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q-expansions

A classical modular form f of weight k ∈ 2Z≥0 for Γ0(N) satisfies
the translation invariance f (z + 1) = f (z) for z ∈ H, so f admits a
Fourier expansion (or q-expansion)

f (z) =
∞∑
n=0

anqn

at the cusp ∞, where q = e2πiz . If further f is a normalized
eigenform for the Hecke operators Tn, then the coefficients an are
the eigenvalues of Tn for n relatively prime to the level of f .



Modular forms, no cusps!

Let Γ ≤ PSL2(R) be a cocompact Fuchsian group. A modular
form f of weight k ∈ 2Z≥0 for Γ is a holomorphic map f : H → C
satisfying

f (gz) = j(g , z)k f (z)

for all g ∈ Γ, where j(g , z) = cz + d if g =

(
a b
c d

)
.

As Γ is cocompact, the quotient X = Γ\H has no cusps, so there
are no q-expansions!

However, not all is lost: such a modular form f still admits a
power series expansion in the neighborhood of a point p ∈ H.



Power series expansions in unit disc
A q-expansion is really just a power series expansion at ∞ in the
parameter q, convergent for |q| < 1. So it is natural to consider a
neighborhood of p normalized so the expansion also converges in
the unit disc D for a parameter w . So we map

w : H → D

z 7→ w(z) =
z − p

z − p
.

We then consider series expansions of the form

f (z) = (1− w)k
∞∑
n=0

bnwn

where w = w(z). The term

(1− w(z))k =

(
p − p

z − p

)k

is the automorphy factor arising by slashing by linear fractional
transformation w(z).



Shimura-Maass derivatives

Like Taylor coefficients, the coefficients bn in the expansion

f (z) = (1− w)k
∞∑
n=0

bnwn

are given by derivatives.

However, the derivative of a modular form is no longer a modular
form (unless k = 0)! Instead, we consider an operator which
preserves modularity but destroys holomorphicity.

A function f : H → C is said to be nearly holomorphic if

f (z) =
m∑

d=0

fd(z)

(z − z)d

where each fd : H → C is holomorphic. Let M∗k (Γ) be the space of
nearly holomorphic modular forms of weight k for Γ.



Shimura-Maass derivatives
Define the Shimura-Maass differential operator by

∂k =
1

2πi

(
d

dz
+

k

z − z

)
.

Then ∂k : M∗k (Γ)→ M∗k+2(Γ) preserves modularity. Abbreviate
∂nk = ∂k+2(n−1) ◦ · · · ◦ ∂k+2 ◦ ∂k .

Lemma

If f : H → C is holomorphic at p ∈ H, then f has the expansion

f (z) = (1− w)k
∞∑
n=0

bnwn

with

bn =
(∂nf )(p)

n!
(−4πy)n

and y = Im(p).



Example

Let f ∈ S2(Γ0(11)) be defined by

f (z) = q
∞∏
n=1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + ....

The point p = (−9 +
√
−7)/22 ∈ H is a CM point on X0(11) for

K = Q(
√
−7). From the q-expansion, we obtain

f (z) = (1− w)2
∞∑
n=0

bnwn = f (p)(1− w)2
∞∑
n=0

cn
n!

(Θw)n

= −
√

3 + 4
√
−7Ω2(1− w)2·

·
(

1 + Θω +
5

2!
(Θw)2 − 123

3!
(Θw)3 − 59

4!
(Θw)4 − . . .

)
where

Θ = −4πy
(∂2f )(p)

f (p)
=
−4 + 2

√
−7

11
πΩ2

and Ω = 0.500491 . . . is the Chowla-Selberg period for K .



Arithmetic groups

Let F be a totally real number field with ring of integers ZF . Let
B be a quaternion algebra over F with a unique split real place
ι∞ : B ↪→ M2(R). Let O ⊂ B be a maximal order and let O∗1
denote the group of units of reduced norm 1 in O. Then the group

ΓB(1) = ι∞(O∗1/{±1}) ⊂ PSL2(R)

is a Fuchsian group with X = Γ\H of finite area. A Fuchsian
group Γ is arithmetic if it is commensurable with ΓB(1) for some
choice of B. Let N be an ideal of ZF . Define

O(N)×1 = {γ ∈ O∗1 : γ ≡ 1 (mod NO)}

and let ΓB(N) = ι∞(O(N)∗1)/[±1]. A Fuchsian group Γ is
congruence if it contains ΓB(N) for some N.

