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Goals

1 Develop a numerical algorithm to record scattered energy in a
two–layer periodic structure.

2 Prove a theorem on the existence and uniqueness of solutions to a
system of partial differential equations which model the interaction of
linear waves in periodic layered media.
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Introduction

Maxwell’s Equations

As a starting point we consider the time–harmonic Maxwell’s equations of
electromagnetism in a homogeneous region:

∇× E = iωµ0H,

∇×H = −iωϵ0ϵE,

∇ · E = 0,

∇ ·H = 0.

E is the electric field, H is the magnetic field.

ϵ0 and µ0 represent the permittivity and permeability in vacuum.

ϵ is the complex permittivity, ω is the frequency.
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Introduction

Two–Dimensional Simplifications

We choose an interface shaped by z = g(x , y) where the normal is
defined by N := (−∂xg ,−∂yg , 1)T .
To obtain two-dimensional solutions, we assume the grating shape is
invariant in the y–direction:

z = g(x),

which implies that the interfacial normal becomes

N =

−∂xg
0
1

 .
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Introduction

The Geometry

A two-layer structure with a periodic
interface, z = g(x), separating two
material layers, S (u) and S (w).

We consider a y–invariant,
doubly layered structure. The
interface z = g(x) is d–periodic
so that g(x + d) = g(x).

A dielectric (with refractive
index nu) occupies the domain
above the interface

S (u) := {z > g(x)}.

A material of refractive index
nw is in the lower layer

S (w) := {z < g(x)}.
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Introduction

Incident Radiation

A two-layer structure with a periodic
interface, z = g(x), illuminated by
plane–wave incidence.

The structure is illuminated
from above by monochromatic
plane–wave incident radiation of
frequency ω.

We consider the reduced
incident fields

Ei (x , z) = e iωtEi (x , z , t),

Hi (x , z) = e iωtHi (x , z , t),

where the time dependence
exp(−iωt) is removed.

The scattered radiation is
“outgoing,” upward propagating
in S (u) and downward propagat-
ing in S (w).
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Governing Equations

Governing Equations for Layered Media

In this 2D setting the time-harmonic Maxwell equations decouple into
two scalar Helmholtz problems: Transverse electric (TE) and
transverse magnetic (TM) polarizations.

We define the invariant (y) directions of the scattered (electric or
magnetic) fields by {ũ, w̃} in S (u) and S (w) and seek
outgoing/bounded, periodic solutions of

∆ũ + (ku)2 = 0, z > g(x),

∆w̃ + (kw )2 = 0, z < g(x),

ũ − w̃ = −ũi , z = g(x),

∂N ũ − τ2∂N w̃ = −∂N ũi , z = g(x).

g(x) is the grating interface, ũi is the incident radiation.

τ2 = 1 in TE, τ2 = (ku/kw )2 in TM.

For q ∈ {u,w}, kq = ω/cq is the wavenumber.
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Governing Equations

Governing Equations Without Phase

We further factor out the phase exp(iαx) from the fields ũ and w̃

u(x , z) = e−iαx ũ(x , z), w(x , z) = e−iαx w̃(x , z).

With these, our governing equations consist of outgoing/bounded,
periodic solutions of

∆u + 2iα∂xu + (γu)2u = 0, z > g(x),

∆w + 2iα∂xw + (γw )2w = 0, z < g(x),

u − w = ζ, z = g(x),

∂Nu − iα(∂xg)u − τ2 [∂Nw − iα(∂xg)w ] = ψ, z = g(x).

α = ku sin(θ), and for q ∈ {u,w}, γq = kq cos(θ).
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Governing Equations

Artificial Boundaries

To truncate the bi–infinite problem domain to one of finite size we
choose values a and b such that

a > |g |∞ , −b < − |g |∞ ,

and define the artificial boundaries {z = a} and {z = −b}.
In {z > a} the Rayleigh expansions tell us that upward propagating
solutions of the Helmholtz equation are

u(x , z) =
∞∑

p=−∞
âpe

i p̃x+iγu
p z .

