monotone likelihood ratio property) can be found in Schweder & Hjort (2002) under the title
Neyman-Pearson Lemma for confidence intervals.

To understand how a UMPU (uniformly most powerful unbiased) test leads to an optimal
confidence distribution in the above sense, we note that, given a confidence distribution, H (·),
the one-sided tests using H (b) and 1 − H (b) as p-values for hypothesis tests K0 : θ ≤ b versus
K1 : θ > b and K0 : θ ≥ b versus K1 : θ < b, respectively, are unbiased. The reason is that, for
the first set of hypotheses where H (b) is used as the p-values, the power of the test at a value in
the alternative set, say θ = b + ε, is given by

Pb+ε(H (b) < α) ≥ Pb+ε(H (b + ε) < α) = α.
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The last equation is by the definition of a confidence distribution andα is the level of significance.
A similar proof is given for the second set of hypotheses where 1 − H (b) is used as the p-value.
This observation entails an immediate extension of the above optimality claim on the UMP
tests. Suppose there is a family of one-sided tests which are UMPU leading to a confidence
distribution H∗(·) as its p-value function. Given any other confidence distribution H (·), to be
compared with H∗(·), we bring in focus the one-sided power unbiased tests based on H (·). Then,
H∗(·) is superior to H (·) in terms of the power dominance due to the UMPU property of H∗(·).
The conclusion is that a confidence distribution derived from a p-value function of a one-sided
UMPU family of tests is optimal. See Singh et al. (2007) for additional details. Clearly, the
UMPU class of tests is much larger than the UMP class of tests. For the normal sample case
with known variance, the normal-based confidence distribution (due to its UMP property) is
optimal. In case when σ 2 is unknown, the student t-based confidence distribution is optimal in
view of the fact that the one-sided t-tests are UMPU (see Lehmann, 1991). Also, the χ2-based
CD for σ 2 is optimal since the one-sided χ2 tests possess UMPU property.

In the context of optimality of confidence distributions for exponential families with nuisance
parameters, Schweder & Hjort (2002) emphasized the importance of conditional tests. Suppose
that the data x has a Lebesgue density of the form f (x) = exp

{
θs(x) + ψ1 A1(x) + . . .+

ψp Ap(x) + B(θ, ψ1, . . . ψp)
}

for any given function B, where θ is scaler parameter of interest
and � = {ψ1, . . . , ψp} are nuisance parameters. Then, the test with p-value

P(θ,�)(s(x) > s(xobs) | Ai (x) = Ai (xobs), i = 1, . . . , p)

is exact and UMP. This yields a valuable tool for constructing optimal confidence distributions.
See example 8 of Schweder & Hjort (2002) about bivariate Poisson sample with mean vector
(λi , θλi ) where θ is the parameter of interest and λi ’s are nuisance parameters.

For confidence distributions, there are natural analogues of Pitman-type local and Bahadur-
type non-local comparisons of tests (see, e.g., Rao, 1973). In particular, for the Pitman type local
comparison between confidence distributions H1(·) and H2(·), one makes limiting stochastic
comparison between H1(θ0 − ε/

√
n) and H2(θ0 − ε/

√
n) and also between 1 − H1(θ0 + ε/

√
n)

and 1 − H2(θ0 + ε/
√

n). For Bahadur type non-local comparison, one compares almost-sure
limits of n−1 log{H1(θ0 − ε)} and n−1 log{H2(θ0 − ε)} for a fixed ε > 0. Similar comparisons
are done between the upper tails of H1(·) and H2(·). These types of comparisons which clearly
involve large deviation probabilities are recommended for exact confidence distributions only.
See Singh et al. (2007) for more details.

There is an easy-to-deduce implication of the foregoing definition of H1(·) being superior to
H2(·), in the sense of exact inference.

PROPOSITION 1. Suppose that H1(·) is superior to H2(·) as defined in Definition 3, and both

are strictly increasing. Then, for allt in (0, 1), we have [H−1
1 (t) − θ0]+

sto≤ [H−1
2 (t) − θ0]+ and

[H−1
1 (t) − θ0]−

sto≤ [H−1
2 (t) − θ0]−. Thus, |H−1

1 (t) − θ0|
sto≤ |H−1

2 (t) − θ0|.
The expression |H−1(t) − θ0| may be called deficiency of the one-sided confidence intervals

(−∞, H−1(t)] or [H−1(t),∞). The logic behind this terminology is as follows. Consider a
lower side confidence interval (−∞, H−1(t)]. If the interval covers θ0, [H−1(t) − θ0]+ is the
over-reach of the interval; If the interval does not cover θ0, [H−1(t) − θ0]− is the length by which
it misses. In either case, a smaller |H−1(t) − θ0| is desirable. Thus, the smaller the deficiency
is, the better the one-sided confidence interval is, given that the coverage requirement is met.
The above proposition comes close to making a connection between a superior confidence
distribution and a more concise confidence interval. Does a superior confidence distribution as
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defined in Definition 5.1 always provide two sided intervals with smaller (expected) length?
The answer is still unclear to us without any additional conditions.

There is a natural notion of mean square error for a confidence distribution H (·):

MSE(H ) = Ex

∫
t∈�

(t − θ0)2d H (t) = Eξ (ξ − θ0)2,

where θ0 is the true value of the parameter and ξ is the CD-random variable associated with
H (·). It is an elementary exercise to show that, if confidence distribution H1(·) is superior to
another confidence distribution H2(·) for the same parameter, then

MSE(H1) ≤ MSE(H2).

This leads to a notion of optimality in terms of their mean squared errors.

6 Combining Confidence Distributions from Independent Sources

There are a number of developments and applications that highlight the potential and
added values of confidence distributions as an effective tool for statistical inference. The
following two sections are reviews of such developments, starting in this section with
developments on combining confidence distributions. It is natural to combine confidence
distributions from independent studies, and an approach that combines confidence distributions
can potentially preserve more information than a traditional approach that combines just point
estimators.

