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The scattering of acoustic and electromagnetic waves by periodic structures plays an
important role in a wide range of problems of scientific and technological interest. This
contribution focuses upon the stable and high-order numerical simulation of the interac-
tion of time-harmonic electromagnetic waves incident upon a periodic doubly layered
dielectric media with sharp, irregular interface. We describe a boundary perturbation
method for this problem which avoids not only the need for specialized quadrature rules
but also the dense linear systems characteristic of boundary integral/element methods.
Additionally, it is a provably stable algorithm as opposed to other boundary perturbation
approaches such as Bruno and Reitich’s ‘‘method of field expansions’’ or Milder’s ‘‘method
of operator expansions’’. Our spectrally accurate approach is a natural extension of the
‘‘method of transformed field expansions’’ originally described by Nicholls and Reitich
(and later refined to other geometries by the authors) in the single-layer case.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a wide range of
problems of scientific and technological interest. From grating couplers [7,8,30] to nanostructures [17] to remote sensing
[29], the ability to simulate in a robust and accurate way the fields generated by such structures is of crucial importance
to researchers from many disciplines. In this contribution we focus upon the stable and high-order numerical simulation
of the interaction of time-harmonic electromagnetic waves incident upon a periodic doubly layered dielectric material with
sharp, irregular interface. While we focus on the simplified model of a two-dimensional structure, the core of the algorithm
will remain the same for a fully three-dimensional simulation governed by the full Maxwell’s equations.

In this work we describe a boundary perturbation method (BPM) for the numerical simulation of scattering returns from
an irregularly shaped, periodic, doubly layered medium. We focus upon periodic structures as they arise from a large number
of engineering applications, however, this choice does simplify our numerical approach (e.g. we may use the discrete Fourier
transform to approximate Fourier coefficients). However, we note that this simplification is also realized for competing
methods as well. For such problems surface methods are preferred as a discretization of the interface alone significantly re-
duces the number of unknowns to be recovered. However, such methods face a number of drawbacks.

One compelling choice is a surface integral method [6] (e.g. boundary integral methods—BIM—or boundary element
methods—BEM) which only requires a discretization of the layer interface (rather than the whole structure) and which,
due to the choice of the Green’s function, enforces the far-field boundary condition exactly. While this method can deliver
. All rights reserved.
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high-accuracy simulations with greatly reduced operation counts, there are several difficulties which need to be addressed.
First, high-order simulations can only be realized with specially designed quadrature rules which respect the singularities in
the Green’s function (and its derivative, in certain formulations). Additionally, BIM/BEM typically give rise to dense linear
systems to be solved which require carefully designed preconditioned iterative methods (with accelerated matrix-vector
products, e.g. by the fast-multipole method [10]) for configurations of engineering interest.

An alternative to a BIM/BEM is a boundary perturbation method and two popular approaches are the ‘‘method of field
expansions’’ (FE) due to Bruno and Reitich [3–5] and the ‘‘method of operator expansions’’ (OE) of Milder [11–16]. These
methods are very appealing as they posit surface unknowns thereby enjoying the favorable operation counts of surface inte-
gral methods, while avoiding the subtle quadrature rules, dense linear systems, and required matrix-vector product accel-
erations described above. However, Nicholls and Reitich showed that these algorithms depend upon strong cancellations
(e.g. differences of extremely large quantities to produce order one results) for their convergence which results in ill-condi-
tioned numerics. We refer the interested reader to [19–21] for a full description of these phenomena.

In addition to these results, Nicholls and Reitich described an alternative boundary perturbation algorithm, the ‘‘method
of transformed field expansions’’ (TFE), which does not rely on strong cancellations for its convergence. In fact, the resulting
recursions can be used for a direct, rigorous demonstration of the strong convergence of the relevant perturbation expansions
in an appropriate function space. Furthermore, these formulas were implemented to reveal a stable and highly accurate
numerical scheme for the simulation of scattering returns by periodic gratings. This work was generalized by the authors
to the case of irregular bounded obstacles in two [18] and three dimensions [9], and even resulted in a rigorous numerical
analysis of the method [28,22]. In this contribution, we construct a highly non-trivial extension to the case of periodic grat-
ings separating two materials of different dielectric constants. Here, of course, one must be concerned not only with a re-
flected field and its far-field boundary condition, but also with a transmitted field which satisfies a different condition at
infinity.

The organization of the paper is as follows: In Section 2 we recall the governing equations of an electromagnetic field inci-
dent upon a periodic, two-dimensional irregular grating. In Section 3 we define a change of variables which significantly en-
hances the conditioning properties of our numerical scheme resulting in the ‘‘method of transformed field expansions.’’ We
discuss a Legendre–Galerkin method to solve the resulting two-point boundary value problem in Section 4 and present
extensive numerical results in Section 5.
2. Governing equations

We consider the problem of simulating the scattering of electromagnetic waves in a layered periodic structure. More pre-
cisely, we consider two domains
Xþ :¼ fy > gðxÞg; X� :¼ fy < gðxÞg;
where y = g(x) is the shape of the d-periodic interface (see Fig. 1). These regions are filled with materials of dielectric con-
stants �+ and ��, respectively. The permeability in each domain is assumed to be l0, that of the vacuum.
Fig. 1. Geometric illustration of the problem.
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The grating is illuminated by time-harmonic plane-wave radiation
eEi ¼ Aeiax�ibye�ixt ; eHi ¼ Beiax�ibye�ixt ;
which will be scattered both above and below the surface. This gives rise to reduced total fields
E ¼ Ei þ Eþ; H ¼ Hi þHþ; y > gðxÞ;
E ¼ E�; H ¼ H�; y < gðxÞ;
where, e.g.
E ¼ Eðx; yÞ :¼ eEðx; y; tÞeixt; H ¼ Hðx; yÞ :¼ eHðx; y; tÞeixt;
if feE; eHg are the unreduced, time dependent fields. The incident, reflected, refracted, and total electric and magnetic fields all
satisfy the time-harmonic Maxwell’s equations:
r� E ¼ ixl0H; div½E� ¼ 0; ð2:1aÞ
r �H ¼ �ix�E; div½H� ¼ 0; ð2:1bÞ
where � = �± depending upon the domain of definition [6]. At the grating surface the total fields satisfy the transmission
conditions
N � ðEi þ Eþ � E�Þ ¼ 0; N � ðHi þHþ �H�Þ ¼ 0; ð2:2Þ
where N = (�@xg(x),0,1)T is a normal vector. Finally, the periodicity of the grating enforces the quasi-periodicity of the fields
Eðxþ d; yÞ ¼ eiadEðx; yÞ; Hðxþ d; yÞ ¼ eiadHðx; yÞ;
and the scattered waves must be outgoing.
It is not difficult to show that if both the grating shape and incident radiation are independent of z then so are E and H

