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In many applications of scientific and engineering interest the accurate modeling of scattering of linear waves by
periodic layered media plays a crucial role. From geophysics and oceanography to materials science and imaging,
the ability to simulate such configurations numerically in a rapid and robust fashion is of paramount importance.
In this contribution we focus upon the specific problem of vector electromagnetic radiation interacting with a
multiply layered periodic crossed diffraction grating. While all of the classical methods for the numerical sim-
ulation of partial differential equations have been brought to bear upon this problem, we argue here that in this
particular context a high-order perturbation of surfaces approach is superior. In particular, we describe how the
method of field expansions can be extended to the fully vectorial and three-dimensional scattering problem in the
presence of multiple layers. With specific numerical experiments we will show the remarkable efficiency, fidelity,
and high-order accuracy one can achieve with an implementation of this algorithm. © 2015 Optical Society of
America

OCIS codes: (050.1755) Computational electromagnetic methods; (240.6680) Surface plasmons.
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1. INTRODUCTION
The scattering of linear waves by periodic layered media plays
a central role in applications of wide scientific and engineer-
ing interest. From geophysics [1] and oceanography [2] to ma-
terials science [3] and imaging [4], the ability to simulate such
configurations numerically in a rapid and robust fashion is of
paramount importance. In this contribution we focus upon the
specific problem of vector electromagnetic radiation interact-
ing with a multiply layered periodic crossed diffraction grating
(see Fig. 4). A crossed grating is usually defined as two line
gratings at right angles to each other, and we model this with a
biperiodic layer interface (which permits nonorthogonal line
intersection). We further allow for several such interfaces
provided that they all have a common period cell. This
model arises in a wide range of applications in optics and
photonics, particularly, in regard to the algorithm advocated
here, in nanoplasmonics [5–7], where one can investigate
topics as diverse as extraordinary optical transmission [8],
surface enhanced spectroscopy [9], and surface plasmon
resonance biosensing [10–15].

While all of the classical numerical algorithms have been
brought to bear upon this problem, each faces challenges.
The most widely used methods are those based upon finite
elements (see, e.g., [16–19]) and finite differences (see, e.g.,
[20–22]). However, these volumetric approaches are clearly
disadvantaged with an unnecessarily large number of un-
knowns for the problem at hand which features piecewise-
constant dielectric constants. Additionally, in such schemes
the unbounded problem domain must be truncated at some
finite distance from the grating structure inducing the compli-
cation and error introduced by enforcing an (approximately)
nonreflecting boundary condition (e.g., the perfectly matched
layer of Berenger [23] and variants of this, e.g., [24–26]).

Methods based upon traditional integral equation (IE)
formulations [27] are a natural candidate but face several
challenges. First, specially designed quadrature rules must
be designed to deliver high-order (spectral) accuracy. Second,
such rules applied to these nonlocal IEs generate dense, non-
symmetric positive definite linear systems to be solved. How-
ever, these issues have been adequately addressed (possibly
with the use of iterative solution procedures accelerated by
fast multipole methods [28]), and they are a compelling alter-
native (see, e.g., the survey article [29] for more details). How-
ever, three properties render them noncompetitive for the
periodic, parametrized problems we consider as compared
with the methods we advocate here:

1. For periodic problems the relevant Greens function
must be periodized if one is to restrict the domain of integra-
tion to a single period cell. This is a well-known problem (see,
e.g., the introduction of [30] for a full description), and the
slow convergence of the periodization must be accelerated
(e.g., with techniques such as Ewald summation). However,
even with such technology, these IE methods demand an
additional discretization parameter: The number of terms re-
tained in the approximation of the periodized Greens function.

2. For configurations parametrized by the real value ε
(for us the height/slope of the crossed interface), an IE solver
will return the scattering returns only for a particular value of
ε. If this value is changed then the solver must be run again.

3. The dense, nonsymmetric positive definite systems of
linear equations which must be inverted with each simulation.

As an alternative we advocate here for a “high-order pertur-
bation of surfaces” (HOPS) algorithm, more specifically the
method of field expansions (FE) appropriately generalized
to the fully three-dimensional vector Maxwell equations posed
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on a multiply layered medium. These schemes trace their
roots to the low-order calculations of Rayleigh [31] and Rice
[32]. Their high-order incarnation for doubly layered media
was first introduced by Bruno and Reitich for the two-dimen-
sional scalar case in [33,34] and for the fully three-dimensional
vector Maxwell case in [35]. These were further enhanced and
stabilized by the author and Reitich [36–38], and expanded to
multiple layers in the two-dimensional scalar case by the au-
thor and Malcolm [39].