6.1 Combination of Confidence Distributions and a Unified Framework for Meta-Analysis

Suppose there are k independent studies that are dedicated to estimate a common parameter
of interest θ . From the sample xi of the i th study, we assume that we have obtained a
confidence distribution Hi (·) = Hi (xi , ·) for θ . By extending the classical methods of combining
p-values and based on a coordinate-wise monotonic function from [0, 1]k to IR = (−∞,+∞),
Singh et al. (2005) proposed a general recipe for combining these k independent confidence
distributions:

H (c)(θ) = Gc{gc(H1(θ), . . . , Hk(θ))}. (7)

Here, gc(u1, . . . , uk) is a given continuous function on [0, 1]k → IR which is non-decreasing in
each coordinate, and the function Gc is completely determined by the monotonic gc function with
Gc(t) = P(gc(U1, . . . , Uk) ≤ t), where U1, . . . ,Uk are independent U [0, 1] random variables.
The function H (c)(·) contains information from all k samples and it is referred to as a combined
confidence distribution. When the underlying true parameter values, say θ (0)

i for the i th study,
of the k individual confidence distribution Hi (·) are the same (i.e., θ (0)

i ≡ θ0), it is evident that
H (c)(·) is a confidence distribution for the parameter θ (with true value θ0). A nice feature
of the combining method (7) is that it does not require any information regarding how the
input confidence distributions Hi (·) are obtained, aside from the assumed independence. So it
also provides a sensible way to combine input confidence distributions obtained from different
procedures, even across different schools of inference.

Singh et al. (2005) studied Bahadur efficiency of the combination (7) in the setting where the
underlying true parameter values of the k individual confidence distributions Hi (·) are the same.
They showed that, when gc(u1, . . . , uk) = F−1

de (u1) + · · · + F−1
de (uk), the combined confidence

distribution H (c)(·) is most efficient, in terms of having the highest Bahadur slope (i.e., steepest
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exponential decay at the tails), among all possible combinations. The result is an extension of the
theoretical result by Littell & Folks (1973) on the classical Fisher’s p-value combination method.
Here, Fde(·) is the cumulative distribution function of the standard double exponential (DE)
distribution and k is fixed. Singh et al. (2005) also studied an alternative combination method of
multiplying confidence densities, similar to likelihood combination of multiplying independent
likelihood (density) functions. Singh et al. (2005) proved that a combined confidence distribution
by the multiplication method is an exact confidence distribution in the cases of location
parameters and scale parameters. They also obtained a related asymptotic result for a broader
class of parameters. See also Lindley (1958) and Welch & Peers (1963) in the context of location
and scale models.

Xie et al. (2011) further studied methods of combining confidence distributions under meta-
analysis settings in which the underlying true parameters of the corresponding studies may or
may not be the same (i.e., θ (0)

i �≡ θ0). Also, since Bahadur optimality may encounter technical
problems for non-exact inferences (as is commonly the case in meta-analysis applications), Xie
et al. (2011) concentrated on Fisher-type optimality (i.e., in terms of comparing exact/asymptotic
variances of estimators), which is more relevant for confidence intervals, and provided a unifying
framework for various existing meta-analysis approaches. Weighted combining to improve
Fisher-efficiency of a combination plays a key role in this development, especially in model-
based meta-analysis approaches.

Example 3 earlier illustrated that a p-value (significance) function is usually a confidence
distribution or an asymptotic confidence distribution. Based on this observation, Xie et al.
(2011) verified that all five classical approaches of combining p-values listed in Marden
(1991), i.e., Fisher, Stouffer (normal), Tippett (min), Max, and Sum methods, can be subsumed
under the framework of combining confidence distributions. Specifically, for Fisher, Stouffer
(normal), Tippett (min), Max, and Sum p-value combinations, the gc choices in (7) are
gc(u1, . . . , uk) = F−1

ne (u1) + . . .+ F−1
ne (uk) or �−1(u1) + . . .+�−1(uk) or min(u1, . . . , uk)

or max(u1, . . . , uk) or u1+ . . .+ uk , respectively. Here, F−1
ne (u) = log(u) and �−1(u) are the

inverse of the cumulative distribution function of the negative exponential and the standard
normal distribution, respectively.

Also, Normand (1999) and Sutton & Higgins (2008) provided excellent reviews of model-
based meta-analysis, for both fixed-effects and random-effects models, in modern biostatistics
applications. Xie et al. (2011) illustrated that all five model-based meta-analysis estimators listed
in Table IV of Normand (1999), i.e., the MLE, Bayesian and Method of Moment estimators under
a fixed-effect model and the REML and Bayesian (normal prior) estimators under a random
effect-model, can be obtained under the framework of combining confidence distributions (7)
using the weighted recipe,

gc(u1, . . . , uk) = w1�
−1(u1) + · · · + wk�

−1(uk), (8)

with different choices of weights wi ’s (which are related to the variance estimators of the point
estimators—see Xie et al. (2011) for further details). Since an appropriate choice of weights
can improve the combining efficiency in normal models, this explains why a model-based
approach is typically more efficient than an approach (classical unweighted) of combining
p-values, when the model assumption holds. This development allowed, for the first time,
the seemingly unrelated two classes of meta-analysis methods to be studied in a unified
framework.

The framework of combining confidence distributions provides a structure and opportunity to
explore and discover new sensible meta-analysis approaches. For instance, Xie et al. (2011) also
developed two complementary robust meta-analysis approaches, with supporting asymptotic
theory, under the unifying framework. In one approach, the size of each study goes to infinity,
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and in the other, the number of studies tends to infinity. The first approach takes advantage
of the adaptive (data-dependent) weights in a special weighted combining approach of (7)
with gc(u1, . . . , uk) = w(a)

1 F−1
0 (u1) + · · · + w

(a)
k F−1

0 (uk), for any given continuous cumulative
distribution function F0, where the adaptive weight w(a)

i converges to 0, asymptotically, when
the underlying true value θ (0)

i of the i th study is different from the target parameter value θ0.
See, Xie et al. (2011) for such a choice of adaptive weights. In the second approach, the gc

function in (7) is gc(u1, . . . , uk) = w1u1 + . . .+ wkuk, where, for simplicity, only non-adaptive
weights similar to those used in (8) were considered, although the development can be extended
to include other weights. Both these robust meta-analysis approaches have high breakdown
points and are resistant to studies whose underlying (unknown) true parameter values differ
from that of the parameter of interest. Xie et al. (2011) proved that, in the first setting, the robust
meta-analysis estimator is asymptomatically equivalent to the theoretically most efficient point
estimator in fixed-effects models, regardless of whether any studies are outlying or not. The
second approach can attain (3/π)1/2 ≈ 97.7% efficiency asymptotically in both fixed-effects
and random-effects models when there are no outlying studies. The second approach also offers
some protection against model misspecification, and it has an interesting connection to an
M-estimation approach.

