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A STABLE HIGH-ORDER PERTURBATION OF
SURFACES/ASYMPTOTIC WAVEFORM EVALUATION METHOD
FOR THE NUMERICAL SOLUTION OF GRATING SCATTERING

PROBLEMS *

MATTHEW KEHOE AND DAVID P. NICHOLLS f

Abstract. The scattering of electromagnetic radiation by a layered periodic diffraction grating
is an important model in engineering and the sciences. The numerical simulation of this experiment
has been widely explored in the literature and we advocate for a novel interfacial method which is
perturbative in nature. More specifically, we extend a recently developed High—Order Perturbation of
Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) algorithm to utilize a stabilized numerical
scheme which also suggests a rigorous convergence result. An implementation of this algorithm is
described, validated, and utilized in a sequence of challenging and physically relevant numerical
experiments.

Key words. High—Order Perturbation of Surfaces Methods; Asymptotic Waveform Evaluation;
High—Order Spectral Methods; Helmholtz equation; Layered Media.
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1. Introduction. The scattering of linear waves by a periodic layered structure
is a central model in many problems of scientific and engineering interest. Examples
arise in areas such as geophysics [58, 5], imaging [38], materials science [24], nanoplas-
monics [52, 35, 23], and oceanography [7]. In the particular case of nanoplasmonics,
there are many important topics such as extraordinary optical transmission [22], sur-
face enhanced spectroscopy [36], and surface plasmon resonance (SPR) biosensing
[27, 37, 28, 31].

Due to their technological importance, the numerical simulation of these diffrac-
tion gratings has generated a huge amount of interest including the application of all
of the classical approaches, e.g., Finite Differences [33], Finite Elements [29], Discon-
tinuous Galerkin [26], Spectral Elements [21], and Spectral Methods [25, 6, 56]. For
general geometries these specify extremely useful and accurate tools (e.g., COMSOL
Multiphysics [18]) for engineers and scientists alike. However, for structures with
simplifying features, such as homogeneous layering, these can be needlessly expensive
due to the unnecessary discretization of layer interiors. To address this, a whole class
of interfacial methods have been developed of which Boundary Integral/Boundary
Element Methods (BIM/BEM) are the most widely used [17, 32, 55]. These posit
unknowns at the layer interfaces thereby reducing the number of degrees of freedom
by an order of magnitude. While these schemes require particular care in their imple-
mentation (e.g., the design of special quadrature rules to achieve high—order accuracy,
sophisticated algorithms to rapidly sum the quasi—periodized Green function, and ap-
propriate preconditioning strategies for the iterative solution of the Non—Symmetric
Positive Definite linear system of equations) there are well-known implementations
that deliver results of surpassing accuracy and stability, see, e.g., [9, 10, 11].

In this paper we focus upon a very particular Quantity of Interest (Qol) in the
study of diffraction gratings, the Reflectivity Map, which is representative of a class
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of performance metrics for which we develop a special class of interfacial numerical
algorithms. The Reflectivity Map, R, measures the response (reflected energy) of a
periodically corrugated grating structure as a function of illumination frequency, w,
and corrugation amplitude, h. For each of the algorithms listed above, the response at
any given (w, h) pair requires a new simulation restarted from scratch. A High—Order
Perturbation of Surfaces (HOPS) method [46, 47] takes a perturbative view towards
the geometric dependence of R on h = ¢, ¢ < 1, by seeking the terms in the expansion
about € =0,

(oo}
R=R() =) Rne"
n=0

With this one can realize an enormous savings in computational effort by conducting
a new computation only for each choice of w and simply summing the formula above
for any desired value of e. We point out that the smallness requirement on ¢ can
probably be dropped provided that e is chosen to be real (see [45] for one possible
strategy for establishing this result rigorously).

Taking this philosophy to its natural conclusion, in [40] we considered w = (1 +
0)w = w + dw and performed a joint expansion of this map about (¢ = 0,w = w)

R = R(e,0) = i i Ry, me™d™.

n=0m=0

It seems that a single computation, recovering all of the R,, ,,, should be sufficient to
discover the entire Reflectivity Map. In fact the situation is not so simple as these ex-
pansions are not valid for all values of (g,4) and it was found in [40] that the Rayleigh
singularities (often called the Wood anomalies) enforced finite-size domains of conver-
gence in §. However, the results were so encouraging that we now undertake a more
in—depth investigation featuring a new formulation in terms of Dirichlet—-Neumann
Operators computed via an application of the stable, accurate, and rapid Tranformed
Field Expansions (TFE) algorithm [47] appropriate for a joint perturbation expan-
sion. Not only does this deliver an implementation with greatly enhanced stability
properties [47], but it also describes an algorithm that can be rigorously justified to
be convergent as we demonstrate in a forthcoming publication.

The paper is organized as follows. In Section 2 we summarize the equations
which govern the propagation of linear electromagnetic waves in a two—dimensional
periodic structure. In Section 2.1 we discuss the Transparent Boundary Conditions
we utilize to enforce the outgoing wave conditions rigorously, while in Section 2.2
we define the object of our study, the Reflectivity Map. In Section 3 we restate our
governing equations in terms of interfacial quantities via a Non—Overlapping Domain
Decomposition phrased in terms of Dirichlet—Neumann Operators (DNOs). We dis-
cuss our HOPS/AWE approach in Section 4 and our novel approach to computing the
DNOs in Section 5 (supplemented with a discussion of expansions of the surface data
in Section 5.1). In Section 6 we present our numerical results with a description of
implementation details in Section 6.1, our Fourier—Chebyshev method in Section 6.2,
and our use of Padé approximation in Section 6.3. We comment on issues of the
bounded domains of analyticity in our expansions in Section 6.4. In Section 6.5 we
validate our code with the Method of Manufactured Solutions, while in Section 6.6
we present results of multiple numerical simulations of the Reflectivity Map which we
conducted. In Section 6.7 we discuss the superior computational complexity our al-
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 3

gorithm enjoys for computing objects like the Reflectivity Map. Concluding remarks
are given in Section 7.