These formulations are particularly compelling as they
maintain the advantageous properties of classical IE formula-
tions (e.g., surface formulation and exact enforcement of far-
field conditions) while avoiding the shortcomings listed above:

1. As this HOPS scheme utilizes the eigenfunctions of the
Laplacian (suitable complex exponentials) on a periodic do-
main, the quasiperiodicity of solutions is built in and does not
need to be further approximated.

2. Since the methods are built upon expansions in the
boundary parameter, ε, once the Taylor coefficients are
known for the scattering quantities, it is simply a matter of
summing these (rather than beginning a new simulation)
for any given choice of ε to recover the returns.

3. Due to the perturbative nature of the scheme, at every
perturbation order one need only invert a single, sparse oper-
ator corresponding to the flat-interface approximation of the
problem.

The rest of the paper is organized as follows: In Section 2
we briefly recall the equations which govern the propagation
of electromagnetic waves in a periodic, three-dimensional
multiply layered structure. In Section 3 we specify the method
of FE for numerically approximating solutions to these gov-
erning equations, in particular the generalizations of [35]
and [39] necessary for multiple layers for the vector Maxwell
equations. In Section 4 we detail our numerical results, includ-
ing a convergence study in Section 4.C and simulations of sur-
face plasmon resonances (SPRs) in Section 4.D.

2. GOVERNING EQUATIONS
Consider a layered diffraction grating with M many crossed
periodic interfaces located at

z � ḡ�m� � g�m��x; y�; 1 ≤ m ≤ M;

where z is the vertical coordinate and x and y are the lateral
coordinates, which delineate �M � 1� many layers,

S�0� :� fz > ḡ�1� � g�1��x; y�g;

and, for 1 ≤ m ≤ M − 1,

S�m� :� fḡ�m�1� � g�m�1��x; y� < z < ḡ�m� � g�m��x; y�g;

and
S�M� :� fz < g�M� � g�M��x; y�g:

Each layer is filled by with a material having dielectric con-
stant ϵ�m�, and the permeability of each is equal to μ0, that of
the vacuum. In this contribution we consider the genuinely
three-dimensional setting where the grating interfaces are
crossed and periodic,

g�m��x� d1; y� � g�m��x; y�; g�m��x; y� d2� � g�m��x; y�;

for 1 ≤ m ≤ M .
The structure is illuminated from above by plane-wave in-

cidence of the form

Einc�x; y; z� :� eiωtEinc�x; y; z; t� � Aei�αx�βy−γz�

Hinc�x; y; z� :� eiωtHinc�x; y; z; t� � Bei�αx�βy−γz�;

where

A · κ � 0; B � 1
ωμ0

κ × A; jAj � jBj � 1;

and κ :� �α; β;−γ�T .
The time-harmonic Maxwell equations for the reduced total

fields can be written (upon dropping the harmonic factor
exp�−iωt�) as

∇ × E � iωμ0H; div�E� � 0; (2.1a)

∇ ×H � −iωϵE; div�H� � 0: (2.1b)

All fields satisfy the vector Helmholtz equation, for
instance,

ΔE� k2E � 0;

with k2 � ω2ϵμ0, which encodes the properties of the material
and the frequency of radiation into one constant.

We decompose the total fields into incident and scattered
components by

E �
(
E�0� � Einc m � 0

E�m� 1 ≤ m ≤ M
;

H �
(
H�0� �Hinc m � 0

H�m� 1 ≤ m ≤ M
;

and note that each of these must satisfy vector Helmholtz
equations; for example, for 0 ≤ m ≤ M ,

ΔE�m� � �k�m��2E�m� � 0; in S�m�; (2.2)

where �k�m��2 :� ω2ϵ�m�μ0 and α2 � β2 � γ2 � �k�0��2.
At the material interfaces the fields are coupled by the

transmission conditions, for 1 ≤ m ≤ M ,

N �m� × �E�m−1� − E�m�� � ζ�m�;