If F has narrow class number 1, the space Mk(Γ) has an action of
Hecke operators Tp indexed by the prime ideals p - DN.



Algebraicity
Let K be a totally imaginary quadratic extension of F that embeds
in B, and let ν ∈ B be such that F (ν) ∼= K . Let p ∈ H be a fixed
point of ι∞(ν). Then we say p is a CM point for K .

Theorem (Shimura)

There exists Ω ∈ C× such that for every CM point p for K, every
congruence subgroup Γ commensurable with ΓB(1), and every
f ∈ Mk(Γ) with f (p) ∈ Q, we have for all n ∈ Z≥0 that

(∂nf )(p)

Ω2n
∈ Q.

Rodriguez-Villegas and Zagier link the coefficients bn to square
roots of central values of the Rankin-Selberg L-function
L(s, f × θn), where θ is associated to a Hecke character for K .
Many authors have pursued this further, including
O’Sullivan-Risager, Bertolini-Darmon-Prasanna, Mori, . . . .



Triangle groups

For a, b, c ∈ Z≥2 ∪ {∞} with 1/a + 1/b + 1/c < 1, define the
(a, b, c)-triangle group to be the subgroup of orientation-preserving
isometries in the group generated by reflections in the sides of a
hyperbolic triangle with angles π/a, π/b, π/c. Power series
expansions for a uniformizing function at the vertices of the
fundamental triangle are obtained as the inverse of the ratio of

2F1-hypergeometric functions.

This case was also of great classical interest, and has been taken
up again more recently by Bayer, Bayer-Travesa, V, and
Baba-Granath; this includes the well-studied case where the
Fuchsian group arises from the quaternion algebra of discriminant
6 over Q, corresponding to the (2, 4, 6)-triangle group.



Our result

We exhibit a general method for numerically computing power
series expansions of modular forms for cocompact Fuchsian groups.
Our method has generalizations to a wide variety of settings
(noncongruence groups, real analytic modular forms, higher
dimensional groups) and applies equally well for arithmetic
Fuchsian groups over any totally real field F .

(There is another recent method, due to Nelson, which directly
computes the Shimizu lift of a modular form on a Shimura curve
over Q to a classical modular curve!)

Our method is inspired by the method of Stark and Hejhal, who
used the same basic principle to compute Fourier expansions for
Maass forms on SL2(Z) and the Hecke triangle groups.



Basic idea

Let Γ be a cocompact Fuchsian group. Let D ⊂ D be a
fundamental domain for Γ contained in a circle of radius ρ > 0.
Let f ∈ Sk(Γ). We consider an approximation

f (z) ≈ fN(z) = (1− w)k
N∑

n=0

bnwn

valid for all |w | ≤ ρ to some precision ε > 0.

For a point w = w(z) 6∈ D, there exists g ∈ Γ such that
z ′ = gz ∈ D; by the modularity of f we have

fN(z ′) ≈ f (z ′) = j(g , z)k f (z)

(1− w ′)k
N∑

n=0

bn(w ′)n ≈ j(g , z)k(1− w)k
N∑

n=0

bnwn,

imposing a (nontrivial) linear relation on the unknowns bn.



Better idea
Use the Cauchy integral formula:

bn =
1

2πi

∮
f (z)

wn+1(1− w)k
dw .

We take the contour to be a circle of radius ρ, apply automorphy,
and again obtain linear relations among the coefficients bn.

Let wm = ρe2πmi/Q and z ′m = gmzm with z ′m ∈ D, we obtain

bn ≈
1

Q

Q∑
m=1

j(gm, zm)−k fN(z ′m)

wn
m(1− wm)k

and expanding fN(z) we obtain a relation of the form

bn ≈
N∑
r=0

K c
nrbr .

The matrix K c with entries K c
nr can be obtained by a matrix

multiplication of size (N + 1)× Q by Q × (N + 1). The column
vector b satisfies (K c − 1)b ≈ 0.

