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Abstract We compute the averages over elliptic curves of the constants occurring in
the Lang–Trotter conjecture, the Koblitz conjecture, and the cyclicity conjecture. The
results obtained confirm the consistency of these conjectures with the corresponding
“theorems on average” obtained recently by various authors.

1 Introduction

Let E be an elliptic curve defined over the rational numbers, by which we understand
a Weierstrass equation of the form

y2 = x3 + ax + b (a, b ∈ Q)

for which the discriminant !E := −16(4a3+27b2) is non-zero. For a prime p of good
reduction for E (in other words, a prime p for which a and b are integral modulo p
and !E is non-zero modulo p), let E p denote the reduction of E modulo p, viewed as
an elliptic curve over the finite field Z/pZ. There are various conjectured asymptotics
for functions which count good primes p up to x for which the reduced curve E p has
certain properties. In this paper we will focus on three such questions, although our
methods are applicable to a wider range of problems.

For a fixed integer r , let

πE,r (x) = |{p ≤ x : p of good reduction for E, ap(E) = r}|,
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686 N. Jones

where ap(E) = p+1−|E p(Z/pZ)| is the trace of the Frobenius endomorphism of E
at p. Lang and Trotter [14], using a probabilistic model consistent with the Chebotarev
density theorem and the Sato–Tate conjecture, predicted an asymptotic for πE,r (x):

Conjecture 1 (Lang–Trotter) Assume that either E has no complex multiplication or
that r $= 0. Then

πE,r (x) ∼ CE,r ·
√

x
log x

as x → ∞,

where CE,r is a specific constant.

We will describe the constant CE,r in detail in Sect. 2. The second conjecture we
will consider involves the counting function

πE,prime(x) := |{p ≤ x : p of good reduction for E, |E p(Z/pZ)| is prime}|.

Conjecture 2 (Koblitz)

πE,prime(x) ∼ CE,prime · x
(log x)2 as x → ∞,

where CE,prime is a specific constant.

Finally we will consider the cyclicity conjecture, which has been settled condi-
tionally by Serre [18] and unconditionally in the CM case by Murty [15] and also by
Cojocaru [5]. Let

πE,cyclic(x) := |{p ≤ x : p of good reduction for E, E p(Z/pZ) is a cyclic group}|.

Conjecture 3 (Cyclicity conjecture)

πE,cyclic(x) ∼ CE,cyclic · x
log x

as x → ∞,

where CE,cyclic is a specific constant.

We remark that, in case the constant happens to vanish, i.e. if

CE,r = 0
(
resp. CE,prime = 0 or CE,cyclic = 0

)
,

then each conjectured asymptotic is interpreted to mean that the corresponding count-
ing functions are finite, i.e. that

lim
x→∞ πE,r (x) < ∞

(
resp. lim

x→∞ πE,prime(x) < ∞ or lim
x→∞ πE,cyclic(x) < ∞

)
.

Recently, various authors have proven that these conjectures “hold on average over
elliptic curves.” More precisely, for non-negative parameters A and B, let F =
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Averages of elliptic curve constants 687

F(A, B) denote the set of elliptic curves Y 2 = X3 +aX +b with (a, b) ∈ ([−A, A]×
[−B, B]) ∩ Z2. When A = A(x) and B = B(x) depend on an auxiliary parameter x ,
we will employ the abbreviation

F(x) := F(A(x), B(x)).

Fouvry and Murty [9] (in case r = 0) and later David and Pappalardi [7] (in case
r $= 0) proved Conjecture 1 on average: for any ε > 0, if min{A(x), B(x)} ≥ x1+ε

then

1
|F(x)|

∑

E∈F(x)

πE,r (x) ∼ Cr ·
√

x
log x

, as x → ∞, (1)

where Cr is a specific constant. Baier [2] has recently shortened the length of the aver-
age of David and Pappalardi, replacing “x1+ε” with “x3/4+ε” (which is what Fouvry
and Murty had obtained in the r = 0 case).

Balog et al. [3] have proved a similar average theorem for Conjecture 2: for any
ε > 0, if min{A(x), B(x)} ≥ x1+ε then

1
|F(x)|

∑

E∈F(x)

πE,prime(x) ∼ Cprime · x
(log x)2 , as x → ∞, (2)

where Cprime is a specific constant.
Finally, Banks and Shparlinski [4] have proved Conjecture 3 unconditionally on

average: for any ε > 0, if x1/2+ε ≤ A(x), B(x) ≤ x1−ε then

1
|F(x)|

∑

E∈F(x)

πE,cyclic(x) ∼ Ccyclic · x
log x

, as x → ∞, (3)

where Ccyclic is a specific constant.
In this paper we will prove that each of these average results is consistent with

the corresponding conjectured result on the level of the constants. We will make the
notation uniform.

Notation 4 Throughout the rest of this paper, let CE denote any one of the constants
CE,r , CE,prime, or CE,cyclic, and let C denote the corresponding average constant Cr ,
Cprime, or Ccyclic. In the case where E has CM and r = 0, we formally extend the
definition of the Lang–Trotter constant by setting

CE,0 := C0 = π

3
.

Our first theorem is conditional upon an affirmative answer to the following ques-
tion of Serre [16, p. 299]. In its statement, Q(E[p]) denotes the pth division field of
E , i.e. the field obtained by adjoining to Q the x and y-coordinates of the p-torsion
points of a given Weierstrass model of E .
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688 N. Jones

Question 5 Does there exist an absolute constant c so that, for any prime p ≥ c and
any elliptic curve E over Q without complex multiplication, one has

Gal (Q(E[p])/Q) , GL2(Z/pZ)?

We remark that, in [17, p. 199], Serre asks in particular whether one can take c = 41.
In the present paper, we prove the following theorem.

Theorem 6 Assume that Question 5 has an affirmative answer. Then there exists an
exponent γ > 0 such that, for any positive integer k, we have

1
|F(A, B)|

∑

E∈F(A,B)

|CE −C |k -k max






(
log B · (log A)7

B

) k
k+1

,
logγ (min{A, B})√

min{A, B}




.