With this we can define the Transparent Boundary Conditions in the
following way: we rewrite the solution in the upper layer as

u(x , z) =
∞∑

p=−∞

(
âpe

iγu
pa
)
e i p̃x+iγu

p (z−a) =
∞∑

p=−∞
ξ̂pe

i p̃x+iγu
p (z−a).
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Governing Equations

Transparent Boundary Conditions

We then observe that

∂zu(x , a) =
∞∑

p=−∞
(iγup )ξ̂pe

i p̃x =: T u[ξ(x)],

which defines the order–one Fourier multiplier T u.

A similar procedure in the lower layer shows that we can write

∂zw(x ,−b) =
∞∑

p=−∞
(−iγwp )ψ̂pe

i p̃x =: Tw [ψ(x)],

for the order–one Fourier multiplier Tw .
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Governing Equations

Upward and Downward Propagating Solutions

From these we state that upward–propagating solutions of the upper
layer satisfy the Transparent Boundary Condition at z = a

∂zu(x , a)− T u[u(x , a)] = 0, z = a.

Similarly, downward–propagating solutions in the lower layer satisfy
the Transparent Boundary Condition at z = −b

∂zw(x ,−b)− Tw [w(x ,−b)] = 0, z = −b.
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Governing Equations

Full Governing Equations

With these we now state the full set of governing equations as

∆u + 2iα∂xu + (γu)2u = 0, z > g(x),

∆w + 2iα∂xw + (γw )2w = 0, z < g(x),

u − w = ζ, z = g(x),

∂Nu − iα(∂xg)u − τ2 [∂Nw − iα(∂xg)w ] = ψ, z = g(x),

∂zu(x , a)− T u[u(x , a)] = 0, z = a,

∂zw(x ,−b)− Tw [w(x ,−b)] = 0, z = −b,

u(x + d , z) = u(x , z),

w(x + d , z) = w(x , z).
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Governing Equations

Domain Decomposition Method

We now write our governing equations in terms of surface quantities.
For this we define the Dirichlet traces and their (outward) Neumann
counterparts

U(x) := u(x , g(x)), Ũ(x) := −∂Nu(x , g(x)),
W (x) := w(x , g(x)), W̃ (x) := ∂Nw(x , g(x)),

In terms of these our full governing equations are equivalent to the
pair of boundary conditions,

U −W = ζ,

−Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ.

The set of two equations and four unknowns can be closed by noting
that the pairs {U, Ũ} and {W , W̃ } are connected, e.g., by DNOs

G : U → Ũ, J : W → W̃ .
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Governing Equations

Interfacial Reformulation

The interfacial reformulation of our governing equations becomes

AV = R,

where

A =

(
I −I

G + (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
,

V =

(
U
W

)
, R =

(
ζ
−ψ

)
.
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High–Order Perturbation of Surfaces

Numerical Methods

A variety of numerical algorithms have been devised for the
simulation of these problems including Finite Difference, Finite
Element, and Spectral Element methods.

These methods suffer from the requirement that they discretize the
full volume of the problem domain.

We advocate the use of surface methods, especially the High–Order
Perturbation of Surfaces (HOPS) methods:

provide the solution at the interface.
only discretize the layer interfaces.
are highly accurate, rapid, and robust.

The HOPS methods are based on the foundational contributions of

Field Expansion (FE) method: Bruno & Reitich (1993).
Transformed Field Expansion (TFE) method: Nicholls & Reitich
(1999).
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High–Order Perturbation of Surfaces

Boundary and Frequency Perturbations

We take a perturbative approach which makes two smallness
assumptions:

1 Boundary Perturbation: g(x) = εf (x), ε ∈ R, ε≪ 1,
2 Frequency Perturbation: ω = (1 + δ)ω, δ ∈ R, δ ≪ 1.

The second of these assumptions has the following important
consequences

kq = (1 + δ)kq, α = (1 + δ)α, γq = (1 + δ)γq,

for q ∈ {u,w}.
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High–Order Perturbation of Surfaces

Transformed Field Expansions Method

The method of Transformed Field Expansions (TFE) proceeds a
domain–flattening change of variables prior to perturbation expansion.

