Turán problems and shadows III: expansions of graphs

Alexandr Kostochka* Dhruv Mubayi[†] Jacques Verstraëte[‡]

July 8, 2014

Abstract

The expansion G^+ of a graph G is the 3-uniform hypergraph obtained from G by enlarging each edge of G with a new vertex disjoint from V(G) such that distinct edges are enlarged by distinct vertices. Let $\operatorname{ex}_3(n,F)$ denote the maximum number of edges in a 3-uniform hypergraph with n vertices not containing any copy of a 3-uniform hypergraph F. The study of $\operatorname{ex}_3(n,G^+)$ includes some well-researched problems, including the case that F consists of K disjoint edges [5], K is a triangle [4, 8, 17], K is a path or cycle [11, 12], and K is a tree [6, 7, 9, 10, 13]. In this paper we initiate a broader study of the behavior of $\operatorname{ex}_3(n,G^+)$. Specifically, we show

$$ex_3(n, K_{s,t}^+) = \Theta(n^{3-3/s})$$

whenever t > (s-1)! and $s \ge 3$. One of the main open problems is to determine for which graphs G the quantity $\operatorname{ex}_3(n, G^+)$ is quadratic in n. We show that this occurs when G is any bipartite graph with Turán number $o(n^{\varphi})$ where $\varphi = \frac{1+\sqrt{5}}{2}$, and in particular, this shows $\operatorname{ex}_3(n, Q^+) = \Theta(n^2)$ where Q is the three-dimensional cube graph.

1 Introduction

An r-uniform hypergraph F, or simply r-graph, is a family of r-element subsets of a finite set. We associate an r-graph F with its edge set and call its vertex set V(F). Given an r-graph F, let $\operatorname{ex}_r(n,F)$ denote the maximum number of edges in an r-graph on n vertices that does not contain F. The expansion of a graph G is the 3-graph G^+ with edge set $\{e \cup \{v_e\} : e \in G\}$ where v_e are distinct vertices not in V(G). By definition, the expansion of G has exactly |G| edges. Note that Füredi and Jiang [9, 10] used a notion of expansion to r-graphs for general r, but this paper considers only 3-graphs.

Expansions include many important hypergraphs whose extremal functions have been investigated. For instance, the celebrated Erdős-Ko-Rado Theorem [5] for 3-graphs is the case of expansion of a matching. A well-known result is that $\exp(n, K_3^+) = \binom{n-1}{2}$ [4, 8, 17]. If a graph

^{*}University of Illinois at Urbana-Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1266016 and by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research.

[†]Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607. E-mail: mubayi@uic.edu. Research partially supported by NSF grants DMS-0969092 and DMS-1300138.

[†]Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA. E-mail: jverstra@math.ucsd.edu. Research supported by NSF Grant DMS-1101489.

is not 3-colorable then its expansion has positive Turán density and this case is fairly well understood [15, 18], so we focus on the case of expansions of 3-colorable graphs. It is easy to see that $\operatorname{ex}_3(n, G^+) = \Omega(n^2)$ unless G is a star (the case that G is a star is interesting in itself, and for $G = P_2$ determining $\operatorname{ex}_3(n, G^+)$ constituted a conjecture of Erdős and Sós [6] which was solved by Frankl [7]). The authors [12] had previously determined $\operatorname{ex}_3(n, G^+)$ exactly (for large n) when G is a path or cycle of fixed length $k \geq 3$, thereby answering questions of Füredi-Jiang-Siever [11] and Füredi-Jiang [10]. The case when G is a forest is solved asymptotically in [13], thus settling a conjecture of Füredi [9]. The following straightforward result provides general bounds for $\operatorname{ex}_3(n, G^+)$ in terms of the number of edges of G.