In the case of the Lang–Trotter conjecture, the implied constant also depends on r.

Note that, since there is no prime-counting function involved in our theorem, there
is no need to regard A and B as depending on an auxiliary variable x .

Remark 7 As we will see in Proposition 15 below, there is always a positive propor-
tion of elliptic curves E over Q for which CE $= C . As studied in [10,20], for number
fields K $= Q with K ∩ Qcyc = Q, for “almost all” elliptic curves E over K one has
CE = C in these problems. Thus, this is a setting in which the situation over Q is
more delicate than that over number fields.

The following corollary of Theorem 6 partially addresses a question in Sect. 2 of
[7].

Corollary 8 Suppose that A(x) and B(x) both tend to infinity with x. Then, provided
that Question 5 has an affirmative answer and that

lim
x→∞

log B(x) · (log A(x))7

B(x)
= 0,

we have

1
|F(x)|

∑

E∈F(x)

CE −→ C as x → ∞.

Taking k = 2, we also note the following corollary to Theorem 4 of [2] (see also
Theorem 1.4 of [7]), which bounds the mean-square error in the Lang–Trotter conjec-
ture.

Corollary 9 Let ε > 0 and c > 0 be given and suppose that Question 5 has an affir-
mative answer. Then, provided that x1+ε < min{A(x), B(x)}, x3+ε < A(x) · B(x) <

exp(exp(
√

x/(log x)c)), and that

(
log B(x) · (log A(x))7

B(x)

)2/3

- 1
(log x)c−2 ,
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Averages of elliptic curve constants 689

one has

1
|F(x)|

∑

E∈F(x)

∣∣∣∣πE,r (x) − CE,r

√
x

log x

∣∣∣∣
2

- x
(log x)c .

(The difference between this corollary and Theorem 4 of [2] is that we have replaced
the average constant Cr with CE,r ).

Unconditionally, we prove a statement about averages over Serre curves (we will
review the notion of a Serre curve in Sect. 3).

Theorem 10 For any positive integer k, one has

1
|F(A, B))|

∑

E∈F(A,B)
E is a Serre curve

|CE − C |k -k
1
A

+
(

log B · (log A)7

B

) k
k+1

.

Because of the fact that

1
|F(A, B)|

∑

E∈F(A,B)
E is a Serre curve

1 −→ 1

as min{A, B} → ∞ (c.f. [12]), Theorem 10 provides evidence that Theorem 6 should
hold unconditionally.

2 The constants

In this section we will describe precisely the constants occuring in the conjectures
under consideration, as well as the corresponding average constants. Their description
involves the division fields of E , whose notation we now fix. Recall that we are always
implicitly viewing E as a Weierstrass equation over Q.

Notation 11 For each positive integer n, denote by Q(E[n]) the nth division field of
E, obtained by adjoining to Q the x and y-coordinates of the n-torsion of E, and by

Gn(E) := Gal (Q(E[n])/Q)

the associated Galois group. Since E[n] is a free Z/nZ-module of rank 2, we may (by
fixing a Z/nZ-basis) view Gn(E) as a subgroup of GL2(Z/nZ).

We will distinguish between the case where E has complex multiplication (CM)
and the case where E does not (non-CM). Since almost all elliptic curves are non-CM
[8], our only interest in the CM case is to obtain upper bounds for CE .
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690 N. Jones

2.1 The non-CM case and the average constants

In the non-CM case, the constant CE has the form

CE = f (m E , Gm E (E)) ·
∏

%!m E

f (%, GL2(Z/%Z)),

where f (n, G) is some function of the level n and the subgroup G ≤ GL2(Z/nZ),
and where m E is a positive integer depending on the torsion representation attached
to E . We begin by describing m E . Another way to phrase Notation 11 is to say that
there is a group homomorphism

ϕE,n : GQ → GL2(Z/nZ),

defined by letting the absolute Galois group GQ := Gal (Q/Q) act on the n-torsion
points of E , and we are denoting the image of ϕE,n by Gn(E). Taking the inverse
limit of the ϕE,n over positive integers n (with bases chosen compatibly), one obtains
a continuous group homomorphism

ϕE : GQ → GL2(Ẑ).

(Here Ẑ := lim←− Z/nZ = ∏
p Zp.) Serre [16] proved the following “open image”

theorem.

Theorem 12 Suppose that E is an elliptic curve over Q which has no complex mul-
tiplication. Then, with the notation as above, we have

[GL2(Ẑ) : ϕE (GQ)] < ∞.

In other words, there exists a positive integer level m so that, if

π : GL2(Ẑ) → GL2(Z/mZ)

is the natural projection, one has

ϕE (GQ) = π−1(Gm(E)). (4)

For a non-CM curve E over Q, let us denote by m E the smallest positive integer m
such that the above equation holds. In particular, m E has the property that, for m1
dividing m E and m2 coprime to m E one has

Gm1m2(E) , Gm1(E) × GL2(Z/m2Z). (5)

In order to write the Lang–Trotter constant CE,r , we follow the notation in [14]:
for G ⊆ GL2(Z/nZ) any subgroup, let

Gr := {g ∈ G : tr g ≡ r mod n}.
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Averages of elliptic curve constants 691

Then the specific constant of Conjecture 1 predicted by Lang and Trotter is

CE,r = 2
π

· m E |Gm E (E)r |
|Gm E (E)| ·

∏

%!m E

%|GL2(Z/%Z)r |
|GL2(Z/%Z)|

= 2
π

· m E |Gm E (E)r |
|Gm E (E)| ·

∏

%|r
%!m E

(
1 + 1

%2 − 1

)
·

∏

%!r
%!m E

(
1 − 1

(% − 1)(%2 − 1)

)
,

where m E is as in (4). On the other hand, the average constant in (1) is

Cr = 2
π

·
∏

%|r

(
1 + 1

%2 − 1

)
·
∏

%!r

(
1 − 1

(% − 1)(%2 − 1)

)
.