N �m� × �H�m−1� −H�m�� � ψ �m�;

where N �m� :� �−∂xg�m� −∂yg�m� 1 �T , and, in the present
context of plane-wave illumination from above,

ζ�1� � −N �1� × �Einc�z�ḡ�1��g�1� ;

ψ �1� � −N �1� × �Hinc�z�ḡ�1��g�1� ;

and ζ�m� ≡ ψ �m� ≡ 0, 2 ≤ m ≤ M . In light of Maxwell’s equa-
tions, Eqs. (2.1), we can rewrite this in terms of the electric
field as
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N �m� × �E�m−1� − E�m��z�ḡ�m��g�m� � ζ�m�; (2.3a)

N �m� × �∇ × �E�m−1� − E�m���z�ḡ�m��g�m� � ψ �m�; 1 ≤ m ≤ M;

(2.3b)

where ψ �1� � −N �1� × �∇ × �Einc��z�ḡ�1��g�1� .
Finally, the periodicity of the grating interfaces implies that

the fields are quasiperiodic, for example,

E�m��x� d1; y� d2; z� � ei�αd1�βd2�E�m��x; y; z�;

and we demand that E�0� and E�M� be outgoing at positive and
negative infinity, respectively.

A. Rayleigh Expansions
Separation of variables gives the Rayleigh expansions, which
are quasiperiodic, outgoing solutions of Eq. (2.2). The electric
fields can be written

E�0��x; y; z� �
X∞
p�−∞

X∞
q�−∞

a�0�p;qe
iγ�0�p;q�z−ḡ�1��ei�αpx�βqy�; (2.4a)

and, for 1 ≤ m ≤ M − 1,

E�m��x; y; z� �
X∞
p�−∞

X∞
q�−∞

(
d�m�
p;q

sinh
�
iγ�m�

p;q �z − ḡ�m�1���
sinh

�
iγ�m�

p;q �ḡ�m� − ḡ�m�1���
� a�m�

p;q

sinh
�
iγ�m�

p;q �ḡ�m� − z��
sinh

�
iγ�m�

p;q �ḡ�m� − ḡ�m�1���
)
ei�αpx�βqy�;

(2.4b)

and

E�M��x; y; z� �
X∞
p�−∞

X∞
q�−∞

d�M�
p;q e

iγ�M�
p;q �ḡ�M�−z�ei�αpx�βqy�; (2.4c)

where, for p; q ∈ Z, 0 ≤ m ≤ M ,

αp :� α� �2π∕d1�p; βq :� β� �2π∕d2�q;

γ�m�
p;q :�

8>><
>>:

�����������������������������������
�k�m��2 − α2p − β2q

q
�p; q� ∈ U�m�

i

������������������������������������
α2p � β2q − �k�m��2

q
�p; q� ∉ U�m�

;

and

U�m� � fp; q ∈ Zjα2p � β2q < �k�m��2g;

which are the propagating modes in the uppermost and lowest
layers (S�0� and S�M�, respectively). We point out that a�0�p;q and
d�M�
p;q are the upward and downward propagating Rayleigh

amplitudes. Quantities of great interest are the efficiencies

e
�0�
p;q �

�
γ�0�p;q∕γ

�
ja�0�p;qj2; e

�M�
p;q �

�
γ�M�
p;q ∕γ

�
jd�M�

p;q j2;

and the object of fundamental importance to the design of
SPR biosensors [10–15] is the “reflectivity map,”

R :�
X

�p;q�∈U�0�
e
�0�
p;q:

If M � 1 and layer M is filled with a perfect electric con-
ductor, then, if a lossless dielectric fills S�0�, conservation
of energy requires that R � 1. As we shall see (Section 4.D),
this is not the case for a metal (such as gold) in the lower do-
main and drops in its value to a 10th or even a 100th are the
fundamental phenomena behind the utility of these sensors.