2. The Governing Equations. In this paper we consider a y—invariant, doubly
layered structure with a periodic interface separating the two materials; see Figure 1.
The d-periodic interface shape is specified by the graph of the function z = g(z),

xT

Fig. 1: A two-layer structure with a periodic interface, z = g(z), separating two
material layers, S and () illuminated by plane-wave incidence.

gz +d) = g(z). A dielectric (with refractive index n*) occupies the domain above
the interface

S = {z > g(x)},
while a material of refractive index n" is in the lower layer

SW) = {2 < g(x)}.
The superscripts are chosen to conform to the notation of the authors in previous
work [39, 42]. The structure is illuminated from above by monochromatic plane-wave
incident radiation of frequency w and wavenumber k% = n"w/cy = w/c* (co is the

speed of light) aligned with the grooves

Ei(m’ th) — Ae—iwt-‘riax—i'y z’ ﬂi(x,z,t) _ Be—iwt—i—iax—i'y z’

a:=k"sin(d), ~*:=k"cos(6).
‘We consider the reduced incident fields

E'(z,2) = ¢“'E'(z,2,1), H'(z,2)=“"H'(z,2,1),

This manuscript is for review purposes only.
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

where the time dependence exp(—iwt) has been factored out. As shown in [49],
the reduced electric and magnetic fields {E, H} are a—quasiperiodic like the incident
radiation. To close the problem we specify that the scattered radiation is “outgoing,”
upward propagating in S and downward propagating in S,

It is well known (see, e.g., Petit [49]) that in this two—dimensional setting, the
time—harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.
We define the invariant (y) direction of the scattered (electric or magnetic) field by
@ =z, z) and @ = w(z,z) in S™ and S, respectively. The incident radiation in
the upper field is defined as @'(x, 2).

Following our previous work [40] we further factor out the phase exp(icz) from
the fields w and w
[Le%y

—tax ~

u(z,z) =e w(z,z), w(z,z)=e "“uw(z,z),

which, we note, are d—periodic. In light of all of this, we are led to seek outgoing,
d-periodic solutions of

2.1a) Au + 2iad,u + (v*)*u = 0, z > g(x),
2.1Db) Aw + 2iad,w + (v)w = 0, z < g(z),
2.1c) u—w=_C(, z=g(x)
2.1d) Inu — i (0p9)u — 12 [Oyw — iy 9)w] = ¥, z = g(x),

9

where N := (—9,g,1)”. The Dirichlet and Neumann data are

(216) C(l‘) = _67i7u9(1’)’
(2.1f) () = (i7" + ia(Dag))e” I,
and

)

9 1, TE
T =
(ku/kw)Q — (nu/nw)Q’ TM,
where k¥ = n"w/cy = w/c¥ and ¥ = k¥ cos(d). Due to its importance in the
classical study of SPRs we will focus on TM polarization [52].

2.1. Transparent Boundary Conditions. The Upward Propagating Condi-
tion (UPC) and Downward Propagating Condition (DPC) [1] rigorously enforce the
outgoing wave conditions which we mentioned earlier. We now demonstrate how these
can be stated in terms of Transparent Boundary Conditions which also truncate the

bi—infinite problem domain to one of finite size. For this we choose values a and b
such that

a>|g‘ooa 7b<7|g‘ooa

and define the artificial boundaries {z = a} and {z = —b}. In {z > a} the Rayleigh
expansions [49] tell us that upward propagating solutions of (2.1a) are

o0
(2.2) u(z,z) = Z G,ePTTIE

p=—00

This manuscript is for review purposes only.
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 5

where, for g € {u,w},
(2.3) pi=—r, api=a+p, = 4/(k)2—a2 Im{yl} >0.

In a similar fashion, downward propagating solutions of (2.1b) in {z < —b} can be
expressed as

oo
w(x7z) _ Z dpesz—z’y;”z.

p=—00

With these we can define the Transparent Boundary Conditions in the following way:
Focusing on the UPC (the DPC is similar) we rewrite (2.2) as

uw )= Y (a,ee) e o S g o),

p=—00 p=—00

and note that,
u(w,a) = Y e =i &(),
p=—00

and

Doulw,a) = Y (i)™ = T (@),

p=—00

which defines the order—one Fourier multiplier T%. From this we state that upward—
propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a

(2.4) d.u(z,a) — T [u(z,a)] =0, z=a.

We note that a similar calculation leads to the Transparent Boundary Condition at
z=—b

(2.5) o,w(x,—b) — TY[w(x,—b)] =0, z=-b,
where
TU[W(x)] = > (=i )ibpe™.

We also point out that solutions which satisfy (2.4) and (2.5) equivalently satisfy the
UPC and DPC, respectively [1].