Proposition 1.1. If G is any graph with v vertices and $f \geq 4$ edges, then for some a > 0,

$$an^{3-\frac{3v-9}{f-3}} \le ex_3(n,G^+) \le (n-1)ex_2(n,G) + (f+v-1)\binom{n}{2}.$$

The proof of Proposition 1.1 is given in Section 3. Some key remarks are that $ex_3(n, G^+)$ is not quadratic in n if f > 3v - 6, and if G is not bipartite then the upper bound in Proposition 1.1 is cubic in n. This suggests the question of identifying the graphs G for which $ex_3(n, G^+) = O(n^2)$, and in particular evaluation of $ex_3(n, G^+)$ for planar G.

1.1 Expansions of planar graphs

We give a straightforward proof of the following proposition, which is a special case of a more general result of Füredi [9] for a larger class of triple systems.

Proposition 1.2. Let G be a graph with treewidth at most two. Then $ex_3(n, G^+) = O(n^2)$.

On the other hand, there are 3-colorable planar graphs G for which $\operatorname{ex}_3(n, G^+)$ is not quadratic in n. To state this result, we need a definition. A proper k-coloring $\chi: V(G) \to \{1, \ldots, k\}$ is acyclic if every pair of color classes induces a forest in G. We pose the following question:

Question 1. Does every planar graph G with an acyclic 3-coloring have $ex_3(n, G^+) = O(n^2)$?

Let g(n,k) denote the maximum number of edges in an n-vertex graph of girth larger than k.

Proposition 1.3. Let G be a planar graph such that in every proper 3-coloring of G, every pair of color classes induces a subgraph containing a cycle of length at most k. Then $ex_3(n, G^+) = \Omega(ng(n,k)) = \Omega(n^{2+\Theta(\frac{1}{k})})$.

The last statement follows from the known fact that $g(n,k) \geq n^{1+\Theta(\frac{1}{k})}$. The octahedron graph O is an example of a planar graph where in every proper 3-coloring, each pair of color classes induces a cycle of length four, and so $\exp(n,O^+) = \Omega(n^{5/2})$. Even wheels do not have acyclic 3-colorings, and we do not know whether their expansions have quadratic Turán numbers.

Question 2. Does every even wheel G have $ex_3(n, G^+) = O(n^2)$?

1.2 Expansions of bipartite graphs

The behavior of $ex_3(n, G^+)$ when G is a dense bipartite graph is somewhat related to the behavior of $ex_2(n, G)$ according to Proposition 1.1. In particular, Proposition 1.1 shows that for $t \ge s \ge 2$ and some constants a, c > 0,

$$an^{3-\frac{3s+3t-9}{st-3}} \le \exp_3(n, K_{s,t}^+) \le cn^{3-\frac{1}{s}}.$$

We show that both the upper and lower bound can be improved to determine the order of magnitude of $ex_3(n, K_{s,t}^+)$ when good constructions of $K_{s,t}$ -free graphs are available (see Alon, Rónyai and Szabo [2]):

Theorem 1.4. Fix $3 \le s \le t$. Then $\exp_3(n, K_{s,t}^+) = O(n^{3-\frac{3}{s}})$ and, if $t > (s-1)! \ge 2$, then $\exp_3(n, K_{s,t}^+) = \Theta(n^{3-\frac{3}{s}})$.

The case of $K_{3,t}$ is interesting since $\exp_3(n, K_{3,t}^+) = O(n^2)$, and perhaps it is possible to determine a constant c such that $\exp_3(n, K_{3,3}^+) \sim cn^2$, since the asymptotic behavior of $\exp_2(n, K_{3,3})$ is known, due to a construction of Brown [3] and the upper bounds of Füredi [9]. In general, the following bounds hold for expansions of $K_{3,t}$:

Theorem 1.5. For fixed
$$r \ge 1$$
 and $t = 2r^2 + 1$, we have $(1 - o(1))\frac{t-1}{12}n^2 \le \exp_3(n, K_{3,t}^+) = O(n^2)$.

The upper bound in this theorem is a special case of a general upper bound for all graphs G with $\sigma(G^+) = 3$ (see Theorem 1.7). Finally, we prove a general result that applies to expansions of a large class of bipartite graphs.

Theorem 1.6. Let G be a graph with $\exp(n, G) = o(n^{\varphi})$, where $\varphi = (1 + \sqrt{5})/2$ is the golden ratio. Then $\exp(n, G) = O(n^2)$.