Better still: use Simpson’s rule!



Computing a fundamental domain

For a point p ∈ H, we denote by Γp = {g ∈ Γ : g(p) = p} the
stabilizer of p in Γ.

Theorem (V)

There exists an algorithm that, given as input a cocompact
Fuchsian group Γ and a point p ∈ H with Γp = {1}, computes as
output a fundamental domain D(p) ⊂ H for Γ and an algorithm
that, given z ∈ H returns a point z ′ ∈ D(p) and g ∈ Γ such that
z ′ = gz.

The fundamental domain D(p) is the Dirichlet domain

D(p) = {z ∈ H : d(z , p) ≤ d(gz , p) for all g ∈ Γ}

where d is the hyperbolic distance. The set D(p) is a closed,
connected, and hyperbolically convex domain whose boundary
consists of finitely many geodesic segments.



Computing the numerical kernel

Having assembled our linear relations into an M × (N + 1) matrix
A with Ab ≈ 0, we now seek to compute the numerical kernel of
A. We compute the singular value decomposition (SVD) of the
matrix A, writing

A = USV ∗

where U and V are M ×M and (N + 1)× (N + 1) unitary
matrices and S is diagonal. The diagonal entries of the matrix S
are the singular values of A, and singular values that are
approximately zero correspond to column vectors of V that are in
the numerical kernel of A.



Confirming the output

Although we cannot prove that our results are correct, there are
several tests that allow one to be quite convinced that they are
correct. (See also Booker-Strömbergsson-Venkatesh.)

First we simply decrease the error ε and see if the coefficients bn

converge. The second is to look at the singular values to see that
the approximately nonzero eigenvalues are sufficiently large.

More seriously, we can also verify that f is modular at point
w 6∈ D with |w | ≤ ρ. This shows that the computed expansion
transforms like a modular form of weight k for Γ.

Finally, when f is an eigenform for a congruence group Γ, we can
check that f is indeed numerically an eigenform (with the right
eigenvalues) and that the normalized coefficients appear to be
algebraic using the LLL-algorithm.



Example

Let F = Q(a) = Q(
√

5) where a2 + a− 1 = 0, and let ZF be its
ring of integers. Let p = (5a + 2), so Np = 31. Let B be the
quaternion algebra ramified at p and the real place sending

√
5 to

its positive real root: we take B =

(
a, 5a + 2

F

)
. We consider

F ↪→ R embedded by the second real place, so
a = (1−

√
5)/2 = −0.618033 . . . .

A maximal order O ⊂ B is given by

O = ZF ⊕ ZFα⊕ ZF
a + aα− β

2
⊕ ZF

(a− 1) + aα− αβ
2

.

Let ι∞ be the splitting at the second real place given by

ι∞ : B ↪→ M2(R)

α, β 7→
(

0
√

a√
a 0

)
,

(√
5a + 2 0

0 −
√

5a + 2

)



Example

Let Γ = ι∞(O×1 )/{±1} ⊆ PSL2(R). Then Γ has signature (1; 22),
so X = Γ\H can be given the structure of a compact Riemann
surface of genus 1. Consequently, the space S2(Γ) of modular
forms on Γ of weight 2 is 1-dimensional, and it is this space that
we will compute.

The field K = F (
√
−7) embeds in O with

µ = −1

2
− 5a + 10

2
α− a + 2

2
β +

3a− 5

2
αβ ∈ O

satisfying µ2 + µ+ 2 = 0 and ZF [µ] = ZK the maximal order with
class number 1. We take p = −3.1653 . . .+ 1.41783 . . . ∈ H to be
the fixed point of µ, a CM point of discriminant −7.



Fundamental domain
3

v1

v2

v3

v4
v5

v6

v7

v8

v9

γ

γ′



Finding the numerical kernel

We have ρ = 0.71807 . . . so for ε = 10−20 we take N = 150.

We use the relations coming from the Cauchy integral formula.

The (N + 1)× (N + 1)-matrix has largest singular value
4.01413 . . . and one singular value which is < ε. The next largest
singular value is 0.499377 . . ., showing that the numerical kernel is
gratifyingly one-dimensional.



