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ABSTRACT. A minimal permutation representation of a finite group G is a faithful G-set with the smallest
possible cardinality. We study the structure of such representations and show that for most groups they may
be obtained by a greedy construction. It follows that whenever the algorithm works (except when central
involutions intervene) all minimal permutation representations have the same set of orbit cardinalities. Using
the same ideas we also show that if the size d(G) of a minimal faithful G-set is at least c|G| for some c > 0
then d(G) = |G|/m + O(1) for an integer m, with the implied constant depending at most on c.

1. INTRODUCTION

It is a classical theorem of Cayley’s that a group G is isomorphic to a subgroup of a symmetric group.
Accordingly we let the degree of the finite group G, denoted d(G), be the least integer d such that G can
be embedded in Sd, the symmetric group on d letters. More precisely, Cayley’s discussion in [3] implicitly
relies on the observation that the regular action of the group on itself gives an embedding of G into Sn,
where n = |G| is the order of G. It is then natural to ask to what extent the resulting bound d(G) ≤ n is
sharp.

The problem of finding d(G) was first studied by Johnson [7]. Among other things, he classified those
groups for which d(G) = n. Except for a family of 2-groups, these groups are precisely the cyclic p-
groups. A structure theorem for groups with d(G) ≥ cn, c any fixed positive constant, was obtained by
[1] (see Remark 4.3 below), while related results were obtained by Berkovich in [2].

Although easy to define, the degree is difficult to compute. It is more-or-less obvious that d(G) can be
computed by examining all subsets of the subgroup lattice ofG. The main result of this note is that in some
cases a “greedy” algorithm is also available, that is an algorithm that proceeds by making locally optimal
choices rather than directly searching for the global minimum. This is hardly of practical application
(the subgroup lattice of a group may be exponentially larger than the group itself), but it has surprising
consequences for the structure of a minimal permutation representation. We note that whenever a group
G acts on a set A, the sizes of the orbits of the action determine a partition of |A|. Our main application is:

Theorem 1.1. Let G be a finite nilpotent group with at most one central involution. Then all minimal
permutation representations define the same partition of the integer d(G).

This is a special case of a more general result. The statement of the more general result uses another
invariant of finite groups, their dimension. We define the dimension dimG of a finite group G to be the
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maximal integer t such thatG contains a direct product of t normal subgroups. Then we have the following
theorem which has Theorem 1.1 as a special case:

Theorem 1.2. Let G be a finite group. Then all minimal permutation representations have at most dimG
orbits. If G is nilpotent, then there exists a minimal permutation representation with exactly dimG orbits,
and any two such representations define the same partition of the integer d(G). Under the same hypothesis,
if G has at most one central involution then all minimal permutation representations have dimG orbits.

In the statements of these two theorems it is not necessary to assume that G is nilpotent. In fact, one
only needs to assume that G satisfies the conclusion of Lemma 3.12 below. It would be interesting to get
more information about the partition defined by a minimal permutation representation with dimG orbits.
The algorithm presented here was first obtained for p-groups by the first author under the supervision of
the third author ([5]). Here the main motivation was to understand the distribution of ∆(G) in the interval
[0, 1], where ∆(G) = d(G)/|G|. For example, it was easy to show that every number of the form 1

n
, n a

natural number, is a limit point of ∆(G) as |G| tends to infinity. Clearly, zero is also a limit point. We
show here (see Theorem 4.7 below) that these are the only limit points.

While one can obtain various results about gaps, limit points, and averages, it seems to us that the prob-
lem of understanding the distribution of ∆(G) is a deep problem. For example, numerical investigations
using the algorithm developed here show that for an integer n at most five, the average value of ∆(G)
over groups of order pn varies polynomially on residue classes, (“PORC”) as a funtion of 1

p
(see [6] for the

terminology). Further, for a fixed polynomial Q(x) and integer n ≤ 5, the number of groups of order pn

with ∆(G) = Q(1
p
) seems to be PORC in p (c.f. [6]).
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2. DEFINITIONS

Let G be a finite group. By a permutation representation of G on the set X we simply mean an action
of G on X , in other words a homomorphism G → SX where SX is the symmetric group on X . The
cardinality ofX is denoted by |X| (similarly for other sets) and called the degree of the representation. The
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representation is called faithful if no non-identity element of G acts trivially, that is if the corresponding
homomorphism is injective.