This manuscript is for review purposes only.
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6 MATTHEW KEHOE AND DAVID P. NICHOLLS

With these we now state the full set of governing equations as
(2.6a) Au + 2iad,u + (v*)*u = 0, z > g(x),
(2.6b) Aw + 2iad,w + (v7)?w = 0, z < g(z),
(2.6¢) u—w=_¢, z = g(x),
(2.6d) Onu — ia(0,9)u — 7% [Onw — ia(Drg)w] = 1P, z = g(x),
(2.6e) Ou(z,a) — T"[u(z,a)] =0, z = a,
(2.61) d,w(x,—b) — T [w(x,—b)] = 0, z = —b,
(2.6g) u(r +d, z) = u(z, 2),
(2.6h) w(zr +d, z) = w(x, 2).
2.2. The Reflectivity Map. Building upon the developments in the previous
section we can now define our Qol, the Reflectivity Map. Regarding the solution (2.2)

we note the very different character of the solution for wavenumbers p in the set
U ={pezla<k")7},

and those that are not. From our choice of the branch of the square root, components
of u(z, z) corresponding to p € U" propagate away from the layer interface, while those
not in this set decay exponentially from z = g(x). The latter are called evanescent
waves while the former are propagating (defining the set of propagating modes U")
and carry energy away from the grating. With this in mind one defines the efficiencies
[49]

u w o/ ouy A 2 m
ep::(P)/p/’V)|aP| ) peuu
and the Reflectivity Map
(2.7) R:= Z ep-
peU

Similar quantities can be defined in the lower layer [49], and with these the principle
of conservation of energy can be stated for structures composed entirely of dielectrics

g 6;4—7‘2 g eé”:l.
peUY peUw

In this situation a useful diagnostic of convergence for a numerical scheme (which we
will utilize later) is the “energy defect”

(2.8) Di=1- Y er—7>> ey,
peEU™ peEUW
which should be zero for a purely dielectric structure.

3. A Non—Overlapping Domain Decomposition Method. We now restate
our governing equations (2.6) in terms of surface quantities via a Non—Overlapping
Domain Decomposition Method [34, 20, 19]. In particular, if we define

Uz) = u(z,g(z)), Ulz):=—-nulz,g(x)),
W(z) = w(z,g(x)), W(z):=dyw(z,g(x)),

This manuscript is for review purposes only.



A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 7

202 where u is a d—periodic solution of (2.6a) and (2.6¢), and w is a d—periodic solution of
203 (2.6b) and (2.6f). In terms of these our full governing equations (2.6) are equivalent
204 to the pair of boundary conditions, (2.6¢) & (2.6d),

205 U-W=¢ —U—(ia)(@g)U — 72 [W — (ia) (8, )W] = 9.

206 This set of two equations for four unknowns can be closed by noting that the pairs
207 {U,U} and {W, W} are connected, e.g., by Dirichlet—Neumann Operators (DNOs)
208 G:U—=U, J:W-oW.

209 These are well-defined operators for sufficiently smooth g (e.g., g € C? [47]) thus we
210 focus on this interfacial reformulation of our governing equations

211 (3.1) AV =R,
212 where
I —I U ¢
21:¢ . - . . V = = .
23 (32) A <G + (0:9) (i) T2J — 72(819)(204)) ’ <W> » R (—¢>
214 4. A High—Order Perturbation of Surfaces/Asymptotic Waveform Eval-}j

215 uation (HOPS/AWE). At this point there are many approaches to simulate (3.1)
216 numerically. We take up a perturbative approach which makes two smallness assump-
217 tions:

218 1. Boundary Perturbation: g(z) =¢f(z),c € R, e < 1,

219 2. Frequency Perturbation: w = (1+J)w =w+dw, d € R, 0 < 1.

220 It is possible that one or both of these smallness demands can be relaxed, provided
221 that the parameters are real (c.f., [45, 48]). The second of these assumptions has the
222 following important consequences

223 El=w/ct=(1+0)w/c? = (14 §)k? = k7 + 0k, q € {u,w},

224 a=Ek"sin(f) = (14 6)k"sin(f) =: (1 4+ d)a = a+ da,

338 79 =k%cos(f) = (1 +0)y?cos(0) =: (14 )7? = + 077, q € {u,w}.

227 This, in turn, delivers

228 ap=a+p=a+da+p=q,+dia

229 At this point we now assume the joint analyticity of the operator A and function

230 R with respect to € and § which will induce a jointly analytic solution, V, of (3.1).
231 (All of this will be rigorously established in a forthcoming publication.) In this case
232 we can expand

o0 (o ]
233 (4.1) {A, V,R}(E,0) =Y > {Anm, Vim, R m Je"0™,

n=0m=0
234 and a straightforward calculation reveals that, at each perturbation order (n,m), we
235 must solve

n—1 m—1
236 AO,OVn,m = Rn,m - Z Anff,OVE,m - Z AO,WZ7T‘VTL,T

£=0 r=0

n—1m-—1

237 (42) - Z Z An—[,m—rvé,r-

238 £=0 r=0

This manuscript is for review purposes only.
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8 MATTHEW KEHOE AND DAVID P. NICHOLLS

At this point all that remains to be specified are the forms for the A,, ,, and Ry, m,
and a method to invert Ag .
A brief inspection of the formulas for A and R, (3.2), reveals that

I -1
(433‘) AO,O - (GO,O T2J0)0> )

0 0
Amm N (Gn,m TQJn,m)

(4.30) s (10} 01 0) |

(4'30) Rn,m = (_iz;:lm) 5

where 6, 4 is the Kronecker delta function. The forms for ¢, ,,, and ¥y, ,,, which depend
upon the incident radiation (e.g., we will investigate both a non—physical illumination
to validate our code, see Section 6.5, and plane-wave incidence, see Section 6.6), can
typically be stated explicitly. By contrast, formulas for the (n,m)-th corrections of
the Taylor expansions of the DNOs, G and J, must be simulated numerically. For
this we advocate the Method of Transformed Field Expansions (TFE) [47] which we
review in the following section.

0

-7

2), n#0or m#0,

5. Simulation of Dirichlet—Neumann Operators. As we mentioned in the
previous section, the only remaining specification for our algorithm is the computation
of the (n, m)-th term in the Taylor expansion of the DNOs, G and J. For brevity we
restrict our attention to the DNO in the upper layer, {g(z) < z < a}, and note that
the considerations for the lower layer are largely the same.