Focusing on the upper layer, the change of variable is

x ′ = x , z ′ = a

(
z − g(x)

a− g(x)

)
,

which maps the perturbed domain {g(x) < z < a} to the separable
domain {0 < z ′ < a}.
A similar transformation occurs in the lower layer where the perturbed
domain {−b < z < g(x)} becomes {−b < z ′ < 0}.
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High–Order Perturbation of Surfaces

Perturbation Expansions

Provided f is sufficiently smooth, we will later show we will show the
joint analytic dependence of A = A(ε, δ) and R = R(ε, δ) upon ε and
δ, will induce a jointly analytic solution, V = V(ε, δ).

In this case we may expand

{A,V,R}(ε, δ) =
∞∑
n=0

∞∑
m=0

{An,m,Vn,m,Rn,m}εnδm,

and a calculation reveals that at every perturbation order (n,m), we
can find the Vn,m by solving

A0,0Vn,m = Rn,m −
n−1∑
ℓ=0

An−ℓ,0Vℓ,m −
m−1∑
r=0

A0,m−rVn,r

−
n−1∑
ℓ=0

m−1∑
r=0

An−ℓ,m−rVℓ,r .
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High–Order Perturbation of Surfaces

Order (n,m)

A brief inspection of the formulas for A and R, reveals that

A0,0 =

(
I −I

G0,0 τ2J0,0

)
,

An,m =

(
0 0

Gn,m τ2Jn,m

)
+ δn,1 {1 + δm,1} (∂x f )(iα)

(
0 0
1 −τ2

)
, n ̸= 0 or m ̸= 0,

Rn,m =

(
ζn,m
−ψn,m

)
.

δn,m is the Kronecker delta function and the forms for ζn,m and ψn,m

are known.
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High–Order Perturbation of Surfaces

Numerical Approximation

In our approximation we begin by truncating the Taylor series

{A,V,R}(ε, δ) ≈ {AN,M ,VN,M ,RN,M}(ε, δ)

:=
N∑

n=0

M∑
m=0

{An,m,Vn,m,Rn,m}εnδm,

where we must specify (i.) how the forms An,m are simulated, and
(ii.) how the operator A0,0 is to be inverted.

Regarding the forms An,m, these boil down to the (n,m)–th
corrections of the DNOs G and J, respectively, in a Taylor series
expansion of each jointly in ε and δ. We will simulate these
numerically.

The inversion of A0,0 will follow from the proof of existence and
uniqueness.
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High–Order Perturbation of Surfaces

A Fourier/Chebyshev Collocation Discretization

To show how we simulate An,m, we will focus on the upper layer
DNO, G . We begin by approximating

u(x , z ; ε, δ) ≈ uN,M(x , z ; ε, δ) :=
N∑

n=0

M∑
m=0

un,m(x , z)ε
nδm.

Each of these un,m(x , z) are then simulated by a Fourier–Chebyshev
approach which posits the form

un,m(x , z) ≈ uNx ,Nz
n,m (x , z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
ℓ=0

ûn,m,p,ℓe
i p̃xTℓ

(
2z − a

a

)
,

where Tℓ is the ℓ–th Cheybshev polynomial. The unknowns ûn,m,p,ℓ

are recovered by the collocation approach.
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High–Order Perturbation of Surfaces

Equispaced Grid Points / Collocation Points

As mentioned previously, the Fourier–Chebyshev approach posits the
form

un,m(x , z) ≈ uNx ,Nz
n,m (x , z) :=

Nx/2−1∑
p=−Nx/2

Nz∑
ℓ=0

ûn,m,p,ℓe
i p̃xTℓ

(
2z − a

a

)
.

More specifically, our HOPS/AWE algorithm requires Nx × Nz

unknowns at every perturbation order, (n,m).

As our problem is d–periodic in the lateral direction, we will expand
using a Fourier spectral method where we require Nx equally–spaced
gridpoints.

However, our problem is not z–periodic, so our strategy is to use a
Chebyshev spectral method in the vertical direction. For this, we
select Nz + 1 collocation points.
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High–Order Perturbation of Surfaces

Simulation of DNOs

With this we can simulate the upper layer DNO through

G (x ; ε, δ) ≈ GN,M(x ; ε, δ) :=
N∑

n=0

M∑
m=0

Gn,m(x)ε
nδm.