It is a classical theorem of Cayley that every groupG has a faithful permutation representation, afforded
by the regular action of the group on itself. Since we know that a group G of order n is isomorphic to
a subgroup of Sn, it is natural to ask whether G can be embedded in some Sd for d < n. Accordingly
we define the degree of G, denoted d(G), to be the least integer d such that G can be embedded in
Sd, i.e. such that G has a faithful permutation representation on a set with d elements. We will call a
faithful permutation representation of degree d(G) minimal. In this language, Cayley’s theorem states that
d(G) ≤ n. We will also consider the relative degree

∆(G) =
d(G)

|G|
.

We call a permutation representation an orbit if it is transitive. A transitive permutation representation
of G is equivalent to the usual action of G on the set G/H of (right) cosets of H in G, where H is the
stabilizer in G of any element in the orbit. The set of vertex stabilizers in an orbit is a conjugacy class of
subgroups of G, and conversely a transitive permutation representation is determined up to isomorphism
by a conjugacy class of subgroups. Any permutation representation is a disjoint union of orbits.

Definition 2.1. The core K(H) of a subgroup H of G is the maximal normal subgroup of G contained
in H , i.e. K(H) = ∩x∈GH

x. It is the kernel of the permutation representation of G on G/H . To a
family H of subgroups of G we associate the core K(H) = ∩H∈HK(H), the kernel of the permutation
representation ρH of G on qH∈HG/H (ifH is empty set K(H) = G). We call the collectionH faithful if
K(H) = {1}, i.e. if the associated permutation representation is faithful.

For a faithful collection H of subgroups of G we set ∆(H) =
∑

H∈H
1
|H| . The discussion above shows

that

(2.1) ∆(G) = min {∆(H) | H faithful} ,

and we shall term a collection H such that ∆(H) = ∆(G) minimal. We observe that if H is a subgroup
of G, and x ∈ G, then K(H) = K(Hx). This observation implies that if H is a minimal collection, then
no two elements ofH can be equivalent under the conjugation action of G. Note that Equation (2.1) is, in
fact, an algorithmic prescription for computing d(G). In the next section we will show that much fewer
collections need be considered to find a minimal one.

3. DETERMINING d(G)

We now turn to the (algorithmic) problem of determining d(G) exactly, given considerable information
on the group in question. We have already remarked that knowing the subgroup lattice of G and, in
addition, the order of each subgroup and whether it is normal in G is sufficient. Indeed, d(G) can then be
computed via Equation (2.1) in time exponential in the size of the input. In fact, this algorithm finds the
minimal permutation representations themselves, not just their degrees:
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Algorithm 3.1. Test, in order, each collection H of subgroups of G. If K(H) = {1} evaluate ∆(H) =∑
H∈H

1
|H| . Otherwise, ignore the collection. At the end output the smallest value seen and the collections

which produced it.

Note that the information we are giving ourselves (the subgroup lattice and in addition, for each sub-
group, its order and whether it is normal) makes it is possible to compute the core K(H) of a subgroup H
in “reasonable time”, at worst by scanning the entire lattice (here we use the fact that normal subgroups
are marked). In the same way it is also possible to compute the intersection of any two subgroups.

In fact, at least for nilpotent groups, a minimal collection can be constructed in a time polynomial in
the size of the input. Since determining the subgroup lattice is itself an intractable problem, the resulting
algorithm is hardly practical. However, its analysis will expose considerable structure relating to a minimal
permutation representation.

3.1. The Socle. For a general reference, we refer the reader to [9] or the more recent [4, Section 4.3]

Definition 3.2. Let G be a finite group. M = M(G) will denote the set of minimal normal subgroups
of G. T = T (G) will denote the poset consisting of those subgroups of G generated by a subset ofM
ordered by inclusion. By definition, the subgroup generated by the empty set is {1}. T has a unique
maximal element, the subgroup generated by all elements ofM. It is called the socle of G and will be
denoted M(G) or simple M .