We recall the precise definition of the upper layer DNO [41]: Given an integer
s> 0and any 0 > 0, if g € C*+t3/219 the unique d-periodic solution of

(5.1a) Au + 2iadu + (v*)?u = 0, g(z) < z < q,
(5.1b) u(z, g(z)) = U(x), z=g(z),
(5.1c) ou(z,a) — T"[u(z,a)] =0, z = a,

defines the Upper Layer Dirichlet—Neumann Operator
(5.2) G(g) : U — U := —(dnu)(z, g(x)).

To simulate the DNO numerically we appeal to the Method of Transformed Field
Expansions (TFE) [43, 47] which begins with a domain—flattening change of variables
(the o—coordinates of oceanography [51] and the C—method of the dynamical theory

of gratings [16, 15])
. z/_a(z—gﬂ"f))
’ a—g(x)

With this we can rewrite the DNO problem, (5.1), in terms of the transformed field

d (@) = (a: <“‘j<x)> 2+ g(x')) ,

This manuscript is for review purposes only.



A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 9

274 as (upon dropping primes)

275 (5.3a) Au + 2iad,u + (v*)*u = F(x, 2), 0<z<a,
276 (5.3b) u(z,0) = U(z), z=0,
37z (5.3¢c) d.u(z,a) — T [u(z,a)] = J(x), z=a,

279 and (5.2) as
280 (5.4) G(9)[U] = —0,u(x,0) + H(x).

281 The forms for {F,J, H} have been derived and reported in [47] and, for brevity, we
282 do not repeat them here.

283 Following our HOPS/AWE philosophy we assume the joint boundary /frequency
284 perturbation

285 o(@) = ef(z), w=wtbw,
286 and study the effect of this on (5.3) and (5.4). These become

287 (5.5a) Au+ 2iad,u+ (") *u = F(z,z2), 0<z<a,

288 (5.5b) u(xz,0) = Ul(z), z=0,

359 (5.5¢) d.u(z,a) — T u(z,a)] = J(z), z=a,

291 and

292 (5.6) G(ef)[U] = —d.u(x,0) + H(z).

293 In these

294 F = —ediv [A; (f)Vu] — 2div [As(f)Vu] — eBy (f)Vu — e2By(f)Vu
295 — 2iad0,u — 0% (y"*)*u — 26(y"*)u

296 —2ieS1(f)ad,u — 2ieS1 (f)addu — eS1(£)6*(v*)*u

297 —2e51(f)6(v*)?u — eS1(£)(v*)u

208 — 2i%S5(f)ad,u — 2i® S (f)addyu — 2 Sa(£)6%(v*)u

39 (6.7 —2255(£)8(1")*u — €282(f) (") *u

301 and

302 (5.8) J= (sf( NT [u(z, a)],

303 and

304 (5.9) H = (8, f)0u(z,0) + €fG( HIU) - €2ﬂaTmamu(x,0) —£%(0,.1)%0.u(x,0).

305 It is not difficult to see that the forms for the A;, B;, and S; are

306 Ay = <(1) (1)> )

) ! —9f —(a = 2)(9:f)

307 A(f) a <_(a—z)(8zf) 0 ) ’
1 12 (a—2)f(0:f)

o 4= 3 (<a — D fO.f) (a- z)?(asz) ’

This manuscript is for review purposes only.
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10 MATTHEW KEHOE AND DAVID P. NICHOLLS
and

Bl(f) - a ( 0 ) y B2(f) - CTQ (—((L—Z)(axf)2) y
and

2 2
So=1, Sif)=~_f 5(f)=—5f"
At this point we posit the expansions
u(z, z;€,0) = Z Z Un,m (T, 2)e™6™, G(e,0) = Z Z Gr,me"d™,
n=0m=0 n=0m=0

and, upon insertion into (5.5) and (5.6), we find

(5.10a) At m + 2i005Un m + (V) tnm = Fp (2, 2), 0<z2<a,
(5.10b) Un,m (2,0) = §p 00m,0U (), z=0,
(5.10c¢) Dotinm (2, 0) — T [ty (7, 0)] = Ty (), z =a,
and

(511) Gn,m(f) = _8zun,m(x7 0) + ﬁn,m(‘r)'

The formulas for an, jnm and ffmm can be readily derived from (5.7), (5.8), and
(5.9) above.

Remark 5.1. In a forthcoming publication we will use the recursions (5.10) and
(5.11) to establish the joint analyticity of the DNO with respect to both interfacial
and frequency deformations.

5.1. Joint Expansion of Surface Data. In order to specify forms for the
surface data, {Cu.m;¥n,m}, We require some results from [40]. First we recall the
Taylor series expansion of the quantity v, (2.3), with respect to ¢ away from a
Rayleigh singularity (Wood anomaly) 1‘; =0.

LEMMA 5.2. [40] The quantity Y4 has Taylor series expansion
oo
7O =D Y m™,
m=0
where,
VZ,O = :I:lga

which we assume to be non—zero, giving rise to

m—1 _gq q
_ET:I ’}/p,me’yp,T
q
2717,0

q —
'Yp,m -

This manuscript is for review purposes only.
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A STABLE HOPS/AWE METHOD FOR GRATING SCATTERING 11

Remark 5.3. As we noted in [40] we must be away from a Rayleigh singularity,

ZZ =0, for all p in order for our expansion to be valid. See the final section of [40] for

a discussion of the behavior of the function v{(d) in the neighborhood of a Rayleigh
singularity.

Next we require the expansion of the composition of the exponenetial function
with the product of a function of € and a function of § jointly in € and §.