Let \mathbb{Q} be the graph of the 3-dimensional cube (with 8 vertices and 12 edges). Erdős and Simonovits [6] proved $\exp(n, \mathbb{Q}) = O(n^{1.6}) = o(n^{\varphi})$, so a corollary to Theorem 1.6 is that

$$ex_3(n, \mathbb{Q}^+) = \Theta(n^2).$$

Determining the growth rate of $\exp(n, \mathbb{Q})$ is a longstanding open problem. Since it is known that for any graph G the 1-subdivision of G has Turán Number $O(n^{3/2})$ – see Alon, Krivelevich and Sudakov [1] – Theorem 1.6 also shows that for such graphs G, $\exp(n, G^+) = \Theta(n^2)$. Erdős conjectured that $\exp(n, G) = O(n^{3/2})$ for each 2-degenerate bipartite graph G. If this conjecture is true, then by Theorem 1.6, $\exp(n, G^+) = O(n^2)$ for any 2-degenerate bipartite graph G.

1.3 Crosscuts

A set of vertices in a hypergraph containing exactly one vertex from every edge of a hypergraph is called a *crosscut* of the hypergraph, following Frankl and Füredi [8]. For a 3-uniform hypergraph F, let $\sigma(F)$ be the minimum size of a crosscut of F if it exists, i.e.,

$$\sigma(F) := \min\{|X| : \forall e \in F, |e \cap X| = 1\}$$

if such an X exists. Since the triple system consisting of all edges containing exactly one vertex from a set of size $\sigma(F) - 1$ does not contain F, we have

$$\operatorname{ex}_{3}(n,F) \ge (\sigma(F) - 1 + o(1)) \binom{n}{2}. \tag{1}$$

An intriguing open question is: For which F an asymptotic equality is attained in (1)? Recall that a graph has tree-width at most two if and only if it has no subdivision of K_4 . Informally, these are subgraphs of a planar graph obtained by starting with a triangle, and then picking some edge uv of the current graph, adding a new vertex w, and then adding the edges uw and vw.

Question 3. Is it true that

$$\operatorname{ex}_{3}(n, G^{+}) \sim (\sigma(G^{+}) - 1) \binom{n}{2} \tag{2}$$

for every graph G with tree-width two?

If G is a forest or a cycle, then (2) holds [12, 13] (corresponding results for r > 3 were given by Füredi [9]). If G is any graph with $\sigma(G^+) = 2$, then again (2) holds [13]. Proposition 1.1 and Theorem 1.4 give examples of graphs G with $\sigma(G^+) = 4$ and $\exp(n, G^+)$ superquadratic in n. This leaves the case $\sigma(G^+) = 3$, and in this case, Theorem 1.5 shows that $\exp(n, K_{3,t}^+)/n^2 \to \infty$ as $t \to \infty$, even though $\sigma(K_{3,t}^+) = 3$ for all $t \ge 3$. A quadratic upper bound for $\exp(n, K_{3,t}^+)$ in Theorem 1.5 is a special case of the following theorem:

Theorem 1.7. For every G with $\sigma(G^{+}) = 3$, $ex_{3}(n, G^{+}) = O(n^{2})$.

2 Preliminaries

Notation and terminology. A 3-graph is called a triple system. The edges will be written as unordered lists, for instance, xyz represents $\{x,y,z\}$. For a set X of vertices of a hypergraph H, let $H-X=\{e\in H:e\cap X=\emptyset\}$. If $X=\{x\}$, then we write H-x instead of H-X. The codegree of a pair $\{x,y\}$ of vertices in H is $d_H(x,y)=|\{e\in H:S\subset e\}|$ and for a set S of vertices, $N_H(S)=\{x\in V(H):S\cup \{x\}\in H\}$ so that $|N_H(S)|=d_H(S)$ when |S|=2. The shadow of H is the graph $\partial H=\{xy:\exists e\in H,\{x,y\}\subset e\}$. The edges of ∂H will be called the sub-edges of H.