To write the Koblitz constant [13] (as refined by Zywina in [19]), we define, for
any positive integer n, the subset

'n := {g ∈ GL2(Z/nZ) : det(1 − g) ∈ (Z/nZ)∗}. (6)

Then the constant of Conjecture 2 predicted by Koblitz is

CE,prime = |Gm E (E) ∩ 'm E |/|Gm E (E)|∏
%|m E

(1 − 1/%)
·

∏

%!m E

|GL2(Z/%Z) ∩ '%|/|GL2(Z/%Z)|
(1 − 1/%)

= |Gm E (E) ∩ 'm E |/|Gm E (E)|∏
%|m E

(1 − 1/%)
·

∏

%!m E

(
1 − %2 − % − 1

(% − 1)3(% + 1)

)
.

In this case the average constant in (2) is given by

Cprime =
∏

%

(
1 − %2 − % − 1

(% − 1)3(% + 1)

)
.

Finally, the cyclicity constant in Conjecture 3 is given by

CE,cyclic =
∑

n≥1

µ(n)

[Q(E[n]) : Q] ,

where

µ(n) :=
{

(−1)|{p prime :p|n}| if n is square-free
0 otherwise
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692 N. Jones

is the Möbius function. In the non-CM case, this may be expressed as

CE,cyclic =




∑

n|m E

µ(n)

|Gn(E)|



 ·
∏

%!m E

(
1 − 1

%(% − 1)2(% + 1)

)
,

because of (5) and the fact that any square-free integer n may be decomposed as
n = n1 · n2, where n1 | m E and (n2, m E ) = 1. The average constant in (3) is

Ccyclic =
∏

%

(
1 − 1

%(% − 1)2(% + 1)

)
.

Note that if any non-CM elliptic curve E were to satisfy m E = 1 (i.e. if ϕE were
surjective), then we would have CE = C . However, as observed by Serre, no elliptic
curve over Q has m E = 1. The main difficulty in proving Theorem 6 is tracking the
variation of m E with E . To prove the theorem, we will focus on a density one subset of
curves E for which m E is essentially equal to the square-free part of the discriminant
of E . These curves are called Serre curves and will be discussed in detail in Sect. 3.

2.2 The CM case

The Galois representation on the torsion of a CM elliptic curve may be viewed as a
“one-dimensional” analogue of the non-CM situation. Suppose E is an elliptic curve
over Q with CM by an order O in an imaginary quadratic field K . In this case, ϕE (GQ)

is not an open subgroup of GL2(Ẑ). In fact, it has an index two subgroup which is
abelian. Indeed, the torsion of E

Etors :=
⋃

n≥1

E[n]

is a one-dimensional Ô-module (Ô := lim←− O/nO) on which G K := Gal (Q/K ) acts,

preserving the Ô-action. Thus, the image of ϕE restricted to G K maps into (Ô)∗:

ϕE : G K −→ (Ô)∗ = GL1(Ô).

The following theorem (see [16, Sect. 4.5] and the references therein) is the classical
CM analogue of Theorem 12.

Theorem 13 Suppose E is an elliptic curve over Q with CM by an imaginary qua-
dratic order O. Then

[(Ô)∗ : ϕE (G K )] < ∞.
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Averages of elliptic curve constants 693

In other words, viewing each Gal (K (E[n])/K ) as a subgroup of (O/nO)∗, Theo-
rem 13 states that there is a positive integer m with the property that, for each positive
integer n, we have

Gal (K (E[n])/K ) , π−1(Gal (K (E[gcd(n, m)])/K )), (7)

where π : (O/nO)∗ → (O/ gcd(n, m)O)∗ is the canonical projection. The condition
(7) continues to hold if one replaces the integer m by any multiple. For a CM curve
E over Q, let us denote by m E the smallest positive integer m such that (7) holds and
(for notational convenience) for which

4 ·
(

∏

% ramifies in O
%

)

divides m.

Note in particular that, for % not dividing m E , one has

Gal (K (E[%])/K ) , (O/%O)∗.

The constant occurring in Conjecture 1 in the CM case is

CE,r = 1
2π

· m E |Gal (K (E[m E ])/K )r |
|Gal (K (E[m E ])/K )| ·

∏

%!m E

%|(O/%O)∗
r |

|(O/%O∗)| .

Explicitly, we have that

CE,r = m E |Gal (K (E[m E ])/K )r |
2π |Gal (K (E[m E ])/K )| ·

∏

%!m E
%|r

%

% − χO(%)
·

∏

%!m E
%!r

%2−(1+χO(%)) %

(%−1) (%−χO(%))
, (8)

where χO(%) is the character determining the splitting of % in the order O, namely

χO(%) :=
{

1 if % splits in O
−1 if % is inert in O.

(Since E is defined over Q, the class number of O must be one, and so “splitting of %

in O” makes sense).
To describe the Koblitz constant in the CM case, first notice that, by fixing a Z/nZ-

basis of O/nO, we may view GL1(O/nO) as a subgroup of GL2(Z/nZ), and doing
so, we have

'n ∩ (O/nO)∗ = {g ∈ (O/nO)∗ : N (1 − g) ∈ (Z/nZ)∗},
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694 N. Jones

where 'n is defined by (6) and N : (O/nO)∗ → (Z/nZ)∗ is the norm map. Then we
have

CE,prime := |Gal (K (E[m E ])/K ) ∩ 'm E |/|Gal (K (E[m E ])/K )|∏
%|m E

(1 − 1/%)

×
∏

%!m E

|(O/%O)∗ ∩ '%|/|(O/%O)∗|
1 − 1/%

.