3. FIELD EXPANSIONS
In essence, the method of FE [33–35] is a perturbative ap-
proach to enforcing the boundary conditions of Eqs. (2.3a)
and (2.3b) with the fa�m�

p;q ;d
�m�
p;q g from the Rayleigh expansions,

Eq. (2.4), as unknowns. Here we take a slightly different (but
equivalent) point of view which, we believe, simplifies the pre-
sentation, particularly in the vector-valued context of the
Maxwell equations. First, we define the following functions:

a�0��x; y� :� E�0��x; y; ḡ�1�� �
X∞
p�−∞

X∞
q�−∞

a�0�p;qe
i�αpx�βqy�; (3.1a)

and, for 1 ≤ m ≤ M − 1,

d�m��x; y� :� E�m��x; y; ḡ�m�� �
X∞
p�−∞

X∞
q�−∞

d�m�
p;q e

i�αpx�βqy�;

(3.1b)

and, for 1 ≤ m ≤ M − 1,

a�m��x; y� :� E�m��x; y; g�m�1�� �
X∞
p�−∞

X∞
q�−∞

a�m�
p;q e

i�αpx�βqy�;

(3.1c)

and

d�M��x;y� :�E�M��x;y;g�M���
X∞
p�−∞

X∞
q�−∞

d�M�
p;q e

i�αpx�βqy�; (3.1d)

which are the “flat interface” field traces.
Remark. An important point is that these unknowns belong

to a space of three-functions, F 3, by which we mean that they
map two dependent variables, �x; y�, to three components, for
instance, a�m�:R2 → R3. In Eq. (3.4) we will explicitly enforce
that these be divergence free.

A. Surface Operators
As our method will be focused upon the interfacial boundary
conditions, Eq. (2.3), we note that only four of these six are
linearly independent. We will fix upon the x- and y-compo-
nents of Eqs. (2.3a) and (2.3b) and therefore define the
projection operator

Px;y

2
4
0
@ vx

vy

vz

1
A
3
5 :�

�
vx

vy

�
; Px;y :F 3 → F 2:

With this we further define the Dirichlet trace operators,

D�0� : a�0� → Px;y�N �1� × E�0��z�ḡ�1��g�1� ;
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and, for 1 ≤ m ≤ M − 1,

D�m�:
�
d�m�

a�m�

�
→

�
Px;y�N �m� × E�m��z�ḡ�m��g�m�

Px;y�N �m�1� × E�m��z�ḡ�m�1��g�m�1�

�
;

and

D�M�:d�M� → Px;y�N �M� × E�M��z�ḡ�M��g�M� :

We also define their (exterior) Neumann counterparts,

N �0�:a�0� → Px;y�N �1� × ∇ × �E�0���z�ḡ�1��g�1� ;

and for 1 ≤ m ≤ M − 1,

N �m�:
�
d�m�

a�m�

�
→

�
Px;y�N �m� × ∇ × �E�m���z�ḡ�m��g�m�

Px;y�N �m�1� × ∇ × �E�m���z�ḡ�m�1��g�m�1�

�
;

and

N �M�:d�M� → Px;y�N �M� × ∇ × �E�M���z�ḡ�M��g�M� :

The idea behind these operators D and N is that they map,
respectively, the function pair �d�m�; a�m�� to the upper and
lower Dirichlet and Neumann traces. For later convenience
we write, for 1 ≤ m ≤ M − 1,

D�m� �
�
Du;d

�m� Du;a
�m�

Dl;d
�m� Dl;a

�m�

�
; N �m� �

�
N u;d

�m� N u;a
�m�

N l;d
�m� N l;a

�m�

�
:

To keep the notation consistent we denote

D�0� � Dl;a
�0� ; N �0� � N l;a

�0� ;

D�M� � Du;d
�M�; N �M� � N u;d

�M�:

In terms of these, the Dirichlet boundary conditions,
Eq. (2.3a), become

Dl;a
�0� �a�0�� −Du;d

�1� �d�1�� −Du;a
�1� �a�1�� � ζ�1�; (3.2a)

and, for 2 ≤ m ≤ M − 1,

Dl;d
�m−1��d�m−1�� �Dl;a

�m−1��a�m−1�� −Du;d
�m��d�m�� −Du;a

�m��a�m�� � ζ�m�;

(3.2b)

and

Dl;d
�M−1��d�M−1�� �Dl;a

�M−1��a�M−1�� −Du;d
�M��d�M�� � ζ�M�: (3.2c)