An r-graph H is d-full if every sub-edge of H has codegree at least d.

Thus H is d-full is equivalent to the fact that the minimum non-zero codegree in H is at least d. The following lemma from [13] extends the well-known fact that each graph G has a subgraph of minimum degree at least d with at least |G| - (d-1)|V(G)| edges.

Lemma 2.1. For $r \geq 2, d \geq 1$, every n-vertex r-graph H has a (d+1)-full subgraph F with

$$|F| \ge |H| - d |\partial H|$$
.

Proof. A d-sparse sequence is a maximal sequence $e_1, e_2, \ldots, e_m \in \partial H$ such that $d_H(e_1) \leq d$, and for all i > 1, e_i is contained in at most d edges of H which contain none of $e_1, e_2, \ldots, e_{i-1}$. The r-graph F obtained by deleting all edges of H containing at least one of the e_i is (d+1)-full. Since a d-sparse sequence has length at most $|\partial H|$, we have $|F| \geq |H| - d|\partial H|$. \square

3 Proofs of Propositions

Proof of Proposition 1.1. The proof of the lower bound in Proposition 1.1 is via a random triple system. The idea is to take a random graph not containing a particular graph G, and then observe that the triple system of triangles in the random graph does not contain G^+ . Consider the random graph on n vertices, whose edges are placed independently with probability p, to be chosen later. If X is the number of triangles and Y is the number of copies of G in the random graph, then

$$\mathbb{E}(X) = p^3 \binom{n}{3}$$
 $\mathbb{E}(Y) \le p^f n^v$.

Therefore choosing $p = 0.1n^{-(v-3)/(f-3)}$, since $f \ge 4$, we find

$$\mathbb{E}(X - Y) > 0.0001n^{3 - 3(v - 3)/(f - 3)}$$
.

Now let H be the triple system of vertex-sets of triangles in the graph obtained by removing one edge from each copy of G in the random graph. Then $\mathbb{E}(|H|) \geq \mathbb{E}(X - Y)$, and $G^+ \not\subset H$. Select an H so that $|H| \geq 0.0001n^{3-3(v-3)/(f-3)}$. This proves the lower bound in Proposition 1.1 with a = 0.0001.

Now suppose G is a bipartite graph with f edges e_1, e_2, \ldots, e_f and v vertices. If a triple system H on n vertices has more than $(n-1)\mathrm{ex}_2(n,G)+(f+v-1)\binom{n}{2}$ triples, then by deleting at most $(f+v-1)\binom{n}{2}$ triples we arrive at a triple system $H'\subset H$ which is (f+v)-full, by Lemma 2.1 and $|H'|>(n-1)\mathrm{ex}_2(n,G)$. There exists $x\in V(H')$ such that more than $\mathrm{ex}_2(n,G)$ triples of H' contain x. So the graph of all pairs $\{x,y\}$ such that $\{w,x,y\}\in H'$ contains G. Since every pair $\{w,y\}$ has codegree at least f+v, we find vertices $z_1,z_2,\ldots,z_f\notin V(G)$ such $e_i\cup\{z_i\}\in H'$ for all $i=1,2,\ldots,f$, and this forms a copy of G^+ in H'. \square

Proof of Proposition 1.2. Let G be a graph of tree-width two. Then $G \subset F$, where F is a graph obtained from a triangle by repeatedly adding a new vertex and joining it to two adjacent vertices of the current graph. It is enough to show $\exp_3(n, F^+) = O(n^2)$. Suppose F has v vertices and f edges. By definition, F has a vertex x of degree two such that the neighbors x' and x'' of x are adjacent. Then F' := F - x has v - 1 vertices and f - 2 edges. Let H be an n-vertex triple system with more than $(v + f - 1)\binom{n}{2}$ edges. By Lemma 2.1, H has a (v + f)-full subgraph H'. We claim H' contains F^+ . Inductively, H' contains a copy H'' of the expansion of F'. By the definition of H', $\{x', x''\}$ has codegree at least v + f in H'. Therefore we may select a new vertex z that is not in H'' such that $\{z, x', x''\}$ is an edge of H', and now F is embedded