Note that

CE,prime = |Gal (K (E[m E ])/K ) ∩ 'm E |/|Gal (K (E[m E ])/K )|∏
%|m E

(1 − 1/%)

×
∏

%!m E

(
1 − χO(%)

%2 − % − 1
(% − χO(%))(% − 1)2

)
. (9)

Finally, we recall that the cyclicity constant is the same as in the non-CM case:

CE,cyclic =
∑

n≥1

µ(n)

[Q(E[n]) : Q] .

2.3 Overview of the proof of Theorem 6

The proof of Theorem 6 will proceed as follows. We will decompose the sum

∑

E∈F(A,B)

|CE − C |k =
∑

E∈F(A,B)
E is a Serre curve

|CE − C |k +
∑

E∈F(A,B)
E is not a Serre curve

|CE − C |k .

In Sect. 4, we will prove Theorem 10, which says that

1
|F(A, B)|

∑

E∈F(A,B)
E is a Serre curve

|CE − C |k -k
1
A

+
(

log B · (log A)7

B

)k/(k+1)

.

In Sect. 5 we will show that, assuming an affirmative answer to Question 5, one has

1
|F(A, B)|

∑

E∈F(A,B)
E is not a Serre curve

|CE − C |k -k
logγ (min{A, B})√

min{A, B} ,

concluding the proof of Theorem 6.
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Averages of elliptic curve constants 695

3 Serre curves

Serre [16, Sect. 5.5] observed that although the torsion representation ϕE has finite
index in GL2(Ẑ), it is never surjective when the base field is Q. For each elliptic curve
E over Q, there is an index two subgroup HE ⊆ GL2(Ẑ) with ϕE (GQ) ⊆ HE . (We
will presently describe this subgoup).

Definition 14 An elliptic curve E over Q is a Serre curve if ϕE (GQ) = HE .

Equivalently, an elliptic curve over Q is a Serre curve if ϕE (GQ) has index 2 in
GL2(Ẑ). Thus, a Serre curve is an elliptic curve whose torsion representation has
image which is “as large as possible.”

We now describe the subgroup HE , which will be the full preimage under the
canonical surjection

π : GL2(Ẑ) → GL2(Z/MEZ)

of a particular index two subgroup of GL2(Z/MEZ) for a certain level ME . Suppose
that E is given by the Weierstrass equation y2 = (x − e1)(x − e2)(x − e3). Then, the
2-torsion of E may be given explicitly as

E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}.

By considering the action of Aut(E[2]) on the 3-element set E[2] − {O}, we see that
Aut(E[2]) is isomorphic to the symmetric group on 3 letters:

GL2(Z/2Z) , Aut(E[2]) , S3. (10)

Since

!E = [(e1 − e2)(e2 − e3)(e1 − e3)]2,

we see that Q(
√

!E ) ⊆ Q(E[2]) and that the action of σ ∈ G2(E) on
√

!E is given
by

σ
(√

!E

)
= ε(σ )

√
!E , (11)

where ε : GL2(Z/2Z) → {±1} is the identification (10) followed by the signature
character on S3. On the other hand, the field Q(

√
!E ), being an abelian extension of

Q, is contained in a cyclotomic extension. Let DE be the conductor of Q(
√

!E ), i.e.
the smallest positive integer for which

Q(
√

!E ) ⊆ Q(ζDE )
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696 N. Jones

(where ζDE is a primitive DE th root of unity). In fact,

DE =
{

|!s f (E)| if !s f (E) ≡ 1 mod 4
4|!s f (E)| otherwise,

where !s f = !s f (E) denotes the square-free part of the discriminant of E , i.e. the
unique square-free integer so that

!E

!s f (E)
∈ (Q×)2.

Note that !s f (E) only depends on E/Q, and not on the particular Weierstrass model.
Next we define

ME =
{

2|!s f (E)| if !s f (E) ≡ 1 mod 4
4|!s f (E)| otherwise,

(12)

which is the least common multiple of 2 and DE . The field Q(E[ME ]) is the compos-
itum of Q(E[2]) and Q(E[DE ]). Since

Q(
√

!E ) ⊆ Q(E[2]) ∩ Q(E[DE ]),

the corresponding Galois group G ME (E) must be a proper subgroup of GL2(Z/MEZ)

(this is still true in case DE ∈ {1, 4, 8}, but requires extra thought). In particular, con-
sidering the tower of fields

Q(
√

!E ) ⊆ Q(ζDE ) ⊆ Q(E[ME ]),

we see that, for σ ∈ G ME (E) ⊆ GL2(Z/MEZ), one has

σ
(√

!E

)
=

(
!s f (E)

det σ

)√
!E .

(Here we are using the Kronecker symbol

(
!s f

·

)
:=

(
!s f /|!s f |

·

)
·

∏

p|!s f

( p
·
)

,

where
(

2
·

)
:= (−1)((·)

2−1)/8,

(±1
·

)
= (±1)((·)−1)/2 , and

( p
n

)
:=

∏

%k‖n

( p
%

)k
,

( p
%

)
being the usual Legendre symbol for the odd primes p and %).

123



Averages of elliptic curve constants 697

This observation, together with (11), shows that, with the notation as defined,

G ME (E) ⊆ ker
(

ε(·)
(

!s f (E)

det(·)

))
⊆ GL2(Z/MEZ).

In this case we therefore define HE ⊂ GL2(Z/MEZ) and HE ⊂ GL2(Ẑ) by

HE := ker
(

ε(·)
(

!s f (E)

det(·)

))
and HE := π−1(HE ).

Note that in the degenerate case Q(
√

!E ) = Q (i.e. in case !s f (E) = 1) we have
ME = 2 and

HE = ker ε =: A3 = the alternating subgroup of S3.

For any elliptic curve E over Q we have

E is a Serre curve ⇐⇒ m E = ME and G ME (E) = HE .

One shows easily that, for d a proper divisor of ME and π denoting the natural pro-
jection GL2(Z/MEZ) → GL2(Z/dZ), one has

π
(
HE

)
= GL2(Z/dZ).