Remark 3.3. Proposition 3.7(3) below shows T (G) is precisely the set of normal subgroups ofG contained
in M . In particular, it is a lattice.

Remark 3.4. A simple group is its own unique minimal normal subgroup. The discussion below then
applies (rather trivially) to simple groups.

Since they are generated by a conjugation-invariant subset of G, the elements of T are normal sub-
groups. The main conclusion of this section is that T behaves essentially like the lattice of subspaces of a
vector space.

Definition 3.5. The dimension of T ∈ T , denoted dimG T , will be the cardinality of a minimal subset of
M generating T . We define the dimension of G to be dimG = dimGM and let codimG T = dimG −
dimG T .

Lemma 3.6. (quotients) Let G be a finite group and let T be a normal subgroup of G. Let Ḡ = G/T
and set K̄ = KT/T for any subgroup K of G. If N ∈ M(G) is not contained in T then N̄ ∈ M(Ḡ).
Similarly, if S ∈ T (G) then S̄ ∈ T (Ḡ). Moreover, the corresponding map T (G) → T (Ḡ) is a map
of posets, and it is injective on the subposet of normal subgroups of M containing T (if such subgroups
exist).

Proof. Suppose N ∈ M(G) is not contained in T . Then N ∩ T is a proper subgroup of N . Being a
normal subgroup of G it is trivial. Thus N̄ ' N is a non-trivial normal subgroup of Ḡ. Suppose N̄ is
not minimal. Then there exists a non-trivial proper subgroup L < N such that L̄ C Ḡ. Now let x ∈ G
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and l ∈ L. By assumption we have lx = l′t for some l′ ∈ L and t ∈ T . However, this means t = l′−1lx,
i.e. t ∈ N ∩ T = {1}. Thus L is a normal subgroup of G, a contradiction. Next suppose S ∈ T (G) is
generated by {Ni}di=1 ⊂ M(G) for some d ≥ 1. Then S̄ is generated by

{
N̄i

}d

i=1
, and each N̄i is either

trivial or belongs to M(Ḡ). Then the map S 7→ S̄ clearly preserves inclusions, and injectivity follows
from the bijective correspondence between subgroups of G containing T and subgroups of Ḡ. �

Proposition 3.7. (Structure theory of T and M )

(1) Every T ∈ T is a direct product
∏k

i=1Ni, where Ni ∈M.
(2) If S � T are elements of T then there exists N ∈M with N ∩S = {1} and N < T . In fact, there

exists U ∈ T with U ∩ S = {1} and SU = T .
(3) We have

T = {H CG | H < M} .
In particular, T is a lattice.

(4) In (1), we have k = dimG T .
(5) Let S, T ∈ T . Then dimG ST = dimG S + dimG T − dimG S ∩ T .
(6) Let S < T be elements of T . Then S = T if and only if dimG S = dimG T . If dimG S ≤ d ≤

dimG− 1 we have for S fixed and T varying:⋂
S < T ∈ T
dimG T = d

T = S.

Proof.

(1) Let T be generated by {Ni}ki=1, where none of the factors can be omitted. Then T =
∏k

i=1Ni

since the Ni are normal, and the product is direct since each Ni is a minimal normal subgroup so
that Ni ∩

∏
j 6=iNj is trivial for all i.

(2) Suppose T =
∏k

i=1Ni. If all the Ni are contained in S then S = T . Otherwise, without loss
of generality we may assume that N1 ∩ S = {1} and then the product S1 = S · N1 is direct.
Continuing by induction, if Si 6= T we can find Ni+1 such that Si+1 = Si ·Ni+1 is a direct product.
This process must terminate after some finite number r of steps, at which point we have T = S ·U
where U =

∏r
i=1Ni.