in H' by mapping x to z. \square

Proof of Proposition 1.3. Let G be a 3-colorable planar graph with the given conditions. To show $\operatorname{ex}_3(n,G^+)=\Omega(ng(n,k))$, form a triple system H on n vertices as follows. Let F be a bipartite $\lfloor \frac{n}{2} \rfloor$ -vertex graph of girth k+1 with at least $\frac{1}{2}g(\lfloor \frac{n}{2} \rfloor,k)$ edges. Let U and V be the partite sets of F. Let X be a set of $\lceil \frac{n}{2} \rceil$ vertices disjoint from $U \cup V$. Then set $V(H) = U \cup V \cup X$ and let the edges of H consist of all triples $e \cup \{x\}$ such that $e \in F$ and $x \in X$. Then

$$|H| \ge |X| \cdot g(\lfloor \frac{n}{2} \rfloor, k) = \Omega(ng(n, k)).$$

4 Proof of Theorem 1.6

Proof of Theorem 1.6. Suppose $\exp(n,G) = o(n^{\varphi})$ and |G| = k, and H is an G^+ -free 3-graph with $|H| \geq (k+1)\binom{n}{2}$. By Lemma 2.1, H has a k-full-subgraph H_1 with at least $n^2/3$ edges. If $G \subset \partial H_1$, then we can expand G to $G^+ \subset H_1$ using that H_1 is k-full. Therefore $|\partial H_1| \leq \exp(n,G) = o(n^{\varphi})$. By Lemma 2.1, and since $|H_1| \geq \delta n^2$, H_1 has a non-empty $n^{2-\varphi}$ -full subgraph H_2 if n is large enough. Let H_3 be obtained by removing all isolated vertices of H_2 and let $m = |V(H_3)|$. Since H_3 is $n^{2-\varphi}$ -full, $m > n^{2-\varphi}$. Since H_1 is G^+ -free, $H_3 \subset H_1$ is also G^+ -free, and therefore if $F = \partial H_3$, $|V(F)| = |V(H_3)| = m$ and $|F| \leq \exp(m,G) = o(m^{\varphi})$. So some vertex v of the graph $F = \partial H_3$ has degree $o(m^{\varphi-1})$. Now the number of edges of F between vertices of $N_F(v)$ is at least the number of edges of H_3 containing v. Since H_3 is $n^{2-\varphi}$ -full, there are at least $\frac{1}{2}n^{2-\varphi}|N_F(v)|$ such edges. On the other hand, since the subgraph of F induced by $N_F(v)$ does not contain G, the number of such edges is $o(|N_F(v)|^{\varphi})$. It follows that $n^{2-\varphi} = o(|N_F(v)|^{\varphi-1})$. Since $|N_F(v)| = o(m^{\varphi-1}) = o(n^{\varphi-1})$, we get $2 - \varphi < (\varphi - 1)^2$, contradicting the fact that φ is the golden ratio. \square

5 Proof of Theorem 1.4

Proof of Theorem 1.4. For the upper bound, we repeat the proof of Theorem 1.6 when $F = K_{s,t}$, using the bounds $\exp(n, K_{s,t}) = O(n^{2-1/s})$ provided by the Kövari-Sós-Turán Theorem [14], except at the stage of the proof where we use the bound on $\exp(|N_G(v)|, F)$, we may now use

$$\operatorname{ex}_2(|N_G(v)|, K_{s-1,t}) = O(|N_G(v)|^{2-1/(s-1)})$$

for if the subgraph of G of edges between $N_G(v)$ contains $K_{s-1,t}$, then by adding v we see G contains $K_{s,t}$. A calculation gives $|H| = O(n^{3-3/s})$.