[24]. In this case the time-harmonic Maxwell’s Eqs. (2.1) reduce to the Helmholtz equation
Duþ ðk�Þ2u ¼ 0;
where k� :¼ x
ffiffiffiffiffiffiffiffiffiffiffi
l0��

p
, and u = u(x,y) is either E±,3 (transverse electric—TE—component) or H±,3 (transverse magnetic—TM—

component). Furthermore, the z-components of the conditions in (2.2) read
0 ¼ E3 ¼ Eþ;3 þ Ei;3 � E�;3
and
0 ¼ @NE3 ¼ ½@y � ð@xgÞ@x�ðE3Þ ¼ ½@y � ð@xgÞ@x�ðEþ;3 þ Ei;3 � E�;3Þ:
Writing in coordinates and simplifying we find
uþðx; gðxÞÞ � u�ðx; gðxÞÞ ¼ �eiax�ibgðxÞ;

@Nuþðx; gðxÞÞ � r2@Nu�ðx; gðxÞÞ ¼ ððibÞ þ ðiaÞ@xgðxÞÞeiax�ibgðxÞ;
where r2 = 1 for the TE mode, while
r2 ¼ �
þ

��
¼ kþ

k�

� �2

;

for the TM mode. Thus, the governing equations we consider are
Duþ þ ðkþÞ2uþ ¼ 0; y > gðxÞ; ð2:3aÞ
OWC½uþ� ¼ 0; y!1; ð2:3bÞ
Du� þ ðk�Þ2u� ¼ 0; y < gðxÞ ð2:3cÞ
OWC½u�� ¼ 0; y! �1; ð2:3dÞ
uþ � u� ¼ �/ðxÞ; y ¼ gðxÞ; ð2:3eÞ
@Nuþ � @Nu� ¼ ððibÞ þ ðiaÞ@xgðxÞÞ/ðxÞ; y ¼ gðxÞ; ð2:3fÞ
u�ðxþ d; yÞ ¼ eiadu�ðx; yÞ; ð2:3gÞ
where
/ðxÞ :¼ eiax�ibgðxÞ ð2:3hÞ
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and we make the ‘‘outgoing wave condition’’ (OWC) operators more precise presently.
For the far-field boundary conditions consider the hyperplanes {y = a}, {y = �b} where a; b > jgjL1 . The augmented system

of governing equations
Duþ þ ðkþÞ2uþ ¼ 0; gðxÞ < y < a; ð2:4aÞ
@yuþ ¼ @yvþ; y ¼ a; ð2:4bÞ
uþ ¼ vþ; y ¼ a; ð2:4cÞ
Dvþ þ ðkþÞ2vþ ¼ 0; y > a; ð2:4dÞ
OWC½vþ� ¼ 0; y!1; ð2:4eÞ
Du� þ ðk�Þ2u� ¼ 0; �b < y < gðxÞ; ð2:4fÞ
@yu� ¼ @yv�; y ¼ �b; ð2:4gÞ
u� ¼ v�; y ¼ �b; ð2:4hÞ
Dv� þ ðk�Þ2v� ¼ 0; y < �b; ð2:4iÞ
OWC½v�� ¼ 0; y! �1; ð2:4jÞ
uþ � u� ¼ �/ðxÞ; y ¼ gðxÞ; ð2:4kÞ
@Nuþ � @Nu� ¼ ððibÞ þ ðiaÞ@xgðxÞÞ/ðxÞ; y ¼ gðxÞ; ð2:4lÞ
u�ðxþ d; yÞ ¼ eiadu�ðx; yÞ; ð2:4mÞ
v�ðxþ d; yÞ ¼ eiadv�ðx; yÞ; ð2:4nÞ
are equivalent to (2.3). To make the far–field boundary condition more precise we note that solutions of (2.4d) and (2.4e) are
vþðx; yÞ ¼
X1

p¼�1
ŵpeiapxþibþp ðy�aÞ;
where
ap :¼ aþ ð2p=dÞp; b�p :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�Þ2 � a2

p

q
p 2 U�

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

p � ðk
�Þ2

q
p R U�

8><>: ;

U� :¼ fp 2 Z j ðk�Þ2 � a2
p > 0g;
Z are the integers, and
wðxÞ :¼ uþðx; aÞ ¼
X1

p¼�1
ŵpeiapx:
Similarly, solutions of (2.4i) and (2.4j) are
v�ðx; yÞ ¼
X1

p¼�1
f̂peiapx�ib�p ðyþbÞ;
where
fðxÞ :¼ u�ðx;�bÞ ¼
X1

p¼�1
f̂peiapx:
To close the set of equations for u+ we simply need to produce @yv+ in (2.4b):
@yvþðx; aÞ ¼
X1

p¼�1
ibþp
� �

ŵpeiapx ¼: Tþ½w� ¼ Tþ½uþðx; aÞ�:
A similar analysis at y = �b yields an operator
T�½f� :¼
X1

p¼�1
ð�ib�p Þf̂peiapx;
and the system (2.4) can be equivalently restated as



Y. He et al. / Journal of Computational Physics 231 (2012) 3007–3022 3011
Duþ þ ðkþÞ2uþ ¼ 0; gðxÞ < y < a; ð2:5aÞ
@yuþ � Tþ½uþ� ¼ 0; y ¼ a; ð2:5bÞ
Du� þ ðk�Þ2u� ¼ 0; �b < y < gðxÞ; ð2:5cÞ
@yu� � T�½u�� ¼ 0; y ¼ �b; ð2:5dÞ
uþ � u� ¼ �/ðxÞ; y ¼ gðxÞ; ð2:5eÞ
@Nuþ � @Nu� ¼ ððibÞ þ ðiaÞ@xgðxÞÞ/ðxÞ; y ¼ gðxÞ; ð2:5fÞ
u�ðxþ d; yÞ ¼ eiadu�ðx; yÞ: ð2:5gÞ
3. Transformed field expansion

As has been demonstrated in previous publications on boundary perturbation algorithms for electromagnetic scattering
[19–21], the transformed field expansion (TFE) method can dramatically improve the conditioning of the resulting recur-
sions. The TFE method consists of two essential steps: (i) ‘‘domain flattening’’ through a simple change of variables; and
(ii) boundary perturbation. We now describe the two steps in detail.