LEMMA 5.4. [40] Let E(g, V) := exp(g(x)V (5)) for a function g(x) and an ana-
lytic function

5) = i V0™
m=0

The composite function E(g,V) = E(ef,V (9)) is jointly analytic and has the Taylor
series expansion

n=0m=0
where
1, n=m=0,
< )0, n=0,m>0,
o (VO) = n>0m=0,

ni_,_l ET:O 8n,m—rvra n,m > 0.

Remark 5.5. We note that this latter Lemma can be effectively used to compute
the expansions of the functions

GO = £, (cf £inf(0) = E1EE0) = 30 3 EE 0, g€ (),

n=0m=0
which we presently require.

Using this Lemma we find Taylor expansions for the data generated by plane—wave
incidence (2.1e) and (2.1f). More specifically, for

C=Y " Came™™ = e

n=0m=0 n=0m=0
we have
Cn,m = - (1)?7:,7717
¢n,m = Z(llyp m— r)gO n,r (8xf)(20‘)50 n—1,m (awf) (ig)g(q)t,’nifl,mfl'
r=0

6. Numerical Results. We are now in a position to test a numerical implemen-
tation of our method and demonstrate its advantageous computational complexity.
Regarding the algorithm, our HOPS/AWE scheme is a High-~Order Spectral method
[25, 6, 56] in the same spirit as our related Transformed Field Expansion (TFE) al-
gorithm [47], where nonlinearities are approximated with convolutions implemented
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via the fast Fourier transform (FFT) algorithm. To test its validity we compare
simulations from our implementation of this HOPS/AWE method to exact solutions
constructed from the Method of Manufactured Solutions.

6.1. Implementation. As we mentioned above, our formulation of the scatter-
ing problem is

A(e,0)V(g,0) = R(e,9),

c.f. (3.1), and our HOPS/AWE approach asks for the joint expansion of the {A, V, R}
in Taylor series, c.f. (4.1), where the {V,, ,,} satisfy equation (4.2). In our approxi-
mation we begin by truncating the Taylor series

{A,V R}(e,0) = {AVM VI RNV (e, 5)
N M

(6.1) =) {Anms Vi, Ry Je"6™,

n=0m=0

and all that remains is to specify (i.) how the forms A,, ,, and R,, ,, in (4.3) are
simulated, and (ii.) how the operator Ag g is to be inverted.

For the latter we note that A g is diagonalized by the Fourier transform so that
Ao 0Vnm = Qn,m can be expressed as

Z AO’O(p)vnvm(p)eiﬁw: Z Qn,m(p)eiﬁwv

p=—00 p=—00

which implies

~ ~ -1
Vo) = [Aoo()]  Qun(p).

It is not difficult to see [39] that

Ao o(p) = ((—il'y;‘) 72(:2'17;,”)> ’

c.f. (4.3), implying that

Boat)] = (TG 1) e,

Remark 6.1. From these formulas it becomes obvious that the operator Ag is
always invertible and our algorithm is well-defined. Recalling that we assume a
dielectric in the upper layer (so that the incident radiation propagates) we have that
7, is either real and positive or purely imaginary (with positive imaginary part). If
a dielectric fills the lower layer then we have the same state of affairs for v’ so that,
given that 72 will be positive and real, A, # 0. Alternatively, if a metal fills the lower
layer then ~,” will be complex with positive imaginary part. While it is less obvious,
this ensures that, once again, A, # 0.

Regarding the forms A, ,,, and R, ;,,, these boil down to the simulation of the
terms Gy, and J, p, in Taylor series approximations of the DNOs, G and J. There
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is a large literature on the simulation of these operators in the case of a boundary
perturbation alone (see, e.g., [44]), however, a novelty of our current work is the
approximation of these DNOs jointly in interface and frequency deformation from the
recursions found in Section 5. As we presently describe, the method is very similar to
that presented in [44] save that additional elliptic solves are required.

6.2. A Fourier/Chebyshev Collocation Discretization. Focusing on the
upper layer DNO, G, we begin by approximating

(x,2;€,0) ZZunmxz"(Sm

n=0m=0

u(z, z;e,0) = u™MM

Each of these u, n(z, z) are then simulated by a Fourier-Chebyshev approach which
posits the form

N./2-1 N. 5
~ 9NV, Nz . E E ipx z—a
Un,m(xa Z) ~ Uy m (xa Z) = Up, ,m,p, L€ TK ( a > 5

p=—N,/2 £=0

where T; is the £-th Cheybshev polynomial. The unknowns, i, p¢ are recovered
from (5.10) by the collocation approach [25, 14, 6, 56, 57]. With this we can simulate
the upper layer DNO from (5.11), giving

N M
G(z;e,8) = GNM(x;¢,6) = Z Z Gnm(z)e™0™,
n=0m=0
where
N,/2—1
(6.2) Gnm(z) ~ leym( ) = Z én,m,peiﬁxv
p=—N,/2

and the G, ., are recovered from the U, m p ¢

6.3. Padé Approximation. We conclude our discussion of implementation
with consideration of how the Taylor series in (¢,60) are summed. For example, re-
garding the DNO, G, the approximation of G,(e, d) by

GNM€5 ZZGnmJ,s o,

n=0m=0

c.f. (6.2). The technique of Padé approximation [3] has been used with HOPS methods
to great advantage in the past [8, 45] and we advocate its use here. Classically, this
approach seeks to estimate the truncated Taylor series of a single variable

N
)= Qup" =~ Q(p),
n=0

by the rational function

aL L a ¢
L)) = s = 1+Z§4°_fbp o LEM=N
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14 MATTHEW KEHOE AND DAVID P. NICHOLLS

and
[L/M](p) = QN (p) + O (p"TM*1);

well-known formulas for the coefficients {as, by, } can be found in [3]. Padé approx-
imation enjoys greatly enhanced convergence properties and we refer the interested
reader to § 2.2 of Baker & Graves—Morris [3] and the insightful calculations of § 8.3
of Bender & Orszag [4] for a thorough discussion of the capabilities and limitations
of Padé approximants.