A publicly available R-package has been developed by Yang et al. (2012) to implement this
unifying framework for meta-analysis. It has a single R function, with different options, to
perform meta-analysis of combining p-values, the model-based methods, the robust methods,
Mantel-Haenszel method, Peto method, the exact method by Tian et al. (2009) for rare event
data, among others.

6.2 Incorporation of Expert Opinions in Clinical Trials

External information, such as expert opinions, can play an important role in the design,
analysis, and interpretation of clinical trials. Seeking effective schemes for incorporating
external information with the primary outcomes has drawn increasing interest in pharmaceutical
applications and other areas. Since opinions are not actual observed data from the clinical trials,
it is a common belief that regular frequentist approaches are not equipped to deal with such
a problem. Research in this area has been dominated by Bayesian approaches, and almost
all methods currently used for such practices are Bayesian. In the Bayesian paradigm, as
illustrated in Spiegelhalter et al. (1994), a prior distribution is first formed to express the
initial beliefs concerning the parameter of interest based on either some objective evidence or
some subjective judgment or a combination of both. Subsequently, clinical trial evidence is
summarized by a likelihood function, and a posterior distribution is then formed by combining
the prior distribution with the likelihood function.

Indeed, incorporating evidence from external sources has long been considered the strong suit
of Bayesian analysis, while being one of the weak points of frequentist theory. But the more
recent developments on confidence distributions contain several attempts, namely Bickel (2006),
Xie et al. (2013) and Singh & Xie (2012), to overcome this difficulty in the school of frequentist
inference. These CD-based approaches can be outlined as follows: a confidence distribution
is first used to summarize the prior information or expert opinions. Subsequently, clinical trial
evidence is summarized by a confidence distribution, often based on a likelihood function.
A combined confidence distribution is then obtained by combining these two confidence
distributions. This combined confidence distribution can thereby be used to derive various
inferences, and its role in the frequentist inference is similar to that of a posterior distribution in
the Bayesian inference. These developments provide an example that confidence distributions
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can provide useful statistical inference tools for problems where frequentist methods were
previously unavailable.

In particular, Bickel (2006) focused on the setting of a normal clinical trial, in which the author
used an objective Bayesian argument to justify his treatment of the prior information from expert
opinions as a confidence distribution and then used the DE-based recipe proposed in Singh et al.
(2005) to combine it with a normal confidence distribution from the clinical trial. The research of
Xie et al. (2013) stemmed from a consulting project on a real clinical trial of a migraine therapy
in a pharmaceutical company, in which the information solicited from expert opinions needs to
be incorporated with the information from a clinical study of a migraine therapy with binary
outcomes. They illustrated, using solely frequentist modelling arguments, that information from
experts (based on the standard Baysesian design of Parmar et al. (1994) and Spiegelhalter et al.
(1994)) can be summarized as a confidence distribution. This confidence distribution is then
combined with a confidence distribution from the data. Singh & Xie (2012) extended the concept
of confidence distribution to a typical Bayesian setting where parameters are random, and used
the recipe (7) to combine a prior distribution with a confidence distribution from data. The
outcome function is called a CD posterior, an alternative to Bayes posterior, which was shown
to have the same coverage property as the Bayes posterior, in terms of the joint distribution
of the random parameter and data. The approaches in Bickel (2006) and Xie et al. (2013) can
be viewed as a compromise between the Bayesian and frequentist paradigms. For instance, we
consider the CD-based approach proposed in Xie et al. (2013) as a frequentist approach, since
the parameter is treated as a fixed value and not a random entity. But, nonetheless, it also has
a Bayesian flavor, since the prior expert opinions represent only the relative experience or prior
knowledge of the experts but not any actual observed data.

The CD-based approaches are easy to implement and computationally cheap (no MCMC
algorithm), even in non-normal case. Xie et al. (2013) and Singh & Xie (2012) highlighted the
advantage of a CD-based approach that it does not require any prior on nuisance parameters,
compared to a Bayesian approach. More importantly, in their binomial setting, Xie et al. (2013)
discovered a counterintuitive “discrepant posterior phenomenon” that is inherent in a Bayesian
approach but can be avoided in a CD-based approach. We describe below the discrepant posterior
phenomenon using a simple binomial clinical trial.

Consider the scenario of a binomial clinical trial, in which we have x0 successes from
Binomial (n0, p0) in the control group and x1 successes from Binomial (n1, p1) in the treatment
group. In addition, we have an informative prior (expert opinions) on the parameter of interest
δ = p1 − p0, say π(δ), and also perhaps a marginal prior of p0, say π(p0), from historical
experiments, but we do not completely know the joint prior of (p0, p1). Clearly, we can not
directly apply Bayes formula f (δ|data) ∝ π(δ) f (data|δ) focusing only on δ, because it is not
possible to find a conditional density function f (data|δ) in this trial. A full Bayesian solution is
to jointly model both p0 and p1, as the model used in Joseph et al. (1997) with independent beta
priors π(p0, p1) = π(p0)π(p1) for p0 and p1; A constraint is that the marginal prior of δ from
the assumed π(p0, p1) needs to agree with the known π(δ). Based on this independent beta prior
model, Xie et al. (2013) provided a numerical example, as illustrated in Figure 2 (a)–(b), where
strangely the marginal posterior of δ is more extreme than both the prior and the profile likelihood
of δ, so that an estimate from the posterior (e.g., by mode, δ̂post = 0.211) is much bigger
than those from the prior and the likelihood (e.g., by mode, δ̂prior = 0.128 and δ̂like = 0.104,
respectively). That is, the experts suggest about 12.8% improvement and the clinical evidence
suggests about 10.4% improvement but, putting them together, the posterior suggests that the
overall estimator of the treatment effect is 21.1%, which is much bigger than either that reported
by the experts or that suggested by the clinical data. This is certainly counterintuitive. Xie
et al. (2013) provided a detailed discussion that this counterintuitive phenomenon is intrinsically
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0