Thus in particular, when E is a Serre curve and d | ME , one has

Gd(E) =
{

HE if d = ME

GL2(Z/dZ) otherwise.
(13)

4 The average over Serre curves

We will now prove Theorem 10, which says that

1
|F(A, B)|

∑

E∈F(A,B)
E is a Serre curve

|CE − C |k -k
1
A

+
(

log B · (log A)7

B

)k/(k+1)

.

In Sect. 4.1, we compute the constants CE when E is a Serre curve, showing that each
summand in the left-hand side of the above equation is O

(
1

|!s f (E)|k
)

. In Sect. 4.2, we
finish the estimate.
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4.1 The constants associated to Serre curves

In this section, we will explicitly compute the constants CE,r , CE,prime and CE,cyclic
for E a Serre curve. For the Lang–Trotter constant CE,r , we must fix some notation.
First define the exponent k2 ∈ {1, 2, 3} and the odd integer W by the decomposition

ME =: 2k2 · W,

where ME is as in (12). Explicitly, we have

W := !s f

(!s f , 2)
and k2 :=






1 if !s f ≡ 1 mod 4
2 if !s f ≡ 3 mod 4
3 if !s f ≡ 2 mod 4.

We also recall the notation ω(n) := |{p prime : p | n}| and

µ(n) :=
{

(−1)ω(n) if n is square-free
0 otherwise.

When 2k2−1 divides r , we further define the symbol δ(!s f , r) ∈ {±1} by

δ(!s f , r) := (−1)
ω

(
W

(W,r)

)
+ W+1

2 + r
2k2−1 · χ4

(
−!s f

2

)
,

where we are defining χ4 : Q → {±1} by

χ4(x) :=
{

−1 if x ∈ Z and x ≡ −1 mod 4
1 otherwise.

Note that when x is an odd integer, our χ4(x) coincides with the usual character of
conductor 4.

Proposition 15 Suppose that E is an elliptic curve over Q which is a Serre curve.
Then

CE,r =





Cr

(
1 + δ(!s f , r) · ME · 2k2−1 · ϕ((W, r))

|GL2(Z/MEZ)r |

)
if 2k2−1 | r

Cr otherwise,
(14)

CE,prime =





Cprime

(
1+∏

p|!s f

1
p3 − 2p2 − p + 3

)
if !s f ≡ 1 mod 4

Cprime otherwise,
(15)
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and

CE,cyclic =





Ccyclic

(

1 + µ(ME )∏
p|ME

(|GL2(Z/pZ)|−1)

)

if !s f ≡ 1 mod 4

Ccyclic otherwise.

(16)

The proof of Proposition 15 will require the use of some technical lemmas. We
now describe the set-up of the first of these lemmas. Let M be any positive integer
and recall the isomorphism of the Chinese remainder theorem:

GL2(Z/MZ) ,
∏

pk p ‖M

GL2(Z/pkp Z), x 6→ (x pk p ).

Suppose that X M ⊆ GL2(Z/MZ) is any subset which, under the above isomorphism,
satisfies

X M ,
∏

pk p ‖M

X pk p , (17)

where X pk p denotes the projection of X M onto the pkp th factor. Suppose further that,
for each prime p dividing M we have a group homomorphism

ψpk p : GL2(Z/pkp Z) −→ {±1},

and write

ψM : GL2(Z/MZ) −→ {±1}, ψM (x) :=
∏

pk p ‖M

ψpk p (x pk p ).

Lemma 16 With notation as just outlined, we have

|ψ−1
M (±1) ∩ X M |= 1

2



|X M | ±
∏

pk p ‖M

(
|ψ−1

pk p (1) ∩ X pk p |−|ψ−1
pk p (−1) ∩ X pk p |

)


 .

Proof Define the set S by

S :=
{
(sp)p|M ∈ Rω(M) : ∀p | M, sp ∈ {±1}

}
.

123



700 N. Jones

(Thus, |S| = 2ω(M).) We begin by noting that

∣∣∣ψ−1
M (±1) ∩ X M

∣∣∣ =
∑

(sp)∈S∏
sp=±1

∏

pk p ‖M

∣∣∣ψ−1
pk p (sp) ∩ X pk p

∣∣∣

=
∑

(sp)∈S∏
sp=±1

∏

pk p ‖M

(
F1(pkp ) + sp F−1(pkp )

)
,

where

F1(pkp ) := 1
2
|X pk p | and F−1(pkp ) := 1

2

(
|ψ−1

pk p (1)∩X pk p |−|ψ−1
pk p (−1) ∩ X pk p |

)
.

Expanding the product and reversing summation, we obtain

∣∣∣ψ−1
M (±1) ∩ X M

∣∣∣ =
∑

(tp)∈S

∏

pk p ‖M

Ftp (pkp )




∑

(sp)∈S∏
sp=±1




∏

p|M
tp=−1

sp








, (18)

Now we show that, for all tuples (tp) except (tp) ∈ {(1, 1, . . . , 1), (−1, −1, . . . , −1)},
the innermost sum is equal to zero. For suppose that

{p : p | M, tp = 1} $= ∅ $= {p : p | M, tp = −1},

and fix a prime p1 with tp1 = 1 and a prime p2 with tp2 = −1. For a tuple (sp), define
its dual (ŝ p) by

ŝ p1 = −sp1 , ŝ p2 = −sp2 , and ŝ p = sp (p /∈ {p1, p2}).

Noting that

∏

p|M
sp =

∏

p|M
ŝp and

∏

p|M
tp=−1

sp +
∏

p|M
tp=−1

ŝ p = 0,

we see that, except when (tp) ∈ {(1, 1, . . . , 1), (−1, −1, . . . , −1)}, the innermost
sum in (18) vanishes. Thus,

∣∣∣ψ−1
M (±1) ∩ X M

∣∣∣ = 2ω(M)−1




∏

pk p ‖M

F1(pkp ) ±
∏

pk p ‖M

F−1(pkp )



 .