For the lower bound we must show that $\exp(n, K_{s,t}^+) = \Omega(n^{3-3/s})$ if t > (s-1)!. We will use the projective norm graphs defined by Alon, Rónyai and Szabo [2]. Given a finite field \mathbb{F}_q and an integer $s \geq 2$, the norm is the map $N : \mathbb{F}_{q^{s-1}}^* \to \mathbb{F}_q^*$ given by $N(X) = X^{1+q+\cdots+q^{s-2}}$. The norm is a (multiplicative) group homomorphism and is the identity map on elements of \mathbb{F}_q^* . This implies that for each $x \in \mathbb{F}_q^*$, the number of preimages of x is exactly

$$\frac{q^{s-1}-1}{q-1} = 1 + q + \dots + q^{s-2}.$$
 (3)

Definition 5.1. Let q be a prime power and $s \geq 2$ be an integer. The projective norm graph PG(q, s) has vertex set $V = \mathbb{F}_{q^{s-1}} \times \mathbb{F}_q^*$ and edge set

$$\{(A,b)(B,b): N(A+B) = ab\}.$$

Lemma 5.2. Fix an integer $s \geq 3$ and a prime power q. Let $x \in \mathbb{F}_q^*$, and $A, B \in \mathbb{F}_{q^{s-1}}$ with $A \neq B$. Then the number of $C \in \mathbb{F}_{q^{s-1}}$ with

$$N\left(\frac{A+C}{B+C}\right) = x\tag{4}$$

is at least q^{s-2} .

Proof. By (3) there exist distinct $X_1, \ldots, X_{q^{s-2}+1} \in \mathbb{F}_{q^{s-1}}^*$ such that $N(X_i) = x$ for each i. As long as $X_i \neq 1$, define

$$C_i = \frac{BX_i - A}{1 - X_i}.$$

Then $(A + C_i)/(B + C_i) = X_i$, and $C_i \neq C_j$ for $i \neq j$ since $A \neq B$. \square

Lemma 5.3. Fix an integer $s \ge 3$ and a prime power q. The number of triangles in PG(q, s) is at least $(1 - o(1))q^{3s-3}/6$ as $q \to \infty$.

Proof. Pick a vertex (A,a) and then one of its neighbors (B,b). The number of ways to do this is at least $q^{s-1}(q-1)(q^{s-1}-1)$. Let x=a/b and apply Lemma 5.2 to obtain at least $q^{s-2}-2$ distinct $C \notin \{-A, -B\}$ satisfying (4). For each such C, define

$$c = \frac{N(A+C)}{a} = \frac{N(B+C)}{b}.$$

Then (C,c) is adjacent to both (A,a) and (B,b). Each triangle is counted six times in this way and the result follows.

For appropriate n the n-vertex norm graphs PG(q,s) (for fixed s and large q) have $\Theta(n^{2-1/s})$ edges and no $K_{s,t}$. By Lemma 5.3 the number of triangles in PG(q,s) is $\Theta(n^{3-3/s})$. The hypergraph H whose edges are the vertex sets of triangles in PG(q,s) is a 3-graph with $\Theta(n^{3-3/s})$ edges and no $K_{s,t}^+$. This completes the proof of Theorem 1.4. \square

6 Proof of Theorems 1.5 and 1.7

We need the following result.

Theorem 6.1. Let F be a 3-uniform hypergraph with v vertices and $ex_3(n, F) < c\binom{n}{2}$. Then $ex_3(n, (\partial F)^+) < (c + v + |F|)\binom{n}{2}$.

Proof. Suppose we have an n vertex 3-uniform hypergraph H with $|H| > (c + v + |H|)\binom{n}{2}$. Apply Lemma 2.1 to obtain a subhypergraph $H' \subset H$ that is (v + |F|)-full with $|H'| > c\binom{n}{2}$. By definition, we may find a copy of $F \subset H'$ and hence a copy of $\partial F \subset \partial H'$. Because H' is (v + |F|)-full, we may expand this copy of ∂F to a copy of $(\partial F)^+ \subset H' \subset H$ as desired. \Box

Define H_t to be the 3-uniform hypergraph with vertex set $\{a, b, x_1, y_1, \dots, x_t, y_t\}$ and 2t edges $x_i y_i a$ and $x_i y_i b$ for all $i \in [t]$. It is convenient (though not necessary) for us to use the following theorem of the authors [16].