3.1. Change of variables

We define
x0 ¼ x;

y0 ¼ a
y� g
a� g

� �
; g < y < a;

y00 ¼ b
y� g
bþ g

� �
; �b < y < g;
which gives rise to the differentiation rules:
ða� gÞ@x ¼ ða� gÞ@x0 � ð@x0gÞða� y0Þ@y0 ;

ða� gÞ@y ¼ a@y0 ;
for g(x) < y < a, and
ðbþ gÞ@x ¼ ðbþ gÞ@x0 � ð@x0gÞðbþ y00Þ@y00 ;

ðbþ gÞ@y ¼ b@y00 ;
for �b < y < g(x). With this change of variables (2.5) becomes
@2
x0 þ @

2
y0

� �
uþðx0; y0Þ þ ðkþÞ2uþðx0; y0Þ ¼ Fþðx0; y0Þ; 0 < y0 < a; ð3:1aÞ

@y0uþðx0; aÞ � Tþ½uþðx0; aÞ� ¼ Jþðx0Þ; ð3:1bÞ

@2
x0 þ @

2
y00

� �
u�ðx0; y00Þ þ ðk�Þ2u�ðx0; y00Þ ¼ F�ðx0; y00Þ; �b < y00 < 0; ð3:1cÞ

@y00u�ðx0;�bÞ � T�½u�ðx0;�bÞ� ¼ J�ðx0Þ; ð3:1dÞ
uþðx0;0Þ � u�ðx0;0Þ ¼ �/ðx0Þ; ð3:1eÞ
@y0uþðx0;0Þ � @y00u�ðx0;0Þ ¼ Qðx0; 0Þ: ð3:1fÞ
In these equations
F�ðx0; y0Þ ¼ @x0F
�
x ðx0; y0Þ þ @y0F

�
y ðx0; y0Þ þ F�h ðx0; y0Þ; ð3:1gÞ
where
Fþx ¼
2
a

g@x0uþ �
1
a2 g2@x0uþ þ

a� y0

a
ð@x0gÞ@y0uþ �

a� y0

a2 gð@x0gÞ@y0uþ; ð3:1hÞ

Fþy ¼
a� y0

a
ð@x0gÞ@x0uþ �

a� y0

a2 gð@x0gÞ@x0uþ �
ða� y0Þ2

a2 ð@x0gÞ2@y0uþ; ð3:1iÞ
and
Fþh ¼ �
1
a
ð@x0gÞ@x0uþ þ

1
a2 gð@x0gÞ@x0uþ þ

a� y0

a2 ð@x0gÞ2@y0uþ þ ðkþÞ2
2
a

guþ � ðkþÞ2 1
a2 g2uþ; ð3:1jÞ
and
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F�x ¼ �
2
b

g@x0u� �
1

b2 g2@x0u� þ
bþ Y 00

b
ð@x0gÞ@Y 00u

� þ bþ Y 00

b2 gð@x0gÞ@Y 00u
�; ð3:1kÞ

F�y ¼
bþ Y 00

b
ð@x0gÞ@x0u� þ

bþ Y 00

b2 gð@x0gÞ@x0u� �
ðbþ Y 00Þ2

b2 ð@x0gÞ2@Y 00u
�; ð3:1lÞ
and
F�h ¼
1
b
ð@x0gÞ@x0u� þ

1

b2 gð@x0gÞ@x0u� �
bþ Y 00

b2 ð@x0gÞ2@Y 00u
� � ðk�Þ2 2

b
gu� � ðk�Þ2 1

b2 g2u�: ð3:1mÞ
Furthermore,
Jþ ¼ �1
a

gTþ½uþ�; ð3:1nÞ

J� ¼ 1
b

gT�½u��; ð3:1oÞ
and
Q ¼ 1
ab
ðabþ ag � bg � g2Þðia@x0g þ ibÞ/ðx0Þ � ag@y0uþ þ ð@x0gÞðbþ gÞða� gÞ@x0uþ
�

�ð@x0gÞ2aðbþ gÞ@y0uþ � bg@y00u� � ð@x0gÞðbþ gÞða� gÞ@x0u� þ ð@x0gÞ2bða� gÞ@y00u�
o
: ð3:1pÞ
3.2. Recursion by boundary perturbation

We shall now describe a boundary perturbation algorithm to solve the transformed system (3.1). If we let g = ef and f is
sufficiently smooth, the transformed fields can be shown to be analytic. Hence, we can write
u�ðx; y; eÞ ¼
X1
n¼0

u�n ðx; yÞen:
Inserting the above into (3.1), it is straightforward, albeit tedious, to derive the following recursions for un:
@2
x0 þ @

2
y0

� �
uþn ðx0; y0Þ þ ðk

þÞ2uþn ðx0; y0Þ ¼ Fþn ðx0; y0Þ; 0 < y0 < a; ð3:2aÞ

@y0uþn ðx0; aÞ � Tþ½uþn ðx0; aÞ� ¼ Jþn ðx0Þ; ð3:2bÞ

@2
x0 þ @

2
y00

� �
u�n ðx0; y00Þ þ ðk

�Þ2u�n ðx0; y00Þ ¼ F�n ðx0; y00Þ; �b < y00 < 0; ð3:2cÞ

@y00u�n ðx0;�bÞ � T�½u�n ðx0;�bÞ� ¼ J�n ðx0Þ; ð3:2dÞ
uþn ðx0;0Þ � u�n ðx0;0Þ ¼ /nðx0Þ; ð3:2eÞ
@y0uþn ðx0;0Þ � @y00u�n ðx0;0Þ ¼ Q nðx0;0Þ: ð3:2fÞ
In these equations
F�n ðx0; y0Þ ¼ @x0F
�
n;xðx0; y0Þ þ @y0F