By (17), this proves Lemma 16. 9:
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To prove Proposition 15, we will take M = ME and

ψpk p (σ ) :=






(
det(σ )

p

)
if p is odd

ε(σ ) if pkp = 2 and !s f ≡ 1 mod 4
χ4(det σ)ε(σ ) if pkp = 4 and !s f ≡ 3 mod 4
χ8(det σ)ε(σ ) if pkp = 8 and !s f ≡ 2 mod 8
χ4(det σ)χ8(det σ)ε(σ ) if pkp = 8 and !s f ≡ 6 mod 8,

(19)

where the characters χ4 and χ8 are defined for odd integers x by

χ4(x) :=
{

1 if x ≡ 1 mod 4
−1 if x ≡ −1 mod 4

and

χ8(x) :=
{

1 if x ≡ ±1 mod 8
−1 if x ≡ ±3 mod 8.

Note that ε(·) ·
(

!s f
det(·)

)
= ∏

pk p ‖ME
ψpk p (·), and so we have

HE = ψ−1
ME

(1).

Proof of (14) If E is any non-CM elliptic curve then

CE,r

Cr
= m E |Gm E (E)r |

|Gm E (E)| · |GL2(Z/m EZ)|
m E |GL2(Z/m EZ)r |

.

Here, we have used the fact (see [14, pp. 34–35]) that

m E |GL2(Z/m EZ)r |
|GL2(Z/m EZ)| =

∏

%|m E

%|GL2(Z/%Z)r |
|GL2(Z/%Z| .

Thus, when E is a Serre curve, we have

CE,r

Cr
= 2

∣∣(HE
)

r

∣∣

|GL2(Z/MEZ)r |
.

To evaluate |(HE )r |, we will apply Lemma 16 with M = ME , ψpk p as in (19) and

X ME := GL2(Z/MEZ)r = {g ∈ GL2(Z/MEZ) : tr g ≡ r mod ME }.
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Thus, by Lemma 16, we have

∣∣(HE )r
∣∣ =

∣∣∣ψ−1
ME

(1) ∩ GL2(Z/MEZ)r

∣∣∣

= 1
2



|GL2(Z/MEZ)r | +
∏

pk p ‖M

(
|ψ−1

pk p (1)r | − |ψ−1
pk p (−1)r |

)


 ,

from which it follows that

CE,r

Cr
= 1 +

∏
pk p ‖ME

(
|ψ−1

pk p (1)r | − |ψ−1
pk p (−1)r |

)

|GL2(Z/MEZ)r |
. (20)

Note that for any odd prime p dividing ME we have kp = 1.

Lemma 17 For odd primes p and ψp as in (19), one has

|ψp(1)r | − |ψp(−1)r | =






(
−1
p

)
p(p − 1) if p | r

−
(

−1
p

)
p if p ! r.

Proof of Lemma 17 See the table in [14, p. 45]. The relationship between their notation
and ours is

E(q)r = ψq(1)r and O(q)r = ψq(−1)r .

Lemma 17 follows immediately. 9:
For p = 2, we use the following lemma, whose proof is a straightforward calcula-

tion which we omit.

Lemma 18 If !s f ≡ 1 mod 4 then

|ψ−1
2 (1)0| = 1, |ψ−1

2 (−1)0| = 3, |ψ−1
2 (1)1| = 2, and |ψ−1

2 (−1)1| = 0.

If !s f ≡ 3 mod 4 then

|ψ−1
4 (1)0| = |ψ−1

4 (−1)2| = 12, |ψ−1
4 (−1)0| = |ψ−1

4 (1)2| = 20,

and for any odd r modulo 4,

|ψ−1
4 (±1)r | = 8.

If !s f ≡ 2 mod 4 then

|ψ−1
8 (±1)r | =

{
16 · 8 if r ≡ 2 mod 4
16 · 4 if r is odd.

,
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while

|ψ−1
8 (1)0| = |ψ−1

8 (−1)4| =
{

16 · 9 if !s f ≡ 2 mod 8
16 · 7 if !s f ≡ 6 mod 8

and

|ψ−1
8 (−1)0| = |ψ−1

8 (1)4| =
{

16 · 7 if !s f ≡ 2 mod 8
16 · 9 if !s f ≡ 6 mod 8.

Corollary 19 For ψ2k2 as in (19), we have

|ψ2k2 (1)r | − |ψ2k2 (−1)r | =
{

−(−1)r/2k2−1
χ4(−!s f /2) · 22k2−1 if 2k2−1 | r

0 otherwise,

where here we use the convention that χ4(x) = 1 if x is not an integer.

Inserting the results of Corollary 19 and Lemma 17 into (20) (and remembering
that W is square-free), we find that CE,r/Cr = 1 unless 2k2−1 divides r , in which case

CE,r

Cr
=1+ (−1)r/2k2−1+1χ4(−!s f /2) · 22k2−1 ·

(−1
W

)
W ·(−1)ω(W/(W,r))ϕ((W, r))

|GL2(Z/MEZ)r |
.

This finishes the proof of (14). 9:

Having proved (14), we now proceed to

Proof of (15) This computation may also be found in [19]. For any non-CM elliptic
curve E , we have

CE,prime

Cprime
= |Gm E (E) ∩ 'm E |

|Gm E (E)| ·
∏

%|m E

( |GL2(Z/%Z)|
|'%|

)
.

If E is a Serre curve, then we have

CE,prime

Cprime
=

2|ψ−1
ME

(1) ∩ 'ME |
|'ME | . (21)

Applying Lemma 16, we find that

|ψ−1
ME

(1) ∩ 'ME |= 1
2



|'ME | +
∏

pk p ‖ME

(
|ψ−1

pk p (1) ∩ 'pk p |−|ψ−1
pk p (−1) ∩ 'pk p |

)


 .
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Lemma 20 For p odd, one has

|'p| = p(p3 − 2p2 − p + 3)

and

|ψ−1
p (1) ∩ 'p| − |ψ−1

p (−1) ∩ 'p| = p.