(3) Certainly every element of T is a normal subgroup of G contained in M . Conversely, let H be
such a subgroup, which we can assume to be non-trivial. We proceed by induction on the size of
an element T ∈ T containing H . Bounding |H| above by the size of such an element, we bound it
below by the element S ∈ T generated by all minimal normal subgroups of G contained in H , a
non-trivial group since H is non-trivial and hence must contain some minimal normal subgroup of
G. Now if S = H we are done, and otherwise both containments S < H < T are proper. By part
(2), we can write T = S · U for some U ∈ T , and since S is non-trivial, U is a proper subgroup
of T . Now H is a subgroup of the product SU which contains S and thus is of the form S ·H1 for
some subgroup H1 of U . Moreover, H1 is non-trivial, and is a normal subgroup of G since S and
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H are. By induction, H1 is generated by some elements ofM. By construction, S also has this
property, and since H = S ·H1 we are done.

(4) The case dimG T = 0 is clear, and we proceed by induction. Assume that T =
∏d

i=1Ni is of
dimension d, but can also be written as the direct product

∏k
j=1N

′
j with k ≥ d. Passing to the

quotient Ḡ = G/Nd, we have T̄ =
∏d−1

i=1 N̄i, and in particular dimḠ T̄ ≤ d − 1. Consider, now,
the sequence of subgroups Tm =

∏m
j=1N

′
j for 1 ≤ m ≤ k (and T0 = {1}). Since Nd < Tk = T

we can let m0 denote the smallest value of m such that Nd < Tm. We claim that N̄ ′j ∈ M(Ḡ)

for j 6= m0 and that the product T̄ =
∏

j 6=m0
N̄ ′j is direct. We have thus written T̄ , which is of

dimension at most d − 1, as a strictly increasing product with k − 1 factors. By the induction
hypothesis we get d− 1 ≤ k − 1 = dimḠ T̄ ≤ d− 1, and hence d = k.
To see the claim, note first that T̄m0−1 is an isomorphic image of Tm0−1, so that the product∏

j<m0
N̄ ′j is direct with non-trivial factors. Next, both Tm0−1 and Nd are contained in Tm0 by

the choice of m0, giving Tm0−1Nd ⊂ Tm0 = Tm0−1N
′
m0

. Also, Nd is not contained in Tm0−1 (again
by the choice of m0) and neither is N ′m0

(since Tm0 6= Tm0−1). Thus their images in G/Tm0−1

are both minimal normal subgroups, which are contained in each other. Hence they are equal,
i.e. Tm0−1Nd = Tm0 , so that T̄m0−1 = T̄m0 . That the product T̄m0−1 ·

∏
j>m0

N̄ ′j is direct with
N̄ ′j ∈M(Ḡ) now follows from the fact that Tm0 ·

∏
j>m0

N ′j is a direct product with Nd < Tm0 .
(5) Suppose S, T ∈ T . Set dS = dimGS and dT = dimGT . WriteS ∩ T =

∏d
i=1 Ni and extend

to direct product representations S = (S ∩ T ) ·
∏dS−d

j=1 NS
j , S = (S ∩ T ) ·

∏dT−d
k=1 NT

k . Letting
Ḡ = G/ (S ∩ T ), both products S̄ =

∏dS−d
j=1 N̄S

j and T̄ =
∏dT−d

k=1 N̄T
k in T (Ḡ) are direct. If the

product S̄T̄ =
∏dS−d

j=1 N̄S
j

∏dT−d
k=1 N̄T

k were not direct, we would have S̄∩T̄ 6= {1}, a contradiction.
This means that the product

ST =
d∏

i=1

Ni

dS−d∏
j=1

NS
j

dT−d∏
k=1

NT
k

is direct.
(6) The case S = {1} of the first claim is immediate, and the general case follows by writing T =

SU . For the second assertion we may assume d > dimG S and let S ′ be the intersection under
consideration. Suppose S ′ 6= S. Then there must exist N ∈ M(G) contained in S ′ but not in
S. We now choose U ∈ T ′ such that the product M = S · N · U is direct and let U ′ ∈ T be a
subgroup of U of dimension d − dimG S. Finally, we set T = S · U . Then dimG T = d but S ′ is
not a subgroup of T since N ∩ T = {1}.