The Neumann conditions, Eq. (2.3b), become

N l;a
�0� �a�0�� −N u;d

�1� �d�1�� −N u;a
�1� �a�1�� � ψ �1�; (3.3a)

and, for 2 ≤ m ≤ M − 1,

N l;d
�m−1��d�m−1�� �N l;a

�m−1��a�m−1��
−N u;d

�m��d�m�� −N u;a
�m��a�m�� � ψ �m�; (3.3b)

and

N l;d
�M−1��d�M−1�� �N l;a

�M−1��a�M−1�� −N u;d
�M��d�M�� � ψ �M�: (3.3c)

At this point we have 4M equations for 6M unknowns, but
we must also remember to enforce the condition that the
fields be divergence free which gives 2M more equations.
While this is a condition which must be true for all values
of �x; y; z� in the bulk, for our purposes it suffices to enforce
these at the flat interfaces alone, and thus we define the fol-
lowing operators:

V�0�:a�0� → div�E�0��jz�ḡ�1� ;

and, for 1 ≤ m ≤ M − 1,

V�m�:
�
d�m�

a�m�

�
→

�
div�E�m��jz�ḡ�m�

div�E�m��jz�ḡ�m�1�

�
;

and

V�M�:d�M� → div�E�M��jz�ḡ�M� :

Once again, introducing helpful notation,

V�m� �
�
Vu;d
�m� Vu;a

�m�
Vl;d
�m� Vl;a

�m�

�
; 1 ≤ m ≤ M − 1;

and

V�0� � Vl;a
�0� ; V�M� � Vu;d

�M�;

our divergence-free conditions take on the form of “boundary
conditions,”

Vl;a
�0� �a�0�� � 0; (3.4a)

and, for 1 ≤ m ≤ M − 1,

Vu;d
�m��d�m�� � Vu;a

�m��a�m�� � 0; (3.4b)

Vl;d
�m��d�m�� � Vl;a

�m��a�m�� � 0; (3.4c)

and

Vu;d
�M��d�M�� � 0: (3.4d)

Remark. With all of this notation we note that

Dq;r :F 3 → F 2; N q;r :F 3 → F 2; Vq;r :F 3 → F ;

where q � l; u and r � a; d.

B. Abstract Formulation
We state the boundary conditions in Eqs. (3.2) to (3.4) ab-
stractly as

Mv � b; (3.5)
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where

M �
�
D N V

�
T
;

v �
�
a�0� d�1� a�1� � � � d�M−1� a�M−1� d�M�

�
T
;

b �
�
ζ�1� � � � ζ�M� ψ �1� � � � ψ �M� 0 � � � 0

�
T
:

The operatorsD,N, andV clearly require more explanation.
In short, they enforce the Dirichlet, Neumann, and divergence-
free conditions simultaneously over all layers. For an M -layer
configuration each of these operators maps

D;N;V:F 6M → F 2M;

and we think of each as a �2M� × �6M� operator-valued matrix.
The entireties of these matrices are all zero save the excep-
tions we detail below (in these we use MATLAB [40] “colon
notation” for matrix assignment; for instance, D�1∶2; 1∶3� re-
fers to the 2 × 3 matrix with row indices 1 and 2 and column
indices 1, 2, and 3). For the D we have

D�2m − 1∶2m; 6m − 8∶6m − 6� � Dl;d
�m−1� 2 ≤ m ≤ M;

D�2m − 1∶2m; 6m − 5∶6m − 3� � Dl;a
�m−1� 1 ≤ m ≤ M;

D�2m − 1∶2m; 6m − 2∶6m� � −Du;d
�m� 1 ≤ m ≤ M;

D�2m − 1∶2m; 6m� 1∶6m� 3� � −Du;d
�m� 1 ≤ m ≤ M − 1;

while for the N we have

N�2m − 1∶2m; 6m − 8∶6m − 6� � N l;d
�m−1� 2 ≤ m ≤ M;

N�2m − 1∶2m; 6m − 5∶6m − 3� � N l;a
�m−1� 1 ≤ m ≤ M;

N�2m − 1∶2m; 6m − 2∶6m� � −N u;d
�m� 1 ≤ m ≤ M;

N�2m − 1∶2m; 6m� 1∶6m� 3� � −N u;d
�m� 1 ≤ m ≤ M − 1:

The operator V is a little different in structure but has non-
zero entries

V�2m; 2m� � Vu;d
�m� 1 ≤ m ≤ M;

V�2m; 2m� 1� � Vu;a
�m� 1 ≤ m ≤ M − 1;

V�2m� 1; 2m� � Vl;d
�m� 1 ≤ m ≤ M − 1;