Figure 2. (a) Contour plots of the joint prior π (p0, p1), density function f (data|p0, p1), and posterior f (p0, p1|data);
(b) Projections (marginals) of π (p0, p1), f (data|p0, p1), and f (p0, p1|data) onto the direction of δ = p1 − p0; both
(a) and (b) are from a numerical example with data (x0, x1, n0, n1) = (31, 33, 68, 59) and an independent beta prior with
BETA(14.66, 4.88) for π (p0) and BETA(46.81, 4.68) for π (p1); (c) a reproduction of Figure 1(e) of Xie et al. (2013), where
a survey of expert opinions on δ (summarized in a histogram) is directly combined with a confidence distribution for δ from a
clinical data.

mathematical and also general. They suggested that the phenomenon may occur in at least a
certain direction as long as skewed distributions are involved in multivariate Bayesian analysis,
regardless of which prior, model, or parameterization is used.

This discrepant posterior phenomenon posts a challenging question for Bayesian analysis in
this particular application. Note that we only have informative marginal priors on δ and p0

but not their joint prior. If we can come up with a joint prior for (p0, p1) or (p0, δ) whose
marginal priors match with π(p0) and π(δ) and also this joint prior is “truthful” (whatever
this means), then the posterior outcome is trustworthy (whatever the outcome is and regardless
whether the marginal posterior is outlying or not). In this case, some researchers may argue that
the phenomenon shows the power of the joint Bayesian method in extracting information that
otherwise may be overlooked, even if it is counterintuitive. However, the two marginal priors on
p0 and δ = p1 − p0 can not fully determine the joint prior. How can we tell whether we have got
a “truthful” joint prior (even if it has the same two marginal priors)? If we are not so sure about
the joint prior, should we still trust the posterior obtained by using this joint prior, especially
when we have a discrepant posterior? Alternatively, should we question about the joint prior
when the discrepant posterior phenomenon occurs? In practice, we may be inclined to accept a
posterior result that sits between the prior and the data evidence and we may also tend to think
that there is a “truthful” joint prior that can yield this in-between outcome. It is unclear, outside
the normal case, how we can practically come up with a joint prior that is in agreement with the
likelihood evidence so that the discrepant posterior phenomenon does not occur.

As a frequentist procedure, the CD-based method can bypass this difficult task of jointly
modelling (p0, p1) or (p0, δ) and focus directly on the parameter of interest δ (c.f., the
discussion of “division of labor” in the second half of Section 3.3). Figure 2 (c) illustrated
a CD-based method (Xie et al., 2013) for the same problem, where a survey of expert opinions
on δ (summarized in a histogram) is directly combined with a confidence distribution for δ
from a clinical data. Depending on the perceived “truthful” model of the joint distribution of
(p0, p1), it is still debatable in this particular example whether the marginal posterior (as that in
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Figure 2 (b)) or the combined confidence distribution (as that in Figure 2 (c)) should be used.
But the CD-based method certainly enjoys the benefit of “division of labor” and is free of the
counterintuitive discrepant posterior phenomenon.

7 CD-Based New Methodologies, Examples, and Applications

This section reviews several general inferential tools and new methodologies, utilizing
confidence distributions. Additional examples and developments of confidence distributions
in various applications are also provided.

7.1 CD-Based Likelihood Calculations

We have discussed in Section 2 that, given a likelihood function, we may normalize it to obtain
an (often asymptotic) confidence distribution. In this subsection, we present that, conversely,
given a confidence distribution, we could also try to construct certain types of likelihood
functions for inference. Two notable examples are Efron (1993), which used a confidence
distribution to derive a so-called implied likelihood function, and Schweder & Hjort (2002),
which proposed a notion of reduced likelihood function based on the development of confidence
distributions.

The objective of Efron (1993) was to produce an approximate likelihood function for a
scalar parameter of interest, say, θ in a multiparameter family, with all nuisance parameters
eliminated. To achieve this goal, the starting point is a confidence distribution from “any system
of approximate confidence intervals for the single parameter θ”. In particular, let hx(θ) be
the density function of a confidence distribution for the parameter of interest θ . Efron (1993)
suggested to modify this confidence density by introducing a doubled data set (x, x) via a “data-
doubling device”. This data-doubling device is “similar to that used in bias-reduction techniques
such as Richardson extrapolation and the jackknife”, in which “we imagine having observed two
independent data sets, both of which happen to equal the actual data set x”. From the doubled
data set (x, x), we get another confidence density function for θ , hxx(θ), using the same system
of confidence intervals. The implied likelihood function is then defined by

L†
x(θ) = hxx(θ)

hx(θ)
.

To illustrate the procedure, Efron (1993) provided a simple example for a parameter θ =
Prob(head), the probability of landing on head, on the basis of observing x heads out of n
independent flips of a coin. Based on the estimator θ̂ = x/n, we can obtain an asymptotic
confidence distribution with density hx,n(θ) ∝ θ x (1 − θ)n−x

{
(1 − θ̂)/(1 − θ) − θ̂/θ

}
and, from

the doubled data set of 2n coin flips with 2x observed heads, another confidence distribution
with density h2x,2n(θ) ∝ θ2x (1 − θ)2(n−x)

{
(1 − θ̂ )/(1 − θ) − θ̂/θ

}
. Thus, the implied likelihood

is

L†
x,n(θ) = h2x,2n

hx,n(θ)
∝ θ x (1 − θ)n−x .

Efron (1993) noted that this implied likelihood is equal to the actual likelihood function for θ in
this binomial example, but the confidence distribution based on θ̂ = x/n, i.e., hx,n(θ), is not.