In the current context of functions analytic with respect to two perturbation
variables we utilize the polar coordinates

e=pcos(f), §=psin(h),

and write the function

Gy(e,0) = i i Grm pe™ o™

n=0m=0

= i i (én,m,p cos™(0) sinm(0)> prtm,

n=0m=0

Setting { = n +m and s = m we can write this as

00 4 o)
Gole.0) = { Gt ssop 05"~ (0) sinSw)} ot =3 Goy(0)'.
0 £=0

(=0 \s=

We then chose particular values of 8 = 6; between 0 and 27 and used classical Padé
approximation on the resulting {G/,(6;)} as a function of p alone.

6.4. The Domain of Analyticity. In a forthcoming publication we will rig-
orously demonstrate the joint analyticity of the fields, {u,w}, DNOs, {G,J}, and
solutions, {U, W}, with respect to both boundary, €, and frequency perturbations, 4.
While this result requires that both € and ¢ be sufficiently small, we suspect that the
smallness requirement on & can be removed, provided that it be real (see [45] for one
possible strategy). However, it is clear that no such extension exists for ¢ as we have
already seen how the expansion for v1(d) fails at a Rayleigh Singularity, 1;1) =0, c.f.
Lemma 5.2. Therefore the permissible values of § must be constrained by this.

To guide our computations we explore this restriction on ¢ in more detail. For

instance, in the upper layer, Rayleigh singularities occur when gf, = (k")? which
implies
(6.3) RPN U €z
. w=+t—<a+— or an .
w=+—_Tqa+—-r, y p

In the interest of maximizing our choice of § we select a “mid—point” value of w which
is as far away as possible from consecutive Rayleigh singularities

(6.4) w ::(30{064_277((14-1/2)}.

=9 nu d
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About this value the nearest singularities are

¢ 2 e
w;:=0{a+q}=w -

n 4 J T T
L Co 2m(q+1)\ _ mCo
“a ~—nu{“+d T g

so to maximize our range of w we choose, for some filling fraction 0 < o < 1,

() <o (22
w, —0o|(— w<w — ).
“q— O ntd YqTO ntd

To express this in terms of § we recall that w = (1 + ¢)w, which gives

TCo TCo
- § .
o (qu“d) <o<o <qu“d)

Simplifying gives

(65) (@i Faen) <0< (@mra)

6.5. Validation by the Method of Manufactured Solutions. To validate
our scheme we utilized the Method of Manufactured Solutions [13, 53, 54]. To sum-
marize, consider the general system of partial differential equations subject to generic
boundary conditions

Pv =0, in Q,
Bv =0, at 90.

It is typically easy to implement a numerical algorithm to solve the nonhomogeneous
version of this set of equations

Pou = f, in Q,
Bv=J, at 0.

To test an implementation we began with the “manufactured solution,” ¥, and set
Fv:=Pv, Jp:=J0.

Thus, given the pair {F,, J,} we had an ezact solution of the nonhomogeneous prob-
lem, namely v. While this does not prove an implementation to be correct, if the
function ¢ is chosen to imitate the behavior of anticipated solutions (e.g., satisfying
the boundary conditions exactly) then this gives us confidence in our algorithm.

We considered the periodic, outgoing solutions of the Helmholtz equation (2.6a)

up(z, 2) = AT E e 70 A, e C,
and their counterparts for (2.6b)
wy(x, 2) = B,e'™ ="' pcZ B,eC.

We selected the simple sinusoidal profile

(6.6) 9(2) = ef(w) = ¢ (C"S(‘l”“")) |
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16 MATTHEW KEHOE AND DAVID P. NICHOLLS

and defined the Dirichlet and Neumann traces

(6.7a) Ur(z) = ur(z,9(x), U.(z):=—0nu(z,g(z)),
(6.7b) W, (z) == w,(z,g(x)), W.(z):=dyw,(z,g(zx)).

From these we defined the two-layer data to be provided to our algorithm
(6.7¢) Coi=Up =Wy, by = —U, — 7°W,.

We chose the following physical parameters

(6.8) d=2n, a=0, &=1, =11, r=4, A.=5, B,=3,
in TM polarization, and the numerical parameters

(6.9) N,=32, N,=32, a=1, b=-1

With a rescaling of the frequency (e.g., via a change of the time variable, t' = t/cg)
we arrange for ¢g = 1 and considered the base frequency

Wy = 3/27

and filling fraction o = 0.99.
To illuminate the behavior of our scheme we studied four choices of the numerical
parameter

N =M =4,8,12,16,
and the physical quantities
e=10"210"%1075,10"8,

in (6.6). For this we supplied the “exact” input data, {(., ¥, }, from (6.7) to our
HOPS/AWE algorithm to simulate solutions of the two—layer problem giving {U2PProx T/ 2prrox} i
We compared this with the “exact” solutions {US**°*, W2t} and computed the rel-

ative error

|foact _ Ufpprox | -

exact |
| UT o0

Error,q =

We point out that measuring the defect in the upper—layer Dirichlet data was arbitrary
and we noticed similar behavior for the lower—layer analogue.

We report our results of these simulations in Figures 2 and 3. More specifically,
Figure 2 displays both the rapid and stable decay of the relative error for fixed N and
M, and how this rate of decay improves as (g,9) decrease. Figure 3 shows both how
the error shrinks as (e,0) become smaller, and that this rate is enhanced as both N
and M are increased.