An expansion for the form

f (z) = (1− w)2
(

1 + (Θw)− 70a + 114

2!
(Θw)2

− 8064a + 13038

3!
(Θw)3 +

174888a + 282972

4!
(Θw)4

− 13266960a + 21466440

5!
(Θw)5

− 1826784288a + 2955799224

6!
(Θw)6

−2388004416a + 3863871648

7!
(Θw)7 + . . .

)
where

Θ = 0.046218579529208499918 . . .−0.075987317531832568351 . . . i

is a period related to the CM abelian variety given by the point p.



The conjugate curve
We further compute the other embedding of this form by repeating
the above with an algebra ramified at p and the other real place.

4

The coefficients agree with the conjugates under the nontrivial
element of Gal(Q(

√
5)/Q).



Finding an equation

We can identify the equation of the Jacobian J of the curve X by
computing the associated periods. We first identify the group Γ
using the sidepairing relations coming from the computation of
D(p):

Γ ∼= 〈γ, γ′, δ1, δ2 | δ21 = δ22 = γ−1γ′−1δ1γγ
′δ2 = 1〉

where

γ =
a + 2

2
− 2a + 3

2
α +

a + 1

2
αβ

γ′ =
2a + 3

2
+

7a + 10

2
α +

a + 2

2
β − (3a + 5)αβ

generate the free part of the maximal abelian quotient of Γ.



Fundamental domain again
3

v1

v2

v3

v4
v5

v6

v7

v8

v9

γ

γ′



Finding an equation
Therefore, we compute two independent periods ω1, ω2

ω1 =

∫ v5

v2

f (z)
dw

(1− w)2
≈

(
N∑

n=0

bn

n + 1
wn+1

)∣∣∣∣∣
v5

v2

= −0.654017 . . .+ 0.397799 . . . i

ω2 =

∫ v2

v8

f (z)
dw

(1− w)2
= 0.952307 . . .+ 0.829145 . . . i .

We then compute the j-invariant

j(ω1/ω2) = −18733.423 . . .

= −11889611722383394a + 8629385062119691

318
.

We identify the elliptic curve J as

y2 + xy − ay = x3 − (a− 1)x2 − (31a + 75)x − (141a + 303).



Heegner point
Finally, we compute the image on J of a degree zero divisor on X .

The fixed points w1,w2 of the two elliptic generators δ1 and δ2 are
CM points of discriminant −4. Let K = F (i) and consider the
image of [w1]− [w2] on J given by the Abel-Jacobi map as∫ w2

w1

f (z)
dw

(1− w)2
≡ −0.177051 . . .− 0.291088 . . . i (mod Λ)

where Λ = Zω1 + Zω2 is the period lattice of J. Evaluating the
elliptic exponential, we find the point

(−10.503797 . . . , 5.560915 . . .− 44.133005 . . . i) ∈ J(C)

which matches to the precision computed ε = 10−20 the point

Y =

(
−81a− 118

16
,

(358a + 1191)i + (194a + 236)

64

)
∈ J(K ).

We have J(K ) ∼= Z/4Z⊕ Z and Y generates the free quotient.



Additional considerations

We compute the whole space at once in the kernel, but we find
better numerical results when we cut down to a one-dimensional
space using the action of Hecke operators. (These relations are
again linear.) Can also turn this around!

The coefficients bn for n > N are approximately determined by the
coefficients bn for n ≤ N. In this way, they can be computed using
integration and without any further linear algebra step.

This expression of the coefficients bn in terms of derivatives implies
that they can also be given as (essentially) the constant terms of a
sequence of polynomials satisfying a recurrence relation
(Rodriguez-Villegas, Zagier).



Conclusion

The coefficients of a power series expansion of a modular form f
encode interesting information about f that is of independent
interest.

We have exhibited a general method for numerically computing
power series expansions of modular forms for cocompact Fuchsian
groups with good results in practice.

The potential for this algorithm to transport familiar algorithms for
modular curves to the more general setting of Shimura curves
(even quaternionic Shimura varieties) is promising.

Better methods in numerical linear algebra are needed.