Efron (1993) suggested using the implied likelihood function as a tool for making “Bayesian,
empirical Bayesian and likelihood inferences about θ”, where the likelihood formula has all
nuisance parameters eliminated. A Bayesian analysis based on this likelihood “requires a prior
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distribution only for θ , and not for the entire unknown parameter vector”. The method is mostly
effective for multiparameter exponential families, where there exists a simple and accurate
system of approximate confidence distributions for any smoothly defined parameter. Efron
(1993) illustrated his development using the so called ABC intervals (c.f., Efron, 1987; DiCiccio
& Efron, 1992). He also explored a Bayesian motivation for the development, and also justified
the implied likelihood in terms of high-order adjusted likelihoods and the Jeffreys-Welch and
Peers theory of uninformative priors (Welch & Peers, 1963). It was proved that the ABC implied
likelihood agrees with the profile likelihood of θ up to the second order in the repeated sampling
situation in a multiparameter exponential family (Efron, 1993, theorem 2). Interestingly, this
connection to the profile likelihood function also implies that the implied likelihood function
is also an asymptotic confidence distribution itself, after a normalization with respect to the
parameter θ . Thus, we consider the implied likelihood as a modified confidence distribution
from the original confidence distribution hx,n(θ). The advantage to use an implied likelihood is
that there is no need to involve nuisance parameters.

Schweder & Hjort (2002) proposed a so-called reduced likelihood function that was
determined via a pivot from a scalar statistic, along with a confidence distribution. Schweder
& Hjort (2002) highlighted that the reduced likelihood is a “proper” likelihood and it is free
of all nuisance parameters. Together with the corresponding confidence density, it forms “a
very useful summary for any parameter of interest”. Specifically, let ψ(Tn, θ) be a pivot or an
approximate pivot statistic with a continuous cumulative distribution function Fn and density
function fn , where Tn is a one-dimensional statistic. Also, assume ψ(Tn, θ) is monotonic (say,
increasing) in θ . The probability density function of Tn is f (t ; θ) = fn

(
ψ(t, θ)

)∣∣ ∂
∂tψ(t, θ)

∣∣,
which, when viewed as a function of θ , is called a reduced likelihood function by Schweder
& Hjort (2002). Note that Hpiv(θ) = Fn

(
ψ(Tn, θ)

)
is the confidence distribution induced by

ψ(Tn, θ), and this reduced likelihood function can be re-expressed as

Ltn (θ) = fn

(
F−1

n (Hpiv(θ))
)∣∣∣ ∂∂tψ(tn, θ)

∣∣∣ = h piv(θ)
∣∣∣ ∂∂tψ(t, θ)

∣∣∣/∣∣∣ ∂∂θ ψ(t, θ)
∣∣∣∣∣∣

t=tn
, (9)

where h piv(θ) is the density function of Hpiv(θ). Like Efron’s implied likelihood, the reduced
likelihood is free of nuisance parameters and it gives “a summary of the data that allows the
future user to give the past data the appropriate weight in the combined analysis”.

From (9), the reduced likelihood Ltn (θ) and the confidence density h piv(θ) differs by a factor of
cn,θ = ∣∣ ∂

∂tψ(t, θ)
∣∣/∣∣ ∂

∂θ
ψ(t, θ)

∣∣∣∣
t=tn

. Schweder & Hjort (2002) stated that, by reparametrization,
the reduced likelihood Ltn (θ) could be brought to be proportional to h piv(θ), the confidence
density. In particular, in the case when cn,θ is increasing in the reparameterization μ = a(θ) and
∂
∂θ
μ ∝ cn,θ , the implied likelihood function for μ is same as the confidence density for μ, apart

from a constant not involving the parameter, both of which are proportional to fn

(
ψ(Tn, a−1(μ)

)
.

Also, in the case when the parameter θ can be consistently estimated, we often have cn,θ =
cn{1 + op(1)} for a constant cn . In this case, the implied likelihood function is asymptotically
proportional to the confidence density h piv(θ), without any reparameterization. Again, we
consider the reduced likelihood as a modified confidence distribution from the original Hpiv(θ),
which is obtained directly from the pivot.

Efron (1993) demonstrated a use of the implied likelihood function in an empirical Bayes
example, which incorporated an empirical Bayes prior from past clinical trials with an implied
likelihood from a “current” study on a new treatment for recurrent bleeding ulcer using the
Bayes formula. Singh et al. (2005) re-analyzed the same data under a purely frequentist setting
using the CD combining recipe discussed in Section 5.1 (with and without (adaptive) weights).
Numerical contrasts with Efron’s empirical Bayes approach was also provided. Schweder (2003)
applied the methods that were developed in Schweder & Hjort (2002) for reduced likelihood
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and confidence distributions to provide model estimates for abundance of a closed stratified
population of bowhead whales off Alaska.

7.2 Confidence Curve

The confidence curve was first proposed by Birnbaum (1961) as an estimate of an “omnibus
form”, which “incorporates confidence limits and intervals at various levels and a median-
unbiased point estimate, together with critical levels of tests of hypothesis of interest, and
representations of the power of such tests”. Although the original proposal of the confidence
curve did not use the notion of a confidence distribution, the concept arise out of the same
consideration to incorporate confidence intervals of all levels. It can be easily defined using a
confidence distribution function. Let Hn(·) be a confidence distribution for parameter θ . The
confidence curve is just then

CVn(θ) = 1 − 2|Hn(θ) − 0.5| = 2 min{Hn(θ), 1 − Hn(θ)}.
If Hn(·) is a p-value function from an one-sided hypothesis test, CVn(·) then corresponds to the
p-values of two-sided tests for singleton hypotheses; see, e.g., Fraser (1991) and also Section 3
of this article. As previously stated, a confidence distribution may be loosely viewed as a “piled-
up” form of one-sided confidence intervals of all levels. In the same spirit, the confidence curve
may be viewed as a “piled-up” form of two-sided confidence intervals of equal tails at all levels.