6.6. Simulations of the Reflectivity Maps. In Section 2.2 we defined the
Reflectivity Map R = R(e,d), c.f. (2.7). Using our novel HOPS/AWE approach we
computed

RNvavaNz ~
HOPS/AWE ~~ 41
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-7
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-10

Relative Error

Relative Error

10t

0.01

A

0.008

0.006

0.004

0.002

1.2 1.4 16 18 12 1.4 16 18
w=w(l+d) w=w (1+9)
(&) N=M =4,e =102 (b) N=M =4,e =10"*
0% Relative Error <10 Relative Error
1 -5 1 -5
-6 -6
08 S 08 4
-8 -8
06 06
(5] * [ *
10 -10
0.4 04
11 11
0.2 12 02 12
13 13
0 1.2 1.4 16 1.8 o 12 1.4 16 18
w=w(1+4) w=w(1+43)
(c) N=M=4,e =109 () N=M=4,e=10"8

Fig. 2: Plot of relative error with fixed N = M = 4 and four choices of ¢ =
1072,107%,1075,10~® with Taylor summation. Physical parameters were (6.8) and
numerical discretization was (6.9).

for a range of € and §. As in our previous work [40], we show the kind of simula-
tions this HOPS/AWE method can produce with modest computational effort. For
this we selected w,, c.f. (6.4), for 1 < ¢ < 6 and simulated R in the following fre-
quency/wavelength ranges

g=1: wel[1.005,1.995]
g=2: w € [2.005,2.995]
g=3: we[3.0053.995

—4: we [4.005,4.995]
¢=5: we[5.005 5995
g=6: w e [6.0056.995]

\ € [3.14947,6.25193],
\ € [2.09789, 3.13376],
X € [1.57276,2.09091],
X € [1.25789, 1.56884),
X € [1.04807, 1.25538],
X\ € [0.89824, 1.04633],

Lrrell

c.f. (6.5). In addition, we selected
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Relative Error

10 Relative Error

-4

-6

-8

-10

-12

-14
1.2 14 16 1.8

0.01 -2 1

A

0.008 08

0.006 06

W -8 W
0.004 04
10
0.002 i 02
0 0
12 14 1.6 18 . :
w=w(l+d) w=w (1+9)
(&) N=M =4,e =102 (b) N=M =8,e=10"*
|1 o Relative Error . 1 o8 Relative Error .

1.2 1.4 1.6 1.8 12 1.4 16 1.8
w=w(1+4) w=w(1+43)
() N=M =12, =10"6 (d) N=M =16, =10"8

Fig. 3: Plot of relative error with four choices of N = M = 4,8,12,16 and four choices
of e =1072,107%,1075, 10~® with Taylor summation. Physical parameters were (6.8)
and numerical discretization was (6.9).

with the parameters

a=0, 0=099, n*“=1, n*=11 N,=32, N=M=16.

In Figure 4(a) we plot all six of these subsets of the Reflectivity Map on one set of
coordinate axes, and in Figure 4(b) we plot the energy defect, D, (2.8), to verify the
accuracy of our expansions.

We then changed the lower index of refraction n to match representative values
of silver and gold as reported by Johnson & Christy [30], in particular

nag = 0.05 +2.275i, na, = 1.48 4 1.883:.

Using the same frequency and wavelength ranges, we studied

f(x) =cos(4x), emax = 0.2,

This manuscript is for review purposes only.
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R
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0.96
0.95
0.05 I
0.94
-15
0 0.93
1 2 3 4 5 6
A

1 2 3 4 5 6
A

(a) Reflectivity Map (b) Energy Defect

19

Fig. 4: The Reflectivity Map, R(e,d), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 with a gran-
ularity of N. = N5y = 100 per invocation. Parameter choices were o« = 0, o = 0.99,

n*=1n"=11, and N, = 32.

ot
v
~

with the parameters

at
ot
oo

a=0, 0=099, n"=1, N,=32, N=M=15

In Figure 5(a) we plot six different subsets of the reflectivity map where the lower

R
02 . 1 1
‘ / 0.9 09
0.8 08
0.15
0.7 07
/ 05 06
w04 0s 0s
04 04
0.3 03
0.05
| 02 02
0.1 01
0 0
1 2 3 4 5 6 1 2 3 4 5 6
A A
(a) Reflectivity Map for Silver (b) Reflectivity Map for Gold

Fig. 5: The Reflectivity Map, R(e,d), for silver (left) and gold (right) with Padé
summation. We set N = M = 15 with a granularity of N. = N5 = 100 per invocation.
Parameter choices were o = 0, 0 = 0.99, n* = 1, n” = na, (left) and n™ = na,

(right), N, = 32, and the periodicity of the grating was selected as d = 2.

559

560 index of refraction is selected to model the optical constant of silver. In Figure 5(b) we
561 plot six different subsets of the Reflectivity Map where the lower index of refraction

562 is changed to the optical constant for gold.
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563 In the next set of simulations we dropped the assumptions that d = 27 and ¢q is
564 unity. We calculated the Reflectivity Map for a silver grating with a sinusoidal profile

1. (4
565 g(w) = (@), f(x)=sin (7) . d=0.28um, Emax = 0.2,

566 with the parameters

wt
2]
~

a=0, 0=099, n"=1, n"=na, N,=32,

568 and N = M =4,8,12,16. In Figure 6 we plot a single subset of the Reflectivity Map
569 corresponding to our parameter choices for silver. The combined plots show that as
both N and M become larger, our HOPS/AWE algorithm converges.