�
n;yðx0; y0Þ þ F�n;hðx0; y0Þ; ð3:2gÞ
where
Fþn;x ¼
2
a

f@x0uþn�1 �
1
a2 f 2@x0uþn�2 þ

a� y0

a
ð@x0 f Þ@y0uþn�1 �

a� y0

a2 f ð@x0 f Þ@y0uþn�2; ð3:2hÞ

Fþn;y ¼
a� y0

a
ð@x0 f Þ@x0uþn�1 �

a� y0

a2 f ð@x0 f Þ@x0uþn�2 �
ða� y0Þ2

a2 ð@x0 f Þ2@y0uþn�2; ð3:2iÞ
and
Fþn;h ¼ �
1
a
ð@x0 f Þ@x0uþn�1 þ

1
a2 f ð@x0 f Þ@x0uþn�2 þ

a� y0

a2 ð@x0 f Þ2@y0uþn�2 þ ðk
þÞ2 2

a
fuþn�1 � ðk

þÞ2 1
a2 f 2uþn�2; ð3:2jÞ
and
F�n;x ¼ �
2
b

f@x0u�n�1 �
1

b2 f 2@x0u�n�2 þ
bþ Y 00

b
ð@x0 f Þ@Y 00u

�
n�1 þ

bþ Y 00

b2 f ð@x0 f Þ@Y 00u
�
n�2; ð3:2kÞ

F�n;y ¼
bþ Y 00

b
ð@x0 f Þ@x0u�n�1 þ

bþ Y 00

b2 f ð@x0 f Þ@x0u�n�2 �
ðbþ Y 00Þ2

b2 ð@x0 f Þ2@Y 00u
�
n�2; ð3:2lÞ
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and
F�n;h ¼
1
b
ð@x0 f Þ@x0u�n�1 þ

1

b2 f ð@x0 f Þ@x0u�n�2 �
bþ Y 00

b2 ð@x0 f Þ2@Y 00u
�
n�2 � ðk

�Þ2 2
b

fu�n�1 � ðk
�Þ2 1

b2 f 2u�n�2: ð3:2mÞ
Furthermore,
Jþn ¼ �
1
a

fTþ½uþn�1�; ð3:2nÞ

J�n ¼
1
b

fT�½u�n�1�; ð3:2oÞ

/n ¼ ð�1Þnþ1 ðibf Þn

n!
eiax; ð3:2pÞ
and
Q n ¼
1
ab
�iabb/n � iaba@x0 f/n�1 � ibða� bÞf /n�1 � iaða� bÞf@x0 f /n�2 þ ibf 2/n�2 þ ia@x0 ff

2/n�3

n
�af@y0uþn�1 þ ab@x0 f@x0uþn�1 þ ða� bÞf@x0 f@x0uþn�2 � @x0 ff

2
@x0uþn�3 � abð@x0 f Þ2@y0uþn�2 � að@x0 f Þ2f@y0uþn�3

�bf@y00u�n�1 � ab@x0 f@x0u�n�1 � ða� bÞf@x0 f@x0u�n�2 þ @x0 ff
2
@x0u�n�3 þ abð@x0 f Þ2@y00u�n�2 � bf ð@x0 f Þ2@y00u�n�3

o
: ð3:2qÞ
If we write
u�n ðx; yÞ ¼
X1

p¼�1
u�n;pðyÞeiapx; F�n ðx; yÞ ¼

X1
p¼�1

F�n;pðyÞeiapx; J�n ðxÞ ¼
X1

p¼�1
J�n;peiapx;

/nðxÞ ¼
X1

p¼�1
/n;peiapx; Q nðxÞ ¼

X1
p¼�1

Q n;peiapx;
and insert into (3.2), then we obtain a sequence of equations for u�n;pðyÞ:
@2
y0u
þ
n;pðy0Þ þ ðkþÞ2 � a2

p

� �
uþn;pðy0Þ ¼ Fþn;p; 0 < y0 < a;

@2
y00u

�
n;pðy00Þ þ ðk�Þ2 � a2

p

� �
u�n;pðy00Þ ¼ F�n;p; �b < y00 < 0;

@y0uþn;pðaÞ � ibþp uþn;pðaÞ ¼ Jþn;p;

@y00u�n;pð�bÞ þ ib�p u�n;pð�bÞ ¼ J�n;p;

uþn;pð0Þ � u�n;pð0Þ ¼ /n;p;

@y0uþn;pð0Þ � @y00u�n;pð0Þ ¼ Q n;p:
Due to the quasi-periodic boundary conditions we seek solutions of the form
u�ðx; yÞ ¼
X1
n¼0

X1
p¼�1

u�n;pðyÞeiapxen;
resulting in the generic one-dimensional problem
@2
yuþp;nðyÞ þ ððk

þÞ2 � ~a2Þuþp;nðyÞ ¼ Fþp;nðyÞ; 0 < y < a; ð3:3aÞ

@2
yu�p;nðyÞ þ ððk

�Þ2 � ~a2Þu�p;nðyÞ ¼ F�p;nðyÞ; �b < y < 0; ð3:3bÞ
@yuþp;nðaÞ � ibþuþp;nðaÞ ¼ Jþp;n; ð3:3cÞ
@yu�p;nð�bÞ þ ib�u�p;nð�bÞ ¼ J�p;n; ð3:3dÞ
uþp;nð0Þ � u�p;nð0Þ ¼ /p;n; ð3:3eÞ
@yuþp;nð0Þ � @yu�p;nð0Þ ¼ Qp;n; ð3:3fÞ
where we have dropped the primes for convenience and denote
bþ ¼ bþp ; b� ¼ b�p ; ~a ¼ ap:
4. Legendre–Galerkin approximation