Figure 3(a) plots, in a solid curve, a confidence distribution for the θ in Example 7, and
the solid curve in Figure 3(b) is the corresponding confidence curve. In Figure 3(a), drawing
two lines at the height of α/2 and 1 − α/2, respectively, produces two intersections with the
confidence distribution. The two points on the x-axis corresponding to the intersections are
the lower and upper bounds of the level 1 − α equal tailed two-sided confidence interval. In
Figure 3(b), drawing a single line across the height of α in Figure 3(b) provides two intersections
with the confidence curve. The two points on the x-axis corresponding to two intersections
are the two end points of the same level 1 − α confidence interval of θ . When the height α
increases to one, the confidence curve in Figure 3(b) reduces to a focal point, the median
of the confidence distribution Mn = H−1

n (1/2), which is a median unbiased estimator of θ .
Schweder et al. (2007) described the confidence curve as a “funnel plot pointing at the median
of the confidence distribution”. Blaker & Spjøtvoll (2000) argued that a single point estimate
or a confidence interval or a testing conclusion may be too crude to be a summary of the
information given by the data. They suggested plotting a confidence curve to show “how each
parameter value is ranked in view of the data”. They also provided examples whereby using a
confidence curve could “alleviate” a problem in cases in which confidence sets are empty or
include every parameter value. See, also, a tutorial by Bender et al. (2005) on using confidence
curves in medical research, in which the authors demonstrated that confidence curves are useful
complements to the conventional methods of presentation.

A notable application of confidence curve is due to Blaker (2000), in which the concept of
confidence curve is instrumental in the methodological development of finding improved exact
confidence intervals for a general discrete distribution. Blaker (2000) noted that the standard
exact confidence intervals tend to be very conservative and too wide with coverage probabilities
strictly larger than the designed nominal level, especially in small and moderate sample sizes. He
utilized confidence curves to obtain improved exact confidence intervals for discrete distribu-
tions. The approach can be illustrated using a binomial example with sample x , sample size n and
success probability p. The p-value function from the one-sided test K0 : p ≤ b versus K1 : p >
b is an asymptotic confidence distribution H(x,n)(b) = Hn(x, b) = 1 −∑x−1

k=0

(n
k

)
bk(1 − b)n−k
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Figure 3. (a) A confidence distribution and (b) a confidence curve for the scale parameter of a gamma distribution based on
a sample of size n = 5 from Gamma(2, θ ); see also Example 7.

and the confidence curve is CV (b) = 2 min
{

H(x,n)(b), 1 − H(x,n)(b)
}
. However, confidence

intervals based on CV (b) only have correct asymptotic coverage probabilities. To guarantee
strictly the coverage probability, one often has to enlarge the confidence intervals, which can
be deduced by modifying the confidence curve CV (b) to one of its asymptotically equivalent
copies

CV †(b) =

⎧⎪⎨⎪⎩
2H(x,n)(b) if H(x,n)(b) < 1 − H(x+1,n)(b),

2{1 − H(x+1,n)(b)} if H(x,n)(b) > 1 − H(x+1,n)(b),

1 if H(x,n)(b) = 1 − H(x+1,n)(b).

(10)

See, e.g., Blaker (2000). The level 1 − α equal tailed two-sided confidence interval from CV †(b)
is A = {

p : CV †(p) ≥ α
} = {

p : H−1
(x,n)(α/2) ≤ p ≤ H−1

(x+1,n)(1 − α/2)
}
, which is the well-

known Clopper-Pearson exact confidence interval. Blaker (2000) noted that the equal-tailed
requirement is too restrictive, thus considered a further modified confidence curve function

CV ‡(b) =

⎧⎪⎨⎪⎩
H(x,n)(b) + H(ζ1,n)(b) if H(x,n)(b) < 1 − H(x+1,n)(b),{
1 − H(x+1,n)(b)

}+ {
1 − H(ζ2,n)(b)

}
if H(x,n)(b) > 1 − H(x+1,n)(b),

1 if H(x,n)(b) = 1 − H(x+1,n)(b),

where ζ1 = sup{u : P{p=t}(X ≥ x) > P{p=t}(X ≤ u)} = sup{u : H(x,n)(p) ≥ 1 − H(u,n)(p)} and
ζ2 = sup{u : P{p=t}(X ≥ x + 1) > P{p=t}(X ≤ u)} = sup{u : 1 − H(x+1,n)(p) ≥ H(u,n)(p)}.
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Blaker (2000) proved that intervals obtained from CV ‡(b) can guarantee the exact coverage
probabilities and also CV ‡(b) ≤ CV †(b). Thus, while maintaining the right coverage, the
class of exact confidence intervals from CV ‡(p) is shorter than the Clopper-Pearson exact
confidence intervals. Blaker (2000) also showed that this class of exact intervals satisfies the
nesting condition, which is violated by several other exact intervals, including those by Sterne
(1954), Crow (1956), Blyth & Still (1983), and Casella (1986). Here, the nesting condition
refers to the requirement that intervals with a larger confidence level always include those with
a smaller confidence level.

Schweder (2007) called the function C N (θ) = 1 − CV (θ) = 1 − 2 min
{

Hn(θ), 1 − Hn(θ)
}

a confidence net and extended it to a multidimensional case with θ being a p × 1 vector. He
suggested obtaining a confidence net by mapping the profile deviance D(θ) = −2{�n(θ) −
�n(θ̂)} into interval (0, 1) by its cumulative distribution function, and used the ABC-method
and bootstrapping (c.f., Efron, 1987; DiCiccio & Efron, 1992; Schweder & Hjort, 2002) to
illustrate how to obtain a family of simultaneous confidence bands for multiple parameters.
Here, �n(θ) is the log profile likelihood function and θ̂ is the MLE of θ . Confidence net
for a multiparameter vector is related to the version of a circular confidence distribution (c-
CD) proposed by Singh et al. (2001, 2007) using the concept of data depth. In particular,
a sample-dependent function Hn(·) = Hn(x, ·) on � ∈ IRp is called a confidence distribution
in the circular sense (c-CD) for p × 1 multiparameter θ , if (i) it is a probability distribution
function on the parameter space� for each fixed sample set x, and (ii) the 100(1 − β)% central
region of H (θ) is a confidence region for θ , having the coverage level 100(1 − β)% for each
β. Here, the central region refers to a centrality function defined through a given measure of
data depth: C(θ) = P{η : D(η) ≤ D(θ)}, where both the data depth D and the probability P
are computed based on Hn (as a distribution function on � ∈ IRp). See Liu et al. (1999) among
others, for various concepts of data-depth. In a one-dimensional (scalar) situation, the centrality
function C(θ) coincides with the confidence curve C(θ) = CV (θ) = 2 min{Hn(θ), 1 − Hn(θ)}.
This type of multiparameter confidence distribution only covers a family of center outwards
regions (not all Borel type of regions) in the multidimensional case.