V�2m� 1; 2m� 1� � Vl;a
�m� 0 ≤ m ≤ M − 1:

C. Taylor Expansions
The FE approach to this problem is to consider deformations
of the form g�m��x; y� � εf �m��x; y� (f �m� � O�1�) and note
that, for f �m� sufficiently smooth (Lipschitz) and ε sufficiently
small, the linear operator M and inhomogeneity b are both
analytic in ε [41,42]. Furthermore, an analytic solution v
can be shown to exist. More specifically, the following expan-
sions can be demonstrated to be strongly convergent:

fM; v;bg�εf � �
X∞
n�0

fMn�f �; vn�f �;b�f �gεn:

Crucially, an algorithm for recovering the vn can be devised
based upon regular perturbation theory. In short, we write
Eq. (3.5) as

 X∞
n�0

Mnε
n

! X∞
m�0

vmεm
!
�
X∞
n�0

bnεn;

and, equating at each perturbation order, we find

M0vn � bn −
Xn−1
m�0

Mn−mvm: (3.6)

At order zero we recover the flat-interface solution, while
higher order corrections, vn, can be we computed by appeal-
ing to Eq. (3.6). Of great importance is the fact that one only
need invert the same linear operator, M0, at every perturba-
tion order. All that remains is a specification of the terms
fMn;bng; the details can be found at the author’s website [43].

To give a flavor of these formulas we consider the upper-
most layer. The operator V is independent of the layer profile
shapes g�m�, so V � V0 and V � V0. In terms of Fourier multi-
plier notation,

V0�0�1;1 � iαD;

V0�0�1;2 � iβD;

V0�0�1;3 � iγ�0�D :

Regarding the Dirichlet trace operators, upon defining

F
�1�
n �x; y� :� f �1��x; y�n∕n!;

one can show that

Dn�0�1;1 � 0;

Dn�0�1;2 � −F
�1�
n �iγ�0�D �n;

Dn�0�1;3 � −�∂yf �1��F �1�
n−1�iγ�0�D �n−1;

and

Dn�0�2;1 � F
�1�
n �iγ�0�D �n;

Dn�0�2;2 � 0;

Dn�0�2;3 � �∂xf �1��F �1�
n−1�iγ�0�D �n−1:

Finally, for the Neumann trace operators,

N n�0�1;1 � −F
�1�
n �iγ�0�D �n�1 � �∂yf �1��F �1�

n−1�iβD��iγ�0�D �n−1;
N n�0�1;2 � −�∂yf �1��F �1�

n−1�iαD��iγ�0�D �n−1;
N n�0�1;3 � F

�1�
n �iαD��iγ�0�D �n;

and

N n�0�2;1 � −�∂xf �1��F �1�
n−1�iβD��iγ�0�D �n−1;

N n�0�2;2 � −F
�1�
n �iγ�0�D �n�1 � �∂xf �1��F �1�

n−1�iαD��iγ�0�D �n−1;
N n�0�2;3 � F

�1�
n �iβD��iγ�0�D �n:

4. NUMERICAL RESULTS
We now present results of numerical simulations conducted
with the generalized FE method outlined above. The scheme
can be viewed as a high-order spectral approach where non-
linearities are approximated with convolutions implemented
via the fast Fourier transform algorithm [44].
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A. Exact Solutions
Following the developments of several of our previous papers
on similar topics (see, e.g., [45,46]), we consider the functions

E�0�
r;s�x; y; z� � a�0�r;se

iγ�0�r;s �z−ḡ�1��ei�αrx�βsy�; (4.1a)

and, for 1 ≤ m ≤ M ,

E�m�
r;s �x; y; z� �

8<
:d�m�

r;s

sinh
�
iγ�m�

r;s �z − ḡ�m�1��
�

sinh
�
iγ�m�

r;s �ḡ�m� − ḡ�m�1��
�

� a�m�
r;s

sinh
�
iγ�m�

r;s �ḡ�m� − z�
�

sinh
�
iγ�m�

r;s �ḡ�m� − ḡ�m�1��
�
9=
;ei�αrx�βsy�;