Theorem 6.2. ([16]) For each $t \ge 2$, we have $ex_3(n, H_t) < t^4\binom{n}{2}$.

Proof of Theorems 1.5 and 1.7. First we prove the upper bound in Theorem 1.7. Suppose $\sigma(G^+) \leq 3$. This means that G has an independent set I and set R of edges such that I intersects each edge in G - R, and $|I| + |R| \leq 3$. It follows that G is a subgraph of one of the following graphs (Cases (i) and (ii) correspond to |I| = 1, Case (iii) corresponds to |I| = 2, and Case (iv) corresponds to |I| = 3):

- (i) $K_4 e$ together with a star centered at one of the degree 3 (in $K_4 e$) vertices,
- (ii) two triangles sharing a vertex x and a star centered at x,
- (iii) the graph obtained from $K_{2,t}$ by adding an edge joining two vertices in the part of size t,
- (iv) $K_{3,t}$.

Now suppose we have a 3-uniform H with $|H| > cn^2$ for some c > |G| + |V(G)|. Applying Lemma 2.1, we find a c-full $H' \subset H$ with $|H'| > c\binom{n}{2}$. As in the proof of Theorem 6.1, it is enough to find G in $\partial H'$. Since $|H'| > c\binom{n}{2}$, the codegree of some pair $\{x,y\}$ is at least c+1. Then the shadow of the set of triples in H' containing $\{x,y\}$ contains the graph of the form i). Similarly, H' contains two edges sharing exactly one vertex, say x, and the shadow of the set of triples in H' containing x contains the graph of the form ii). If G is of the form in iii), we apply Theorems 6.1 and 6.2 and observe that $\partial H_t \supset G$. Finally, if $G \subseteq K_{3,t}$ then we apply Theorem 1.4.

For the lower bound in Theorem 1.5, we use a slight modification of the construction in Theorem 1.4. Set s=3 and let r|q-1. Let Q_r denote a subgroup of \mathbb{F}_q^* of order r. Define the graph $H=H_r(q)$ with $V(H)=\mathbb{F}_{q^2}\times\mathbb{F}_q^*/Q_r$ and two vertices (A,aQ_r) and (B,bQ_r) are adjacent in H if $N(A+B)\in abQ_r$. Then H has $n=(q^3-q^2)/r$ vertices and each vertex has degree q^2-1 . It also follows from [2] that H has no $K_{3,t}$ where $t=2r^2+1$. Now we construct a

3-uniform hypergraph H' with V(H') = V(H) and whose edges are the triangles of H. We must count the number of triangles in H to determine |H'|. For every choice of (A,a), (B,b) in $\mathbb{F}_{q^2} \times \mathbb{F}_q^*$, the number of $(C,c) \in \mathbb{F}_{q^2} \times \mathbb{F}_q^*$ with $C \neq A, B, N(A+C) = ac$ and N(B+C) = bc is at least q-2 by (the proof of) Lemma 5.3. Consequently, the number of (C,c) such that $N(A+C) \in acQ_r$ and $N(B+C) \in bcQ_r$ is at least $r^2(q-2)$. Since (C,c) satisfies these equations iff (C,cq) satisfies these equations for all $q \in Q_r$ (i.e. the solutions come in equivalence classes of size r), the number of common neighbors of (A,aQ_r) and (B,bQ_r) is at least r(q-2). The number of edges in R is at least $(1-o(1))q^5/2r$, so the number of triangles in R is at least $(1-o(1))q^6/6 = (1-o(1))(r^2/6)n^2$. \square