7.3 CD-Based Simulation Methods

As described in Section 3.1, given a confidence distribution, a CD-random variable can
typically be generated, and this CD-random variable is closely related to and has similar
theoretical properties as a bootstrap estimator. Simulating CD-random variables offers a new
model-based Monte Carlo approach that is similar to the bootstrap, but without directly involving
data. Since a CD-random variable is not limited to being just a bootstrap estimator, this Monte
Carlo approach can be more flexible and go beyond the standard bootstrap procedures.

An example of such a development is Claggett et al. (2012), who developed a CD-based
Monte Carlo method to make inference for extrema of parameters, such as max{θ1, . . . , θk}, and
more generally for any order statistics of parameters θ(m) = the mth smallest among {θ1, . . . , θk}.
Here, θ1, . . . , θk are unknown underlying parameters of k independent studies. Hall & Miller
(2010) mentioned that the problem of making inference for extrema of parameters is one of “the
existing problems where standard bootstrap estimators are not consistent and where alternative
approaches also face significant challenges”. To overcome this problem associated with the stan-
dard bootstrap methods, Claggett et al. (2012) considered a more flexible CD-based Monte Carlo
method. Unlike the standard bootstrap methods that directly use the empirical distribution of the
bootstrap estimator of θ(m), say θ∗

(m), to make inference, Claggett et al. (2012) proposed using the

empirical distribution of a weighted sum of CD-random variables ξ ∗ = ∑k
i=1wiξi

/∑k
i=1wi ,
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where the CD random variables ξi ’s are simulated from given confidence distributions for the
respective studies. Noting that ξ(m) = the mth smallest of {ξ1, . . . , ξk} behaves the same as the
bootstrap estimator θ∗

(m), this CD-based method is equivalent to the standard bootstrap method
if the weights are chosen as wi = 1{ξi =ξ(m)}. But, with many possibilities for choosing weights,
the CD-based method is more flexible. Under the standard asymptotically normal case and with
a suitable set of weight choices, Claggett et al. (2012) were able to prove that ξ ∗ provides an
asymptotically valid inference for θ(m) in a large sample setting. (In the setting, the empirical
weights asymptotically go to 0 when θi is outside the tie or near tie set; see Claggett et al.,
2012 and also Xie et al., 2009). They also explored the theoretical performance of the standard
bootstrap method in the presence of ties or near ties among the θi ’s, and showed that the
weight corresponding to the standard bootstrap method (i.e., wi = 1{ξi =ξ(m)}) does not satisfy the
conditions required to make a correct inference for θ(m).

The highly cited Monte Carlo method by Parzen et al. (1994) is also in essence a method
of simulating CD-random variables (but in multidimensional case), which are in turn used to
provide inference (variance estimates) for regression parameters in quantile and rank regression
models. Their simulation method starts by assuming an exact or asymptotic pivotal estimating
function, say Sx(θ), which at the true parameter value θ = θ0 can be generated by a random vector
z whose distribution function is completely known or can be estimated consistently. Parzen et al.
(1994) proposed simulating a large number of independent copies of z and solving the equation
Sx(θ) = z for θ∗

z . These copies of θ∗
z are then used to make inference, e.g., use the sample

variance of θ∗
z to estimate the variance of θ̂ . Here, θ̂ is the point estimator that solves Sx(θ) = 0.

In their proof, Parzen et al. (1994) required n1/2 B(θ̂ − θ) = −Sx(θ) + o(1 + ||n1/2(θ̂ − θ)||2),
where B is a positive definite constant matrix. To understand the essential connection of this
approach to the CD-based Monte Carlo method without being bogged down by technical details
associated with the multidimensional case, let us assume for simplicity that θ , z and B are scalars.
Also, denote by G(·) the cumulative distribution function of z. In this case, G

(
n1/2 B(θ0 − θ̂)

) ≈
G
(
Sx(θ0)

)
and the latter is distributed as G(z) ∼ U [0, 1]. Thus, Hn(θ) = G

(
n1/2 B(θ − θ̂ )

)
is an

asymptotic confidence distribution for the parameter θ . The copies of θ∗
z simulated by Parzen

et al. (1994) are nothing but realizations of copies of a CD-random variable from Hn(θ). This
simulation has a fiducial flavor as the authors acknowledged in their original paper, although the
approach does not need any fiducial reasoning in either their Monte Carlo simulation or their
mathematical proofs.

The class of CD-based Monte Carlo approaches can be considered an extension of the well-
studied and widely applied bootstrap methods. As a new simulation mechanism, considerably
more constructive development is still needed. But we believe that the flexibility (not tied
to the interpretation as bootstrap estimators) and the dependence only on data summary (not
the original data) of this class of approaches will prove to be a useful simulation tool in a
variety of applications. Also, see Kim & Lindsay (2010), who used (simulated) realizations
of asymptotically normally distributed CD-random vectors to facilitate a visual analysis of
confidence sets generated by an inference function such as a likelihood or a score function.

7.4 Additional Examples and Applications of CD-Developments

There are several other developments of confidence distributions targeting specific areas of
applications. For instance, in the field of finance and economics, Coudin & Dufour (2004)
used confidence distributions to facilitate a nice development of robust estimation of regression
parameters in a linear median regression model. They relied on an empirical p-value function
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from a sign-based test for a two-sided hypothesis to make inference on the parameters of interest.
This empirical p-value function is related in essence the confidence curve function described in
7.2, but in a multiparameter setting. In their development, no assumption was made on the shape
of the error distribution, allowing for heterogeneity (or heteroskedasticity) of unknown form,
non-continuous distributions, and very general serial dependence (linear and nonlinear). The
empirical p-value function was derived from Monte Carlo sign-based tests, which have correct
size in finite samples under the assumption that the disturbances have a null conditional median.
Consistency, asymptotic normality and a connection to Hodges-Lehman-type estimators were
provided. The authors applied the methods successfully to two studies of empirical financial
and macroeconomic data: a trend model for the S&P index, and an equation used to study
β-convergence of output levels across the states in the US.