1.5 1.55 16 1.65 1.5 1.55 1.6 1.65
(c) N=M =12 () N=M=16

Fig. 6: The Reflectivity Map, R(e,d), for silver with Padé summation. We set N =
M = 4,8,12,16 with a granularity of N. = Ns = 100 per invocation. Parameter
choices were a = 0, 0 = 0.99, n* = 1, n" = nag, Ny = 32, and the periodicity of the
grating was selected as d = 0.28um.

at
=
o
(=)

We conclude with simulations of non-normal incidence (@ # 0) and we return to
the case d = 27 and unit ¢y. Recalling the Rayleigh singularity condition, (6.4), we
note the dependence on not only n* but also . With this in mind we revisited the

Tt ot ot
~N =~
W N =
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Reflectivity Map simulations from the beginning of the section in neighborhoods of
wgy, 1 < ¢ <3, giving rise to frequency /wavelength ranges

g=1: we[l0051.995] = X & [3.14947,6.25193)],
g=2: we[2005,2995 = \&[2.09789,3.13376],
g=3: we[3.0053.995 = A& [1.57276,2.09091].

We selected
f(z) =sin(3z), emax = 0.1,
with the parameters
a=01, =099, n"“=1, n®=23782, N, =64 N=M =13,
and the value of n* is meant to model carbon [50]. In Figure 7(a) we plot three

different subsets of the reflectivity map on one set of coordinate axes. In Figure 7(b)
we plot the energy defect, (2.8), to show the accuracy of our scheme in the case o # 0.

R D
0.1 7 1 0.1 0
0.08 /\ B 0.08
0.9 -
0.06 0.06 i
w /—\ 0.85 [ .
004 0.04
/\ 08 -
0.02 0.02
0.75 -
=14
0 0 :
2 3 4 5 6
A

(a) Reflectivity Map (b) Energy Defect

o & s SN e

=1

N

Fig. 7: The Reflectivity Map, R(e,d), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 13 with a granu-
larity of N, = Ns = 100 per invocation. Parameter choices were o = 0.1, 0 = 0.99,
n* =1, n* = 2.3782 (carbon), and N, = 64.

We conclude with computations of the same configuration but with increased
granularity, N = Ns = 1000 per invocation. In the next section we discuss the
advantageous computational complexity our HOPS/AWE algorithm enjoys in this
situation of large N, and Ns. We selected

f(x) =cos(x), emax =0.2,
with the parameters

a=00l, 0=099, n*=1 n*=11, N,=32, N=M=16.
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In Figure 8(a) we plot six different subsets of the Reflectivity Map on a single coor-
dinate axis, and in Figure 8(b) we plot the energy defect, (2.8), to demonstrate the
accuracy of our scheme with a nonzero value of a.

D
1 02 g \ 5
098 0.15
0.7
-10
. w04
0.96
0.95 R/
0.05 0.05 \J
0.94 /\—J
15
o 0.93 .
1 2 3 4 5 6 1 2 3 4 5 6
A A
(a) Reflectivity Map (b) Energy Defect

Fig. 8: The Reflectivity Map, R(e,d), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 with a granu-
larity of N, = Ns = 1000 per invocation. Parameter choices were a = 0.01, o = 0.99,
n*=1,n"=1.1, and N, = 32.

6.7. Computational Complexity. One of the primary motivations for our
HOPS/AWE algorithm is its superior computational complexity for problems within
its domain of applicability. In comparison with classical BIE methods, for instance,
the HOPS/AWE approach has several advantages for computing Qols like the Re-
flectivity Map, R = R(e,0). To demonstrate this we begin by fixing the problem of
computing R for N. many values of € and N5 many values of 4.

We recall from Section 6.2 that our HOPS/AWE algorithm requires N, x N, un-
knowns at every perturbation order, (n,m), corresponding to the N, equally—spaced
gridpoints in the lateral direction and the N, collocation points in the vertical dimen-
sion. A careful study of the HOPS/AWE recursions (4.2) reveals that the compu-
tational complexity of forming the right—hand side at order (n,m) (the most costly
step) is

O (nmN, log(N, )N, log(N,)).
Inverting the operator Ag o has complexity O (N, log(N, )N, log(N)) so the full cost
of computing the {Uy, m, Wi m}, {0 <n < N,0<m < M}, is
O (N?M?N, log(N,)N. log(N.)) .

Once these coefficients are recovered, the cost of summing the series in (g, d) is min-
imal, provided it is done in an efficient manner (e.g., by Horner’s rule [12, 2]). Our
algorithm then requires an additional O (N.Ns) steps to sum over every value of (g, J),
therefore the full cost of computing the Reflectivity Map by our HOPS/AWE method
is

O (N?M?N, log(N,)N, log(N.) + N.Njs) .
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In contrast, for a single (e, §) pair, a BIM solver with N, lateral gridpoints requires
time proportional to O (NS) for Gaussian elimination to solve the resulting dense
system of N, equations in N, unknowns [12, 2, 17]. Applying this N, x Ns times
results in a total computational complexity of

O (N2N.Ns) .

Thus, once N. and Nj become large, e.g.,

- N2M?2N,log(N,)N, log(N,)

N£N6 N3 ;
T

our new algorithm becomes far more efficient.

7. Conclusions. In this paper we have described a novel, High—Order Spectral
[25, 14] High-Order Perturbation of Surfaces (HOPS)/Asymptotic Waveform Eval-
uation (AWE) method [40] which employs a perturbation approach to address the
geometric and frequency deviations from a base configuration. For quantities which
depend upon both of these variables, such as the Reflectivity Map, this method enjoys
extremely favorable computational complexity as compared with standard numerical
methods such as Finite Differences, Finite Elements, and even Integral Equations.
Our HOPS/AWE algorithm has been shown to be rapid, robust, and highly accurate.
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