7 Concluding remarks

- In this paper we studied $\exp(n, G^+)$ where G is a 3-colorable graph. If G has treewidth two, then we believe $\exp(n, G^+) \sim (\sigma(G^+) 1)\binom{n}{2}$ (Question 3), and if G has an acyclic 3-coloring, then we believe $\exp(n, G^+) = O(n^2)$ (Question 1). We are also not able to prove or disprove $\exp(n, G^+) = O(n^2)$ when G is an even wheel (Question 2). This is equivalent to showing that if F is an n-vertex graph with a superquadratic number of triangles, then F contains every even wheel with a bounded number of vertices.
- A number of examples of 3-colorable G with superquadratic $\exp(n, G^+)$ were given. In particular we determined the order of magnitude of $\exp(n, K_{s,t}^+)$ when near-extremal constructions of $K_{s,t}$ -free bipartite graphs are known. One may ask for the asymptotic behavior of $\exp(n, K_{3,t}^+)$ for each $t \geq 3$, since in that case we have shown $\exp(n, K_{3,t}^+) = \Theta(n^2)$. Finally, we gave a general upper bound on $\exp(n, G^+)$ when G is a bipartite graph, and showed that if G has Turán number much smaller than n^{φ} where φ is the golden ratio, then $\exp(n, G^+) = O(n^2)$. Determining exactly when $\exp(n, G^+)$ is quadratic in G remains an open problem for further research.

References

- [1] Alon, N.; Krivelevich, M.; Sudakov, B. Turán numbers of bipartite graphs and related Ramsey-type questions. Combinatorics, Probability and Computing 12 (2003), 477–494.
- [2] N. Alon, L. Rónyai and T. Szabó. Norm-graphs: variations and applications, J. Combinatorial Theory, Ser. B 76 (1999), 280–290.
- [3] W. Brown, On graphs that do not contain a Thomsen graph, Canadian Mathematical Bulletin 9 (1966), 281–285.
- [4] Csákány, R.; Kahn, J. A homological approach to two problems on finite sets. J. Algebraic Combin. 9 (1999), no. 2, 141–149.
- [5] Erdős, P.; Ko, C.; Rado, R. Intersection theorems for systems of finite sets, The Quarterly Journal of Mathematics. Oxford. Second Series (1961) 12, 313–320.

- [6] Erdős, P. Extremal problems in graph theory in: Theory of Graphs and its Applications, M. Fiedler (Ed.), Academic Press, New York (1965), pp. 29–36.
- [7] Frankl, P. On families of finite sets no two of which intersect in a singleton. Bull. Austral. Math. Soc. 17 (1977), no. 1, 125–134.
- [8] Frankl, P.; Füredi, Z. Exact solution of some Turán-type problems. J. Combin. Theory Ser. A 45 (1987), no. 2, 226–262.
- [9] Füredi, Z. Linear trees in uniform hypergraphs. European J. Combin. Theory Ser. A 35 (2014), 264–272.
- [10] Füredi, Z.; Jiang, T. Hypergraph Turán numbers of linear cycles. Preprint (2013). arXiv:1302.2387
- [11] Füredi, Z.; Jiang, T.; Seiver, R. Exact solution of the hypergraph Turán problem for k-uniform linear paths, To appear in Combinatorica (2013).
- [12] Kostochka, A.; Mubayi, D.; Verstraëte, J.; Turán problems and shadows I: paths and cycles, submitted.
- [13] Kostochka, A.; Mubayi, D.; Verstraëte, J.; Turán problems and shadows II: trees, submitted.
- [14] Kövari, T.; Sós, V. T.; Turán, P. On a problem of K. Zarankiewicz. Colloquium Math. 3, (1954). 50–57.
- [15] Mubayi, D. A hypergraph extension of Turán's theorem. J. of Combinatorial Theory, Ser. B, 96 (2006), no. 1, 122–134.
- [16] Mubayi, D.; Verstraëte, J. A hypergraph extension of the Bipartite Turán problem, Journal of Combinatorial Theory, Series A 106 (2004) no. 2, 237–253.
- [17] Mubayi, D.; Verstraëte, J. Proof of a conjecture of Erdős on triangles in set-systems. Combinatorica 25 (2005), no. 5, 599–614.
- [18] Pikhurko, O. Exact Computation of the Hypergraph Turán Function for Expanded Complete 2-Graphs. J. Combinatorial Theory Ser. B 103 (2013) 220–225.