In this section we provide algorithm details of a Legendre–Galerkin approach to approximate solutions of the two-point
boundary value problem (3.3). The approximation of this problem is the final specification we must make in our TFE ap-
proach to the doubly layered scattering problem at hand.
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4.1. Weak formulation

Assume that u⁄,+(y) and u⁄,�(y) satisfy the following homogeneous version of (3.3):
@2
yu�;þ þ ððkþÞ2 � ~a2Þu�;þ ¼ 0; 0 < y < a; ð4:1aÞ

@2
yu�;� þ ððk�Þ2 � ~a2Þu�;� ¼ 0; �b < y < 0; ð4:1bÞ
@yu�;þðaÞ � ibþu�;þðaÞ ¼ Jþ; ð4:1cÞ
@yu�;�ð�bÞ þ ib�u�;�ð�bÞ ¼ J�; ð4:1dÞ
u�;þð0Þ � u�;�ð0Þ ¼ /; ð4:1eÞ
@yu�;þð0Þ � @yu�;�ð0Þ ¼ Q ; ð4:1fÞ
where, for convenience, we have dropped the (n,p) subscripts. The functions
u�;þðyÞ ¼ Aeibþy þ Be�ibþy; u�;�ðyÞ ¼ Ceib�y þ De�ib�y;
are solutions of (4.1a) and (4.1b), respectively, for any choices of the constants A, B, C, D. Substituting these forms into (4.1c)–
(4.1f) we find A, B, C, D:
B ¼ iJþeibþa

2bþ
; C ¼ � iJ�eib�b

2b�
;

A ¼ b�ð2C þ /Þ þ Bðbþ � b�Þ � iQ
b� þ bþ

; D ¼ bþð2B� /Þ þ Cðb� � bþÞ � iQ
b� þ bþ

:

Now consider the functions
ûþðyÞ :¼ uþðyÞ � u�;þðyÞ; û�ðyÞ :¼ u�ðyÞ � u�;�ðyÞ;
where, ûþ and û� satisfy the version of (3.3) with homogeneous boundary conditions
@2
y ûþðyÞ þ ððkþÞ2 � ~a2ÞûþðyÞ ¼ bFþ; 0 < y < a; ð4:2aÞ

@2
y û�ðyÞ þ ððk�Þ2 � ~a2Þû�ðyÞ ¼ bF�; �b < y < 0; ð4:2bÞ
@yûþðaÞ � ibþûþðaÞ ¼ 0; ð4:2cÞ
@yû�ð�bÞ þ ib�û�ð�bÞ ¼ 0; ð4:2dÞ
ûþð0Þ � û�ð0Þ ¼ 0; ð4:2eÞ
@yûþð0Þ � @yû�ð0Þ ¼ 0: ð4:2fÞ
Setting
uðyÞ :¼
ûþðyÞ 0 < y < a

û�ðyÞ �b < y < 0

�
; f ðyÞ :¼

bFþðyÞ 0 < y < abF�ðyÞ �b < y < 0

(
;

kðyÞ :¼ ðkþÞ2 � ~a2 0 < y < a

ðk�Þ2 � ~a2 �b < y < 0

(
;

we find that u satisfies:
@2
yuðyÞ þ kðyÞ2uðyÞ ¼ f ; �b < y < a; ð4:3aÞ
@yuðaÞ � ibþuðaÞ ¼ 0; ð4:3bÞ
@yuð�bÞ þ ib�uð�bÞ ¼ 0; ð4:3cÞ
uð0þÞ � uð0�Þ ¼ 0; ð4:3dÞ
@yuð0þÞ � @yuð0�Þ ¼ 0: ð4:3eÞ
Denoting the Sobolev space of complex functions:
H1ð�b; aÞ :¼ fu; @yu 2 L2ð�b; aÞg;
we define the inner product on the interval (�b,a)
ðu; vÞ :¼
Z a

�b
u�vdy;
for any u, v 2 L2(�b,a) where �v is the complex conjugate of v. To simplify notation, we use from here the usual notation for
spaces of real functions (e.g. H1, PN, etc.) to denote spaces of complex functions.
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With this notation the weak formulation for (4.3) is: Find u 2 H1(�b,a) such that:
ðk2u;/Þ � ð@yu; @y/Þ ¼ ðf ;/Þ � ibþuðaÞ�/ðaÞ � ib�uð�bÞ�/ð�bÞ; 8/ 2 H1ð�b; aÞ: ð4:4Þ
4.2. The Legendre–Galerkin method

Let PN be the polynomial space of degree at most N and define
XN;b;c :¼ fu 2 Cð�b; aÞjujð0;aÞ;ujð�b;0Þ 2 PN; ð@yu� ibuÞðaÞ ¼ ð@yuþ icuÞð�bÞ ¼ 0g:
Then our Legendre–Galerkin method is to find uN 2 XN;bþ ;b� such that
ðk2uN;/NÞ � ð@yuN; @y/NÞ ¼ ðeINf ;/NÞ � ibþuNðaÞ�/NðaÞ � ib�uNð�bÞ�/Nð�bÞ; 8/ 2 XN;bþ ;b� ; ð4:5Þ
where eIN is the interpolation operator defined by eINf jð0;aÞ;eINf jð�b;0Þ 2 PN . Since every function in XN;bþ ;b� is differentiable at
everywhere except at zero, (4.5) is equivalent to
ðk2uN;/NÞ þ ð@2
yuN;/NÞI1

þ @2
yuN ;/N

� �
I2

þ ½@yuNð0þÞ � @yuNð0�Þ��/Nð0Þ ¼ ðeINf ;/NÞ; 8/ 2 XN;bþ ;b� ; ð4:6Þ
where the subscripts I1 and I2 denote the corresponding integration domain I1 = (0,a) and I2 = (�b,0).
Consider n+(y) = c1y + 1 and n�(y) = c2y + 1 such that
ð@yn
þ � ibþnþÞðaÞ ¼ 0; ð@yn