Proof of Lemma 20 By considering matrices in GL2(Z/pZ) which are conjugate to

(
1 0
0 1

)
,

(
1 1
0 1

)
and

(
1 0
0 x

)
(x $= 1),

we see that

∣∣ψ−1
p (±1) ∩ (GL2(Z/pZ) − 'p)

∣∣ = 1
2

(
p3 − (2 ± 1)p

)
.

Thus we have

|ψ−1
p (±1) ∩ 'p| = 1

2
· p

(
p3 − 2p2 − p + 3 ± 1

)
,

upon which Lemma 20 follows immediately. 9:

The following lemma is a straightforward calculation.

Lemma 21 One has

|ψ−1
2k2

(1) ∩ '2k2 | − |ψ−1
2k2

(−1) ∩ '2k2 | =
{

2 if k2 = 1
0 if k2 ∈ {2, 3}.

Inserting the results of Lemmas 20 and 21 into (21), we finish the proof of (15).
9:

Proof of (16) We have

CE,cyclic

Ccyclic
=

∑
n|m E

µ(n)
|Gn(E)|

∏
%|m E

(
1 − 1

|GL2(Z/%Z)|
) .

If E is a Serre curve then m E = ME . Note that ME is square-free if and only if
!s f (E) ≡ 1 mod 4. Thus, if E is a Serre curve, we deduce from (13) that
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∑

n|m E

µ(n)

|Gn(E)| =






∏
%|m E

(
1 − 1

|GL2(Z/%Z)|
)

+ µ(m E )
|GL2(Z/m E Z)| if !s f ≡ 1 mod 4

∏
%|m E

(
1 − 1

|GL2(Z/%Z)|
)

otherwise.

This proves (16). 9:

We have now proved (14)–(16), finishing the proof of the Proposition 15.

4.2 Averaging the Serre curve constants

Considering Proposition 15, we see that when E is a Serre curve, CE has the form

CE = C
(
1 + g(!s f (E))

)
where g(!s f (E)) - 1

|!s f (E)| .

Since the discriminant of the curve Y 2 = X3+aX+b is −16(4a3+27b2), Theorem 10
will follow from

1
4AB

∑

|a|≤A
|b|≤B

4a3+27b2 $=0

1
|(4a3 + 27b2)s f |k

- 1
A

+
(

log B · (log A)7

B

)k/(k+1)

. (22)

Let Z be a positive real number to be chosen later. Since the left hand side is bounded
by

1
4AB

∑

|a|≤A
|b|≤B

4a3+27b2$=0
|(4a3+27b2)s f |≤Z

1 + 1
4AB

∑

|a|≤A
|b|≤B

|(4a3+27b2)s f |>Z

1
Zk ,

we are led to the following lemma.

Lemma 22 For A, B and Z ≥ 2, we have

∑

|a|≤A
|b|≤B

4a3+27b2 $=0
|(4a3+27b2)s f |≤Z

1 - B + log B · A · (log A)7 · Z , (23)

with an absolute implied constant.

Proof The proof boils down to counting ideals of bounded norm in various qua-
dratic fields. I would like to thank R. Daileda for helpful discussions regarding this
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viewpoint. We wish to count the number of integer pairs (a, b) ∈ [−A, A]× [−B, B]
which satisfy the equation

4a3 + 27b2 = dy2,

where y > 0 and d are integers with d $= 0 square-free and |d| ≤ Z . Re-writing this
equation as

x2 − 3dy2 = 12(−a)3,

where x = 9b, we see that the left hand side of (23) is bounded by

∑

1≤|d|≤Z
d square-free

∑

|a|≤A

∣∣∣{(x, y)∈Z×Z>0 : (x + y
√

3d)(x − y
√

3d)=12a3, |x | ≤ 9B}
∣∣∣ .

(24)

Regarding α = x + y
√

3d as an integer in Q(
√

3d), we are led to counting factoriza-
tions of 12a3 in OQ(

√
3d), ring of integers of Q(

√
3d).

We begin by dealing with the degenerate case d = 3 (where Q(
√

3d) = Q). In this
case, the inner sum of (24) is bounded by

6B +
∑

1≤|a|≤A

∣∣∣{(x, y) ∈ Z × Z≥0 : (x + y)(x − y) = 12a3, |x | ≤ 9B}
∣∣∣ , (25)

where the 6B term corresponds to a = 0. For a given a $= 0 and assuming y ≥ 0, the
factorization 12a3 = (x + y)(x − y) uniquely determines the pair (x, y), up to the
sign of x . Therefore (25) is bounded by

6B +
∑

1≤|a|≤A

2τ(12|a|3) - B +
∑

1≤a≤A

τ(a)3 - B + A(log A)7,

where the last inequality follows from [11, equation (1.80)].
Returning to (24) and writing D for the square-free part of 3d, we see that it remains

to bound

∑

2≤|D|≤3Z
D square-free

∑

1≤|a|≤A

∣∣∣{x + y
√

D =:α ∈ OQ(
√

D) : α · α = 12a3, |α + α| ≤ 18B}
∣∣∣ ,

(26)

where α denotes the Galois conjugate of α. We will presently transform this into
counting ideals rather than elements, but in the real quadratic case we must worry
about the presence of an infinite unit group. Fix a principal integral ideal β · OQ(

√
D).
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We will now show that

∣∣∣
{
α ∈ OQ(

√
D) : α · OQ(

√
D) = β · OQ(

√
D) and |α + α| ≤ 18B

}∣∣∣ - log B, (27)

with an absolute constant. To see this, first note that any α ∈ OQ(
√

D) we have

α · OQ(
√

D) = β · OQ(
√

D) ⇐⇒ α = β · η,

where η is a unit in OQ(
√

D). Thus, if D < 0 we see that the left hand side of (27) is
at most 6, the maximal cardinality of the unit group of any imaginary quadratic field.