(4.1b)

and

E�M�
r;s �x; y; z� � d�M�

r;s e
iγ�M�

r;s �g�M�−z�ei�αrx�βsy�; (4.1c)

with �r; s� ∈ Z2. These are outgoing, quasiperiodic solutions of
the Helmholtz equation. However, the boundary conditions
satisfied by these functions are not those satisfied by an inci-
dent plane wave. We compute the surface data

~ζ�m� :� N �m� ×
h
E�m−1�
r;s − E�m�

r;s

i
z�ḡ�m��g�m� ;

~ψ �m� :� N �m� ×
h
∇ × �E�m−1�

r;s − E�m�
r;s �

i
z�ḡ�m��g�m� ;

for 1 ≤ m ≤ M . This is a family of exact solutions against
which to test our numerical algorithm for any choice of
deformations fg�1�;…; g�M�g.

B. Implementation and Error Measurement
The method described in Section 3 is essentially a Fourier
collocation [44]/Taylor method [36,47] enhanced by a Padé
approximation [42,48]. More specifically, we approximate
the fields, fE�0�;E�m�;E�M�g, by

E�0;Nx;Ny;N� :�
XN
n�0

XNx∕2−1

p�−Nx∕2

XNy∕2−1

q�−Ny∕2
a�0�p;qe

iγ�0�p;q�z−g�1��ei�αpx�βqy�εn;

(4.2a)

and, for 1 ≤ m ≤ M − 1,

E�m;Nx;Ny;N� :�
XN
n�0

XNx∕2−1

p�−Nx∕2

XNy∕2−1

q�−Ny∕2

×

8<
:d�m�

p;q

sinh
�
iγ�m�

p;q �z − ḡ�m�1��
�

sinh
�
iγ�m�

p;q �ḡ�m� − ḡ�m�1��
�

� a�m�
p;q

sinh
�
iγ�m�

p;q �ḡ�m� − z�
�

sinh
�
iγ�m�

p;q �ḡ�m� − ḡ�m�1��
�
9=
;ei�αpx�βqy�εn;

(4.2b)

and

E�M;Nx;Ny;N� :�
XN
n�0

XNx∕2−1

p�−Nx∕2

XNy∕2−1

q�−Ny∕2
d�M�
p;q e

iγ�M�
p;q �g�M�−z�ei�αpx�βqy�εn;

(4.2c)

respectively [cf. Eq. (2.4)]. We insert these into Eq. (3.6) and
determine the fvng.

A crucial consideration is how the Taylor series in ε are
summed. To be specific, to approximate E�0� we consider the
truncation E�0;Nx;Ny;N�, which amounts to the approximation
ap;q�ε� :�

P∞
n�0 a

�0�
p;qεn by aNp;q�ε� :�

P
N
n�0 a

�0�
p;qεn. The classical

numerical analytic continuation technique of Padé approxi-
mation [48] has been successfully brought to bear upon HOPS
methods in the past (see, e.g., [34,42]), and we advocate its use
here. The Padé approximation seeks to simulate the truncated
Taylor series aNp;q�ε� by the rational function

�L∕M ��ε� :� aL�ε�
bM �ε� �

P
L
l�0 alε

l

1�P
M
m�1 bmε

m
; (4.3)

where L�M � N and �L∕M ��ε� � aNp;q�ε� �O�εL�M�1�; well-
known formulas for the coefficients fal; bmg can be found
in [48]. This approximant has remarkable properties of en-
hanced convergence, and we refer the interested reader to
Section 2.2 of Baker and Graves-Morris [48] and the insightful
calculations of Section 8.3 of Bender and Orszag [49] for a
thorough discussion of the capabilities and limitations of
Padé approximants.

With these approximations we can now measure error in
our simulations, Eq. (4.2), versus the exact solutions, Eq. (4.1).
Among the myriad choices available we select the relative de-
fect in the top and bottom Dirichlet data measured in the su-
premum norm,

Error :� max
	jE�0;Nx;Ny;N� − E�0�jL∞

jE�0�jL∞
;
jE�M;Nx;Ny;N� − E�M�jL∞

jE�M�jL∞



:

C. Convergence Study
For our convergence study we select the doubly 2π periodic
profiles g�m� � εf �1�,

f �1��x; y� � cos�x� � cos�y�;
f �2��x; y� � cos�2x� � cos�2y�;

and the physical and numerical parameters

α � 0.1; β � 0.2; γ �
�
1.1; 2.2; 3.3

�
T
; (4.4a)

ε � 0.003; 0.01; 0.03; 0.1; d1 � d2 � 2π; (4.4b)

Nx � Ny � 24; N � 0;…; 10: (4.4c)

In Figs. 1 and 2 we summarize the results of these simula-
tions which not only demonstrate the validity of our codes but
also show that only a small number of Fourier modes and
perturbation orders are required to realize machine precision
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(up to the conditioning of the algorithm) for small (e.g.,
ε � 0.01), smooth profiles.