� þ ib�n�Þð�bÞ ¼ 0:
It is easy to see that
c1 ¼
ibþ

1� ibþa
; c2 ¼

�ib�

1� ib�b
:

Let Lj(y) be the Legendre polynomial of order j on � 1 < y < 1. Following [25] (or see [26,27]), we define
ujðyÞ :¼ ð1þ iÞLj
2y� a

a

� �
þ ajLjþ1

2y� a
a

� �
þ bjLjþ2

2y� a
a

� �
; j ¼ 0;1; . . . ;N � 2;
with the complex parameters aj, bj chosen such that uj satisfies the boundary conditions
ð@yuj � ibþujÞðaÞ ¼ 0; ujð0Þ ¼ 0:
Similarly, we define
wjðyÞ :¼ ð1þ iÞLj
bþ 2y

b

� �
þ a0jLjþ1

bþ 2y
b

� �
þ b0jLjþ2

bþ 2y
b

� �
; j ¼ 0;1; . . . ;N � 2;
with a0j; b
0
j selected such that wj satisfies the boundary conditions
ð@ywj þ ib�wjÞð�bÞ ¼ 0; wjð0Þ ¼ 0:
If we let
~/jðyÞ :¼
/jðyÞ; 0 < y < a;

0; �b < y < 0;

�
j ¼ 0; . . . ;N � 2;

~/N�1þjðyÞ :¼
0; 0 < y < a;

wjðyÞ; �b < y < 0;

(
j ¼ 0; . . . ;N � 2;

~/2N�2ðyÞ :¼ nþðyÞ; 0 < y < a;
n�ðyÞ; �b < y < 0

�
:

Then, we have
XN;bþ ;b� ¼ spanf~/0; ~/1; . . . ; ~/2N�2g:
We assume that the approximate solution has the form
uNðyÞ :¼
X2N�2

j¼0

ûj
~/jðyÞ; ð4:7Þ
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and define
û ¼ ðû0; . . . ; ûN�2ÞT ;
ŵ ¼ ðûN�1; . . . ; û2N�3ÞT ;
f̂ ¼ ðf̂ 0; . . . ; f̂ N�2ÞT ;
ĝ ¼ ðf̂ N�1; . . . ; f̂ 2N�3ÞT ;
where
f̂ j :¼ ðeINf ; ~/jÞ; j ¼ 0;1; . . . ;2N � 2:
We further define
s1
lj ¼ @2

y
~/j; ~/l

� �
I1

;

s2
lj ¼ @2

y
~/N�1þj; ~/N�1þl

� �
I2

;

m1
lj ¼ ð~/j; ~/lÞI1

;

m2
lj ¼ ð~/N�1þj; ~/N�1þlÞI2

;

for l, j = 0,1, . . . ,N � 2. Additionally, we set
S1 ¼ s1
lj

� �
; S2 ¼ s2

lj

� �
; M1 ¼ m1

lj

� �
; M2 ¼ m2

lj

� �
;

a12ðjÞ ¼ @2
y
~/j þ k2 ~/j; ~/2N�2

� �
I1

þ @y
~/jð0þÞ;

b12ðjÞ ¼ @2
y
~/N�1þj þ k2 ~/N�1þj; ~/2N�2

� �
I2

� @y
~/N�1þjð0�Þ;

a21ðjÞ ¼ @2
y
~/2N�2 þ k2 ~/2N�2; ~/j

� �
I1

;

b21ðjÞ ¼ @2
y
~/2N�2 þ k2 ~/2N�2; ~/N�1þj

� �
I2

;

a22ðjÞ ¼ ðk2 ~/2N�2; ~/2N�2Þ þ @y
~/2N�2ð0þÞ � @y

~/2N�2ð0�Þ;
A11 ¼ S1 þ ðkþÞ2M1; B11 ¼ S2 þ ðk�Þ2M2;
for l, j = 0,1, . . . ,N � 2. The entries of the above matrices can be obtained exactly by using the orthogonal properties of Legen-
dre polynomials. Upon insertion of (4.7) into (4.5) we find the following system of 2N � 1 equations:
A11 0 a12

0 B11 b12

aT
21 bT

21 a22

0B@
1CA û

ŵ

û2N�2

0B@
1CA ¼ f̂

ĝ

f̂ 2N�2

0B@
1CA: ð4:8Þ
To solve this system of equations, we perform a simple block Gaussian elimination to get the following equation for û2N�2:
a22 � aT
21 bT

21

� � A11 0
0 B11

� ��1 a12

b12

� �( )
û2N�2 ¼ f̂ 2N�2 � aT

21 bT
21

� � A11 0
0 B11

� ��1
f̂

ĝ

 !
:

Then, we can solve for û and ŵ independently as follows:
A11û ¼ f̂ � û2N�2 � ða12Þ;

and
B11ŵ ¼ ĝ � û2N�2 � b12:
Due to the basis we chose, A11 and B11 are penta-diagonal symmetric matrices so that the above equations can be efficiently
solved.

Finally, our numerical solution has the form
uN;Nx ;Ny ðx; yÞ ¼
XN

n¼0

XNx=2�1

p¼�Nx=2

uNy
n;pðyÞeiapxen; ð4:9Þ
where
uNy
n;pðyÞ ¼ u�n;pðyÞ þ

X2Ny�2

j¼0

ûn;p;j
~/jðyÞ
with u�n;pðyÞ from (4.1) and the ûn;p;j from the algorithm above using the Legendre–Galerkin approximation.
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Remark 4.1. Before leaving our description of the numerical procedure, we mention that there are a number of choices for
summing the Taylor series which appear in (4.9). To avoid an avalanche of impenetrable notation we focus on the generic
problem of approximating the analytic function
AðeÞ ¼
X1
n¼0

Anen
by its truncated Taylor series
ANðeÞ :¼
XN

n¼0

Anen:
It is a classic result that if e0 is in the disk of convergence of A(e), say {jej < q}, AN(e0) will converge to A(e0) exponentially fast
as N ?1. However, it is possible for e0 to be a point of analyticity outside the disk of convergence of the Taylor series and for
AN to produce meaningless results. The classical numerical analytic continuation technique of Padé approximation [1] has
been successfully brought to bear upon boundary perturbation methods in the past (see, e.g. [4,21]) and we utilize this here
as well. In short, Padé approximation seeks to simulate the truncated Taylor series AN by the rational function
½L=M�ðeÞ :¼ aLðeÞ
bMðeÞ