We will now prove (27) when D > 0. In this case, any unit has the form η = ±εn
D ,

where n ∈ Z and εD is the fundamental unit. First note that we may replace β in (27)
with ±εn

D · β and not affect the left hand side. Thus replacing β, we may assume that

ε−2
D |β| < |β| < |β|

and that |β| ≥ 1, where |β| denotes the absolute value of β as a real number. We will
now prove (27) by showing that

∣∣{n ∈ Z : |β · εn
D + β · εn

D| ≤ 18B
}∣∣ - log B. (28)

By the reverse triangle inequality and noting that ε = εD > 1, we see that

∑

n∈Z∣∣βεn+βεn
∣∣≤18B

1 ≤
∑

n∈Z∣∣|β|εn−|β|ε−n
∣∣≤18B

1 ≤
∑

n≥0
εn−ε−n≤ 18B

|β|

1 +
∑

−n≤−1
εn−2−ε−n≤ 18B

|β|

1

≤
∑

n≥0
εn≤18B+1

1 +
∑

n≥1
εn−2≤18B+1

1.

The inequality (28) then follows from the fact that, uniformly in D, one has εD > 2.
Thus, (26) is bounded by a constant times

log B ·
∑

2<|D|≤3Z
D square-free

∑

1≤a≤A

η
princ
D (12a3) ≤ log B ·

∑

2<|D|≤3Z
D square-free

∑

1≤a≤A

ηD(12a3),

where ηD(m) (resp. η
princ
D (m)) is the number of integral ideals (resp. the number of

principal ideals) in the ring OQ(
√

D) of norm equal to m. We will now show that

ηD(m) ≤ τ(m) :=
∑

d|m
1. (29)
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Since both ηD(m) and τ(m) are multiplicative in m, we only need to consider m of
the form pβ . One sees that

ηD(pβ) =






1 if p ramifies in Q(
√

D)

1 if p is inert in Q(
√

D) and β is even
0 if p is inert in Q(

√
D) and β is odd

β + 1 if p is split in Q(
√

D).

For example in the last case,

{
integral ideals I ⊆ OQ(

√
D), N (I ) = pβ

}
=

{
PiP

β−i : i = 0, 1, . . . , β
}

,

where P is a prime ideal above p. From this, (29) is immediate, since τ(pβ) = β + 1
in all cases. Thus, we see that

∑

1≤a≤A

ηD(12a3) -
∑

1≤a≤A

τ(a3) ≤
∑

1≤a≤A

τ(a)3 - A log(A)7,

the last inequality following as before from [11, equation (1.80)]. Lemma 22 follows
at once. 9:

Finally, using Z = (B/(log B · (log A)7))1/(k+1), (22) follows, and thus so does
Theorem 10.

5 The average over non-Serre curves

We finally turn to bounding the kth moment over the non-Serre curves. It is here that
we assume an affirmative answer to Question 5, which implies that certain bounds on
the constants CE are uniform in E , as detailed in the following lemma.

Lemma 23 For any elliptic curve E over Q, we have

CE,cyclic ≤ 1.

If E is a CM elliptic curve over Q, then

CE,r - log log(|r | + 3) and CE,prime - 1. (30)

If E is a non-CM elliptic curve over Q, then, assuming an affirmative answer to
Question 5, we have

CE,r - 1 and CE,prime - 1. (31)

Proof The bound on the cyclicity constant CE,cyclic comes from its heuristic interpre-
tation as a density.
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To prove (31), write m E = m1 · m2, where

p | m1 ⇐⇒ p ∈ {2, 3, 5} or G p(E) " GL2(Z/pZ).

It follows from [6, Theorem 1 of Appendix] that Gm2(E) = GL2(Z/m2Z). Thus, we
see that

π
(
Gm E (E)r

)
⊆ GL2(Z/m2Z)r ,

where π : Gm E (E) ! GL2(Z/m2Z) is the projection map. From this it follows that

m E
∣∣Gm E (E)r

∣∣
∣∣Gm E (E)

∣∣ ≤ m1 · m2 |GL2(Z/m2Z)r |
|GL2(Z/m2Z)| = m1 ·

∏

p|m2

p |GL2(Z/pZ)r |
|GL2(Z/pZ)| ,

and therefore

CE,r ≤ 2
π

· m1 ·
∏

p

(
1 + 1

p2 − 1

)
- m1.

An affirmative answer to Question 5 implies that m1 - 1 (a bound on the exponents of
the primes dividing m1 follows from [1, Theorem 1.2]). The proof that CE,prime - 1
in the non-CM case is entirely analogous, so we omit it. Noting that the analogue of
Question 5 for CM elliptic curves E does have an affirmative answer, we see that (30)
follows from (8) and (9). (This uses the fact that, since E is defined over Q, there are
only 13 possible endomorphism rings of E .) This finishes the proof of Lemma 23. 9:

We are now ready to bound the contribution to the kth moment from the non-Serre
curves.

Proposition 24 Let k be a positive integer. In the cases of the Lang–Trotter conjecture
and the Koblitz conjecture, assume that Question 5 has an affirmative answer. Then
there exists a constant γ so that

1
|F(A, B)|

∑

E∈F(A,B)
E is not a Serre curve

|CE − C |k -k
logγ (min{A, B})√

min{A, B} .

In the case of the Lang–Trotter conjecture, the implied constant also depends on r.
(Note that the above bound is unconditional in the case of the cyclicity conjecture).

Proof By Lemma 23, we have

1
|F(A, B)|

∑

E∈F(A,B)
E is not a Serre curve

|CE − C |k -k
1

|F(A, B)|
∑

E∈F(A,B)
E is not a Serre curve

1

We finally use [12, Theorem 4], which in our situation may be stated as follows:
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Theorem 25 There is a γ > 0 so that

∑

E∈F(A,B)
E is not a Serre curve

1 - |F(A, B)| logγ (min{A, B})√
min{A, B} ,

with an absolute implied constant.

This finishes the proof Proposition 24, and thus also the proof of Theorem 6. 9:
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