Besides the papers already mentioned in Sections 6 and 7, there are also several other
publications developing and applying confidence distributions in the fields related to medical and
health research. For example, under the setting of clinical trials, Mau (1988) used a confidence
distribution to measure the strength of evidence for practically equivalent treatments in terms
of efficacy. The article described the concept of confidence distribution with clarity and also
touched the topic of combining confidence distributions in the setting under consideration. Tian
et al. (2011) used a multivariate CD concept to obtain optimal confidence regions for a vector of
constrained parameters in a setting of survival studies. They showed in an analysis of a survival
data set that the volume of the resulting 95% confidence region is only one-thirty-fourth of
that of the conventional confidence region. Their confidence region also has better frequency
coverage than the corresponding Bayesian credible region.

Developments and applications of confidence distributions can also be found in the fields of
agriculture, fisheries research, and others. Schweder et al. (2010) proposed a set of complex
capture-recapture models and used confidence distributions to make inferences on abundance,
mortality, and population growth of bowhead whales. The authors analyzed 10 years of systematic
photographic surveys conducted during the spring migrations of bowhead when whales pass
Point Barrow, Alaska. Efron’s BC and ABC methods (c.f., Efron, 1987 and Schweder &
Hjort, 2002) were used to construct confidence distributions and confidence curve for several
parameters of interest. Their inferences supported the view that photo surveys at Barrow are
valuable for estimating abundance and demographic parameters for the population of bowhead
whales in Bering-Chukchi-Beaufort seas. In addition, see Bityukov et al. (2007) and also
Bityukov et al. (2010) for an encounter of confidence distributions and the use of Poisson
example, with a masking background, in an application in the field of nuclear physics.

8 Summary

In this paper we have presented the concept of a confidence distribution, entirely within the
frequentist school and logic, and reviewed recent developments together with their applications.
We have shown how confidence distributions, as a broad concept, can subsume and be associated
to many well-known notions in statistics across different schools of inference. We also showed
how one could derive almost all types of frequentist inference from a confidence distribution
and highlighted its promising potential, as an effective inferential tool. It is our belief that
developments of confidence distributions can provide new insights towards many developments
in both classical and modern statistical inferences.

As an emerging new field of research, there are many important topics and interesting
questions yet to be addressed. For instance, as an estimation method conceptually not different
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from point estimation, many important questions and theoretical developments under the
framework of decision theory are yet to be tackled. We reviewed a couple of results on
optimality. But topics such as admissibility, minimax estimation, invariance, and prediction
are yet untouched in the developments of confidence distributions. Additionally, as stated
in Schweder & Hjort (2002), a simultaneous confidence distribution for multiple parameters can
be “difficult” to define. It is still an open question how (or whether) one can define a multivariate
confidence distribution, in a general non-Gaussian setting of exact inference, to ensure that their
marginal distributions are confidence distributions for the corresponding single parameters. As
an example, consider the standard Behrens-Fisher setting, where a joint confidence distribution
(fiducial distribution) of the two population means (μ1, μ2) has a joint density of the form
f1( μ1−x̄1

s1/
√

n1
) f2( μ2−x̄2

s2/
√

n2
)/{s1s2/

√
n1n2}. The marginal distribution of μ1 − μ2 is only an asymptotic

confidence distribution (as both sample sizes ni → ∞) but not a confidence distribution in the
exact sense. Here, x̄i and s2

i are sample mean and variance for the respective study and fi is
the density function for the student’s t-distribution with ni − 1 degrees of freedom, i = 1, 2.
The good news in the multidimensional case is that under asymptotic settings or wherever
bootstrap theory applies, we can still work with multivariate confidence distributions with ease.
In addition, if we limit ourselves to center-outwards confidence regions (instead of all Borel sets)
in the p × 1 parameter space, concepts such as the c-CDs considered in Singh et al. (2001, 2007)
and the confidence net considered in Schweder (2007), offer coherent notions of multivariate
confidence distributions in the exact sense.

In the practice of point estimation, a particular type of estimator, say for example an MLE or
an unbiased estimator, may not exist in some special settings. Similarly, it is conceivable that we
may encounter difficulty in obtaining a sensible confidence distribution under some settings.
Cox (1958) commented on “whether confidence interval estimation is at all satisfactory” in
“complicated cases, where the upper 5 per cent limit” is “larger than the upper 1 per cent
limit”. In this situation when confidence intervals violate the nesting condition, we may not be
able to directly translate the set of intervals into a confidence distribution. But we may resort
to an alternative approach to find confidence intervals that satisfy the nesting condition thus
obtain a confidence distribution. (For instance, in the binomial example consider by Blaker
(2000) in Section 7.2, the classical tests such as those by Sterne (1953) and others violate the
nesting condition, and it is hard to directly relate them to a confidence distribution. But we can
alternatively use the Blaker method to get nested confidence intervals and thus a confidence
distribution easily.) An alternative approach is to mold the concept of confidence distribution to
“upper” and “lower” versions. We may study the latter in a future project.

Finally, the discussion in this article assumes that the underlying model is more or less given,
and we address the inferential problem given that the assumed model is correct. Theoretical
frameworks for development and applications of confidence distributions are not yet developed
to address the very important questions of model uncertainty, model diagnosis and model
selection. We look forward to seeing developments along these lines which, we believe, can bear
rich fruits for modern statistical applications.
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Résumé

Il est courant, en inférence fréquentielle, d’utiliser un point unique (une estimation ponctuelle) ou un intervalle
(intervalle de confiance) dans le but d’estimer un paramètre d’intérêt. Une question très simple se pose: peut-on
également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent
une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance
apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire,
longtemps associée, à tort, aux théories d’inférence fiducielle, ce qui a compromis son développement dans l’optique
fréquentielle. Les distributions de confiance ont récemment attiré un regain d’intérêt, et plusieurs résultats ont mis
en évidence leur potentiel considérable en tant qu’outil inférentiel. Cet article présente une définition moderne du
concept, et examine les ses évolutions récentes. Il aborde les méthodes d’inférence, les problèmes d’optimalité, et
les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et
unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les
lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu’aux a priori et posteriori
bayésiens. La discussion est entièrement menée d’un point de vue fréquentiel, et met l’accent sur les applications
dans lesquelles les solutions fréquentielles sont inexistantes ou d’une application difficile. Bien que nous attirions
également l’attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et
Bayésienne, notre intention n’est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous
espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue.
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