¼
PL

l¼0alel

1þ
PM

m¼1bmem
where L + M = N and
½L=M�ðeÞ ¼ ANðeÞ þ OðeLþMþ1Þ;
well-known formulas for the coefficients {al,bm} can be found in [1]. This approximant has the remarkable properties that, for
a wide class of functions, not only is the convergence of [L/M] to A at e = e0 faster than that of AN for je0j < q, but also that [L/M]
may converge to A for points of analyticity e0 for which je0j > q. We refer the interested reader to Section 2.2 of Baker and
Graves-Morris [1] and the insightful calculations of Section 8.3 of Bender and Orszag [2] for a thorough discussion of the
capabilities and limitations of Padé approximants.
5. Numerical results and discussion

We now present the results of numerical experiments which exhibit the stability and accuracy of our new algorithm. We
use as a measure of convergence the widely-accepted ‘‘energy defect’’ [23,3–5] and study the performance of our algorithm
in assorted limits of both the physical and numerical parameters.

5.1. Energy defect

To diagnose the convergence of our algorithm we appeal to the well-established energy conservation measure. We point
out that outside the grooves, i.e. in the domain
X0 :¼ fy > jgjL1g
[
fy < �jgjL1g;
the solutions u± can be expressed via the Rayleigh expansions
uþðx; yÞ ¼
X1

p¼�1
Bþp eiapxþibþp y; u�ðx; yÞ ¼

X1
p¼�1

B�p eiapx�ib�p y: ð5:1Þ
In the case of real wavenumbers k± there is a principle of conservation of energy [23] for the TE mode which can be expressed
as
 X

p2Uþ
bþp jB

þ
p j

2 þ
X
p2U�

b�p jB
�
p j

2 ¼ bþ0 :
Defining the energy
E�ðlÞ :¼ Im
1
L

Z L

0
u�ðx; lÞð@yu�ðx; lÞÞdx

� 	
; ð5:2Þ
we have the following relationship:

Lemma 5.1. If l1 > jgjL1 and l2 < �jgjL1 then
Eþðl1Þ � E�ðl2Þ ¼
X
p2Uþ

bþp jB
þ
p j

2 þ
X
p2U�

b�p jB
�
p j

2 ¼ bþ0 :
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Proof. Simply substitute (5.1) into (5.2) and calculate the integral. h

Thus we can employ the ‘‘energy defect’’
d :¼ 1� Eþðl1Þ � E�ðl2Þ
bþ0





 



;

to measure the error in our numerical approximation.

Before describing our results, we recall that k+ and k� are the wavenumbers in the upper and lower media, respectively,
while a is the x-component of the incident radiation and e measures the height/slope of our profile y = g(x) = ef(x) (which is
always chosen d = 2p-periodic). In the first six examples in this section we have chosen a = 0 (so that waves are normally
incident) and selected the transparent boundaries at y = a = 1 and y = �b = �1. The numerical parameters are Nx (the number
of Fourier modes in the x direction), Ny (the number of Legendre coefficients in the y direction), and N (the number of Taylor
coefficients retained in the perturbation expansion).

In the recent work [22], a rigorous numerical error analysis of the TFE method was given for a single layer of dielectric
material. We fully expect this analysis to apply directly to the doubly layered model at hand, and that our numerical ap-
proach will have very similar behavior, e.g. exponential convergence as Nx, Ny, and N are increased, and the need to increase
all of these parameters as k+ and k� become large. However, we are also interested in two further questions which we ad-
dress in the following numerical simulations:

1. As we increase e so that the profile approaches the artificial boundaries, can we still obtain a reasonable approximation?
2. How does the difference between k+ and k� affect our results?

5.2. Numerical results

We now perform a sequence of tests to study the convergence behavior of our algorithm.

1. Convergence study in perturbation order:
To begin, we fix d = 2p, e = 0.1, Nx = 40, Ny = 80, f(x) = cos(x), a = 1, b = �1, and vary N = 0, . . . ,55 for five choices of the
wavenumbers k±:
ðkþ; k�Þ ¼ ð2:5;1:25Þ; ðkþ; k�Þ ¼ ð12:5;6:25Þ; ðkþ; k�Þ ¼ ð25:5;12:75Þ;
ðkþ; k�Þ ¼ ð51:5;25:75Þ; ðkþ; k�Þ ¼ ð102:5;51:25Þ: ð5:3Þ

The results are displayed in Fig. 2. Clearly, as anticipated, we notice exponential convergence as N is refined. We point out
that larger values of the wavenumbers require much larger choices for N, and, furthermore, as we fixed the x and y dis-
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Fig. 2. Energy defect versus perturbation order N.
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cretizations at Nx = 40 and Ny = 80, respectively, the case (k+,k�) = (102.5,51.25) is under-resolved and we can only
achieve an error of 10�3.

2. Convergence study in vertical discretization:
We now fix d = 2p, e = 0.1, Nx = 20, N = 20, f(x) = cos(x), a = 1, b = �1, and vary Ny = 1, . . . ,40 for the five choices of k± in
(5.3). We display the results in Fig. 3. Once again, we notice exponential convergence as Ny is refined, and larger values
of the wavenumbers require much larger choices for Ny. Once again, the calculation is under-resolved at (k+,
k�) = (102.5,51.25) so that we can only realize an error of 10�2 and is thus omitted.

3. Convergence study in horizontal discretization:
We fix d = 2p, e = 0.1, Ny = 80, N = 20, f(x) = cos(x), a = 1, b = �1, and vary Nx = 1, . . . ,40 for the first four choices of k± in
(5.3). We display the results in Fig. 4. Exponential convergence is once again observed, though for the two larger choices
of wavenumber the under-resolution is particularly strong in this calculation.