Here

Gn,m(x) ≈ GNx
n,m(x) :=

Nx/2−1∑
p=−Nx/2

Ĝn,m,pe
i p̃x ,

and the Ĝn,m,p are recovered from the ûn,m,p,ℓ.

We apply the same procedure to the lower layer DNO, J.
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Wave Scattering

The Rayleigh Expansions

Previously, we observed that solutions to the Helmholtz problem in
the upper layer can be expressed in terms of Rayleigh expansions

u(x , z) =
∞∑

p=−∞
âpe

i p̃x+iγu
p z .

For p ∈ Z we define

p̃ :=
2πp

d
, αp := α+ p̃, γup :=


√
(ku)2 − α2

p, p ∈ Uu,

i
√
α2
p − (ku)2, p ̸∈ Uu.
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Wave Scattering

Propagating Modes

We have

γup :=


√
(ku)2 − α2

p, p ∈ Uu,

i
√
α2
p − (ku)2, p ̸∈ Uu,

Uu :=
{
p ∈ Z | α2

p < (ku)2
}
.

Components of u(x , z) corresponding to p ∈ Uu propagate away from
the layer interface, while those not in this set decay exponentially
from z = g(x).

The latter are called evanescent waves while the former are
propagating (defining the set of propagating modes Uu) and carry
energy away from the grating.
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Wave Scattering

The Reflectivity Map

With this in mind one defines the efficiencies

eup := (γup/γ
u) |âp|2 , p ∈ Uu,

and the Reflectivity Map as the sum of efficiencies in the upper layer

R :=
∑
p∈Uu

eup .

Similar quantities can be defined in the lower layer, and with these
the principle of conservation of energy can be stated for structures
composed entirely of dielectrics∑

p∈Uu

eup + τ2
∑
p∈Uw

ewp = 1.
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Wave Scattering

Energy Defect

In this situation a useful diagnostic of convergence for a numerical
scheme is the “Energy Defect”

D := 1−
∑
p∈Uu

eup − τ2
∑
p∈Uw

ewp ,

which should be zero for a purely dielectric structure.

Matthew Kehoe Joint Analyticity (Thesis Defense) June 25, 2022 28 / 45



Wave Scattering

Rayleigh Singularities (Wood’s Anomalies)

The Taylor series expansion for γqp , q ∈ {u,w}, is

γqp = γqp (δ) =
∞∑

m=0

γqp,mδ
m.

Recalling γqp = (1 + δ)γq
p
, kq = (1 + δ)kq one finds

α2
p + (γq

p
)2 = (kq)2.

When γq
p
= 0, the Taylor series expansion of γqp (δ) is invalid. A

Rayleigh singularity (or Wood’s anamoly) occurs when α2
p = (kq)2.

Therefore, the permissible values of δ are constrained by this.
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Wave Scattering

The Domain of Analyticity

To guide our computations we explore this restriction on δ.

In the upper layer, Rayleigh singularities occur when α2
p = (ku)2

which implies

ω = ± c0
nu

{
α+

2πp

d

}
, for any p ∈ Z.

In the interest of maximizing our choice of δ we select a “mid–point”
value of ω which is as far away as possible from consecutive Rayleigh
singularities

ωq :=
c0
nu

{
α+

2π(q + 1/2)

d

}
.

Our algorithm will expand in δ at the “mid–points” away from
Rayleigh singularities.
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Wave Scattering

Simulation: Reflectivity Map for Vacuum over Dielectric

Figure 1: The Reflectivity Map, R(ε, δ), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 and the
parameter choices were α = 0, nu = 1, and nw = 1.1.
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Wave Scattering

Simulation: Reflectivity Map for Vacuum over Silver and
Gold

Figure 2: The Reflectivity Map, R(ε, δ), for silver (left) and gold (right) with
Padé summation. We set N = M = 15 and parameter choices were α = 0,
nu = 1, nw = 0.05 + 2.275i (left) and nw = 1.48 + 1.883i (right).