D. SPR Simulations
To close, we consider a configuration which is not substan-
tially different from one recently considered in the laboratory
of Oh (Minnesota), in particular the devices described in
[12,15]. In these latter publications a two-dimensional thin-
film sensor was investigated which was corrugated on one
side and flat on the other. With the current computational
capability we can investigate with great ease not only the
presence of corrugations on both sides but also full three-
dimensionality.

To begin, we consider a reference configuration consisting
of two layers: vacuum (a dielectric) above gold (a metal), sep-
arated by the perturbed interface g�1� � hf �1�,

f �1��x; y� � 1
4
fcos�2πx∕d1� � cos�2πy∕d2�g;

without loss of generality we set g�1� � 0. By definition, the
refractive index for vacuum is nv � 1. The refractive index

of gold is the subject of ongoing research, and we choose a
Lorentz model [50],

ϵAu � ϵAu∞ �
X6
j�1

ΔAu
j

−aAuj ω2 − ibAuj ω� cAuj
;

where ω � 2π∕λ, ϵAu∞ � 1, and ΔAu, aAu, bAu, and cAu can be
found in [50]. For physical and numerical parameters we se-
lect the following:

α � 0; β � 0; γ � �γv; γAu�T ; (4.5a)

h � 0;…; 0.2; d1 � d2 � 0.650; (4.5b)

Nx � Ny � 24; N � 0;…; 16: (4.5c)

In Fig. 3 we display the reflectivity map for this configura-
tion, which shows a strong plasmonic response around
λ � 0.680 and h � 0.080 (both measured in micrometers).

By comparison we consider the three-layer configuration
composed of vacuum (dielectric) overlaying a thin layer of
gold (metal) of thickness t on top of water (dielectric) with
interfaces shaped by g�m� � hf �m�,

Fig. 1. Relative error versus perturbation parameter ε for various
perturbation orders N (with �N∕2; N∕2� Padé approximation). Results
for the sinusoid–sinusoid configuration, Eq. (4.4), withNx � Ny � 24.

Fig. 2. Relative error versus perturbation order N (with �N∕2; N∕2�
Padé approximation) for various perturbation parameters ε. Results
for the sinusoid–sinusoid configuration, Eq. (4.4), withNx � Ny � 24.

Fig. 3. Reflectivity map for two layers, R�λ; h�, versus incident
wavelength, λ, and deformation height, h. Results for the sinusoid con-
figuration, Eq. (4.5), with Nx � Ny � 24, [8/8] Padé approximant.

Fig. 4. Plot of the three-layer configuration Eq. (4) with t � 50 nm.
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f �1��x; y� � f �2��x; y� � 1
4
fcos�2πx∕d1� � cos�2πy∕d2�g;

see Fig. 4. We set g�1� � 0 and g�2� � −t (t � 50, 100 nm)
and use the refractive index of water, nw � 1.333 [12].
For physical and numerical parameters we select the follow-
ing:

α � 0; β � 0; γ � �γv; γAu; γw�T ; (4.6a)

h � 0;…; 0.2; d1 � d2 � 0.650; (4.6b)

Nx � Ny � 24; N � 0;…; 16: (4.6c)

We point out that while the reflectivity map for the t �
100 nm configuration (see Fig. 5) looks qualitatively very sim-
ilar to the semi-infinite layer case depicted in Fig. 3, the reflec-
tivity map for t � 50 nm (see Fig. 6) looks completely

different as the region of sensitive response is vastly enlarged.
One factor for this difference is the fact that the thin-layer con-
figuration allows radiation to transmit into the water as its ver-
tical dimension is now comparable to the skin depth of gold.
The point of our contribution is that with our new methodol-
ogy it is very simple to vary such configuration parameters
and evaluate a robust and reliable simulation in a matter of
a minute or two on a laptop computer.
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