4. Convergence study for deformations near the artificial boundary:
We now investigate the behavior of our algorithm as the sharp interface and artificial boundary are brought close
together. This can, of course, be achieved either by increasing e, decreasing a (or b) or a combination of both. To fix upon
an example we set d = 2p, f(x) = cos(x), Nx = 20, and Ny = 40. We investigate five configurations:
ðkþ; k�;NÞ ¼ ð2:5;1:25;30Þ; ðkþ; k�;NÞ ¼ ð2:5;1:25;50Þ; ðkþ; k�;NÞ ¼ ð12:5;6:25;30Þ;
ðkþ; k�;NÞ ¼ ð12:5;6:25;80Þ; ðkþ; k�;NÞ ¼ ð12:5;6:25;200Þ;

and, letting e = 0.1,0.2, . . . ,0.9, we display the results in Fig. 5.
First, from the previous sections, we observe that parameters (Nx,Ny,N) = (20,40,30) are sufficiently large to obtain a high
accuracy approximation both for the cases (k+,k�) = (2.5,1.25) and (k+,k�) = (12.5,5.25). Fig. 5 shows that when we let the
height of the profile approach the artificial boundaries, the error is only determined by the parameters (k+,k�). To achieve
the same relative error, for small (k+,k�) one can allow the artificial boundaries to be located quite close to the profile.
Here Padé approximation (see Remark 4.1) was used to access this region of extended analyticity so that configurations
which are large deformations of the base geometry can be simulated [1].

5. Convergence study as wavenumber is varied:
We investigate the effects of varying the ratio of the wavenumber parameters k�/k+ in our numerical scheme. We fix
d = 2p, f(x) = cos(x), Nx = 40, Ny = 80, N = 30, e = 0.1, k+ = 2.5, and vary k�.
From Table 1, we can see that the difference between k+ and k� has almost no effect on the error if we choose parameters
Nx, Ny, and N large enough.

6. Convergence study as energy defect is fixed:
We fix d = 2p, f(x) = cos(x), e = 0.1, and aim to find the smallest set of resolution parameters (N,Nx,Ny) for a range of wave-
number pairs (k+,k�) such that an energy defect smaller than 10�6 is achieved. The result is listed in Table 2. We observe
that only a moderately number of modes/iterations, which grow linearly as the wavenumber increases, are needed to
obtain an accuracy of 10�6.
Fig. 3. Energy defect versus vertical discretization Ny.



Fig. 4. Energy defect versus horizontal discretization Nx.

Fig. 5. Energy defect versus e.
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7. Convergence study as incident wave angle is varied:
For our final study, we investigate the effects of varying the incident wave angle parameter cosh = a/k+ in our numerical
scheme. When a = 0, it means the wave is normally incident h ¼ p

2

� �
. We fix d = 2p, f(x) = cos(x), Nx = 10, Ny = 15, N = 12,

e = 0.1, k+ = 12.5, k� = 6.25 and vary a. We observe from Table 2 that Nx = 10, Ny = 15, N = 12 are the smallest numbers to
achieve an accuracy of 10�6 when (k+,k�,a) = (12.5,6.25,0). We observe from Table 3 that different a and k+ have very
little effect on the accuracy for a fixed set of parameters Nx,Ny, and N.



Table 3
Energy defect versus incident wave angle a/k+.

a/k+ Energy defect a/k+ Energy defect

0/10 5.186341816312279 � 10�6 5/10 2.292137464521894 � 10�5

1/10 1.432592737851698 � 10�5 6/10 7.991322704206624 � 10�6

2/10 9.598113105472218 � 10�6 7/10 6.234791904884309 � 10�6

3/10 7.528997959674400 � 10�6 8/10 3.751204664833842 � 10�6

4/10 1.334178326434116 � 10�5 9/10 9.947091869799839 � 10�7

Table 1
Energy defect versus wavenumber ratio k�/k+.

k�/k+ Energy defect k�/k+ Energy defect

0/20 1.068656274583191 � 10�12 10/20 5.115907697472721 � 10�14

1/20 5.464073637995171 � 10�13 11/20 2.842170943040401 � 10�15

2/20 6.931344387339777 � 10�13 12/20 8.792966355031240 � 10�14

3/20 7.194245199571014 � 10�13 13/20 1.820765760385257 � 10�13

4/20 1.673328142715036 � 10�13 14/20 2.952305067083216 � 10�13

5/20 3.371525281181676 � 10�13 15/20 1.813660333027656 � 10�13

6/20 8.196110456992755 � 10�13 16/20 3.307576434963266 � 10�13

7/20 1.231015289704374 � 10�13 17/20 3.364419853824074 � 10�13

8/20 8.864020628607250 � 10�14 18/20 4.991562718714704 � 10�14

9/20 1.353583911622991 � 10�13 19/20 7.744915819785092 � 10�14

Table 2
Smallest (N,Nx,Ny) for (k+,k�) to achieve an error of 10�6.

(k+,k�) N Nx Ny

(2.5,1.25) 7 6 7
(12.5,6.25) 12 10 15
(25.5,12,75) 20 18 24
(51.5,25.75) 26 26 42
(85.5,42.75) 50 38 63
(105.5,52.75) 60 60 74
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5.3. Concluding remarks

We constructed and implemented a boundary perturbation method for the scattering of electromagnetic waves by doubly
layered periodic dielectric media. The method is based on three essential steps: (i) a domain flattening through a change of
variable; (ii) a recursion by boundary perturbation; and (iii) an efficient and accurate Legendre–Galerkin method for solving
the one-dimensional Helmholtz equation with piecewise constant wavenumbers. The resulting algorithm is shown to be
very efficient and stable for a range of small to moderate wavenumbers. On the other hand, our method is not specially de-
signed for the technologically important high-frequency case (reflected in our equations with large values of k). While not
beyond the scope of our method, such a simulation would require a very fine discretization of the problem domain resulting
in an enormous count of degrees of freedom.

While we have only considered the two-dimensional doubly layered dielectric media, it is expected that the method can
be extended to two-dimensional multi-layered periodic media, as well as three-dimensional Maxwell’s equations with dou-
bly periodic multi-layered media.
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