Matthew Kehoe Joint Analyticity (Thesis Defense) June 25, 2022 32 / 45



Joint Analyticity of Solutions

The interfacial reformulation of our governing equations is AV = R
and the formulas for A and R at order (n,m) are

A0,0 =

(
I −I

G0,0 τ2J0,0

)
,

An,m =

(
0 0

Gn,m τ2Jn,m

)
+ δn,1 {1 + δm,1} (∂x f )(iα)

(
0 0
1 −τ2

)
, n ̸= 0 or m ̸= 0,

Rn,m =

(
ζn,m
−ψn,m

)
.

We will now establish the existence, uniqueness, and analyticity of
solutions to AV = R.

To accomplish this we will show the joint analytic dependence of
A = A(ε, δ) and R = R(ε, δ) upon ε and δ, will induce a jointly
analytic solution, V = V(ε, δ).
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Joint Analyticity of Solutions

Theorem: Analyticity of Solutions [Kehoe,Nicholls 22]

Theorem

Given two Banach spaces X and Y , suppose that

H1 Rn,m ∈ Y for all n,m ≥ 0, and there exists constants
BR > 0,CR,N > 0,CR,M > 0,DR > 0 such that

∥Rn,m∥Y ≤ CR,NCR,MBn
RD

m
R ,

H2 An,m : X → Y for all n,m ≥ 0, and there exists constants
BA > 0,CA,N > 0,CA,M > 0,DA > 0 such that

∥An,m∥X→Y ≤ CA,NCA,MBn
AD

m
A ,

H3 A−1
0,0 : Y → X for all n,m ≥ 0, and there exists a constant Ce > 0

such that
∥A−1

0,0∥Y→X ≤ Ce .
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Joint Analyticity of Solutions

Theorem: Analyticity of Solutions (Continued)

Theorem (continued)

Then, given an integer s ≥ 0, if f ∈ C s+2([0, d ]) then the linear system
AV = R has a unique solution,

∑
n,m Vn,mε

nδm, and there exist constants
B,C ,D > 0 such that

∥Vn,m∥X s ≤ CBnDm,

for all n,m ≥ 0. This implies that for any 0 ≤ ρ, σ < 1,
∑

n,m Vn,mε
nδm

converges for all ε such that Bε < ρ, i.e., ε < ρ/B and all δ such that
Dδ < σ, i.e., δ < σ/D.
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Joint Analyticity of Solutions

Sketch of Proof

First, we define the vector–valued spaces for s ≥ 0

X s :=

{
V =

(
U
W

)∣∣∣∣U,W ∈ Hs+3/2([0, d ])

}
,

Y s :=

{
R =

(
ζ
−ψ

)∣∣∣∣ ζ ∈ Hs+3/2([0, d ]), ψ ∈ Hs+1/2([0, d ])

}
.

These have the norms

∥V∥2X s =

∥∥∥∥(U
W

)∥∥∥∥2
X s

:= ∥U∥2Hs+3/2 + ∥W ∥2Hs+3/2 ,

∥R∥2Y s =

∥∥∥∥( ζ
−ψ

)∥∥∥∥2
Y s

:= ∥ζ∥2Hs+3/2 + ∥ψ∥2Hs+1/2 .
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

Hypothesis H1: Consider the Banach spaces X = X s and Y = Y s .
Our first task is to show that

Rn,m =

(
ζn,m
−ψn,m

)
,

is bounded in Y s for any s ≥ 0.

Upon performing the boundary/frequency perturbations, we define

E(x ; ε, δ) := e−i(1+δ)γuεf (x),

so that

ζ(x) = ζ(x ; ε, δ) = −E(x ; ε, δ),
ψ(x) = ψ(x ; ε, δ) =

{
i(1 + δ)γu + i(1 + δ)α(ε∂x f )

}
E(x ; ε, δ).

A joint Taylor expansion followed by an induction argument shows
that ∥ζn,m∥Hs+3/2 and ∥ψn,m∥Hs+1/2 are bounded. Therefore,
∥Rn,m∥Y s is bounded.
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

Hypothesis H2: Our next task is to show that the operators Gn,m

and Jn,m in

A′
n,m =

(
0 0

Gn,m τ2Jn,m

)
,

for the Taylor series expansions of the DNOs satisfy the appropriate
bounds.

For brevity, we will outline our technique for the Taylor expansion of
the upper layer DNO, Gn,m.

Lemma (Algebra Property): Given an integer s ≥ 0, there exists a
constant M = M(s) such that if f ∈ C s([0, d ]) and u ∈ Hs([0, d ]×
[0, a]) then

∥fu∥Hs ≤ M|f |C s ∥u∥Hs .
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

The bound on Gn,m follows from
1 Applying the boundary and frequency perturbations followed by the

TFE method results in the upper layer DNO problem

∆un,m + 2iα∂xun,m + (γu)2un,m = Fn,m(x , z), 0 < z < a,

un,m(x , 0) = Un,m(x), z = 0,

∂zun,m(x , a)− T u[un,m(x , a)] = Pn,m(x), z = a,

where
Gn,m(f ) = −∂zun,m(x , 0) + Hn,m(x).

2 The Algebra Property establishes bounds on the non–homogeneous
terms Fn,m, Pn,m, and Hn,m.

3 With these, the Elliptic Estimate and an induction argument
establishes

∥un,m∥Hs+2 ≤ KBnDm,

for constants K ,B,D > 0. This shows that the transformed upper field
is jointly analytic with respect a boundary/frequency perturbation.
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

The bound on Gn,m follows from (continued)
4 The bound on the upper layer DNO

Gn,m(f ) = −∂zun,m(x , 0) + Hn,m(x),

then follows from the joint analyticity of the transformed upper field,
un,m, an induction argument, and the fact that Hn,m is bounded.

5 One finds
∥Gn,m∥Hs+1/2 ≤ K̃ B̃nD̃m,

for constants K̃ , B̃, D̃ > 0 which shows that Gn,m is bounded. A similar
argument works for the lower layer DNO, Jn,m, so that An,m is bounded
and H2 is satisfied.
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

Hypothesis H3: Our final task is show that A−1
0,0 exists and the

estimates and mapping properties of A−1
0,0 hold where A0,0 is defined

by

A0,0 =

(
I −I

G0,0 τ2J0,0

)
.

We define the operator

∆ := G0,0 + τ2J0,0 = (−iγuD) + τ2(−iγwD ),

so that ∆−1 exists and that

∆ : Hs+3/2 → Hs+1/2, ∆−1 : Hs+1/2 → Hs+3/2.
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Joint Analyticity of Solutions

Sketch of Proof (Continued)

Next, we write generic elements of X s and Y s as

V =

(
U
W

)
∈ X s , R =

(
ζ
−ψ

)
∈ Y s .

Using the definitions of the norms of X s and Y s we find

∥A0,0V∥2Y s ≤ C ∥V∥2X s ,

so that A0,0 maps X s to Y s . Furthermore,∥∥∥A−1
0,0R

∥∥∥2
X s

≤ C∆−1 ∥R∥2Y s ,

which shows that A−1
0,0 maps Y s to X s .

Thus, ∥A−1
0,0∥Y s→X s is bounded and the mapping properties hold.
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Conclusion

Conclusion

We seek outgoing/bounded, periodic solutions of the scattering problem

∆u + 2iα∂xu + (γu)2u = 0, z > g(x),

∆w + 2iα∂xw + (γw )2w = 0, z < g(x),

u − w = ζ, z = g(x),

∂Nu − iα(∂xg)u − τ2 [∂Nw − iα(∂xg)w ] = ψ, z = g(x).

1 Numerical Algorithm

DNOs, boundary/frequency perturbations, and COV through TFE
Joint Taylor expansion followed by Fourier/Chebyshev collocation
Simulated scattered energy through Reflectivity map

2 Joint Analyticity of Solutions

Reformulate governing equations in terms of a linear system
Sobolev space theory: Algebra Property and Elliptic Estimate
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Future Work

1 Extend HOPS/AWE algorithm to multilayered surfaces with different
material layers. Introduce a new DNO to handle the intermediate
layers.

2 Implement parallel programming techniques to handle the
computation of the intermediate layers.

3 Introduce multiple small perturbation parameters outside of an
interfacial perturbation and a frequency perturbation. Extend the
proof of analyticity to handle any finite number of perturbation
parameters.

4 Develop techniques to expand around Rayleigh singularities where the
Taylor series expansion is invalid.
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