�

We make again the observation, used in the proof of part (3) above, that a non-trivial normal subgroup
of G must intersect the socle, since it must contain a minimal normal subgroup. This easy implication
is a key ingredient in the algorithm described below. To decide whether a permutation representation is
faithful amounts to deciding whether its kernel is trivial. The point is that one only has to keep track of
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the intersection of the kernel with the socle, which is an element of a well-behaved lattice. This motivates
the following definition:

Definition 3.8. For a subgroup H < G let HM ∈ T denote the subgroup of H generated by all elements
ofM contained in H . We call this subgroup the relative core of H . If H is a family of subgroups of G,
we similarly define its relative core to be the subgroupHM = ∩H∈HHM ∈ T (G) (c.f. Definition 2.1). We
ascribe the relative core M to the empty collection.

Remark 3.9. Part (3) of Proposition 3.7 shows thatHM = K(H) ∩M .

Definition 3.10. To a subgroup H of G we associate the numbers dimGH = dimGHM and codimGH =
codimGHM . Note that if H ∈ T (G) then this definition is compatible with the previous one, and that we
have dimGG = dimG. We also declare the trivial group to have dimension 0.

For our purposes, the most important feature of a subgroup H will be its relative core HM . One con-
struction we will use is the extension of H by an element T ∈ T to form the subgroup H · T . If G is
nilpotent then it is easy to compute the relative core of HT in terms of HM and T . The key feature of
nilpotent groups is the following observation:

Lemma 3.11. Suppose G is a nilpotent group. Then its socle M(G) is contained in its center Z(G), and
every minimal normal subgroup is a cyclic group of prime order. In fact,M(G) consists precisely of the
central cyclic subgroups of prime order.

Proof. We start with the well-known fact that a nilpotent group is the direct product of its Sylow subgroups,
which are normal and hence characteristic. On the other hand, if N is a minimal normal subgroups of a
group G then N is characteristically simple (has no non-trivial characteristic subgroups) since character-
istic subgroups of a normal subgroup are normal in the ambient group.

Thus, let N be a minimal normal subgroup of the non-trivial nilpotent finite group G. Then N itself
is a non-trivial nilpotent group. Let P be a non-trivial Sylow subgroup of N . Then P is normal in G,
hence equal to N . It follows that N is a p-group for some prime p, and hence contained in the (unique)
p-Sylow subgroup of G, which we denote Q. Since N is a subgroup of the p-group Q it intersects the
center Z(Q), which is a normal subgroup of G (it is characteristic in the normal subgroup Q). It follows
that N is contained in Z(Q), which is central in G since Q is a direct factor of G.

Finally, since N is a central subgroup, every subgroup of N is normal in G. It follows that N has no
non-trivial subgroups, and hence is a cyclic p-group. Conversely, it is clear that a central cyclic subgroup
of prime order is a minimal normal subgroup. �

Lemma 3.12. Suppose G is a nilpotent group. Let H < G, T ∈ T . Then (H · T )M = HMT .

Proof. Writing T = (T ∩HM) ·S with S∩HM = {1} we have HT = HS and HMT = HMS so we may
assumeH∩T = {1}. ClearlyHMT ⊂ (H ·T )M . Conversely, letN < HT be a minimal normal subgroup
of G. If N < T there is nothing to prove, so we may assume T ∩ N = {1}. Since H and T are disjoint,
every n ∈ N can be uniquely written in the form n = hntn for some hn ∈ H and tn ∈ T . Note that the
map n 7→ hn is a group homomorphism (it is the restriction to N of the quotient map HT/T ' H), and
since N and T are disjoint it is an isomorphism onto its image N ′.
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Since N and T are central subgroups (here we use the nilpotence of G via the previous Lemma), it
follows that N ′ is a central subgroup as well, and since N was a cyclic group of prime order so is N ′.
It follows that N ′ is a minimal normal subgroup of G, contained in H . We conclude that N ⊂ N ′T ⊂
HMT . �

Remark 3.13. There are non-nilpotent groups for which this lemma fails (c.f. Remark 3.27 below).

3.2. Minimal faithful collections and codimension one subgroups. Throughout this section G is any
finite group satisfying the conclusion to Lemma 3.12. Recall that any finite nilpotent group has this
property. We are interested in constructing a minimal faithful collection of subgroups of G, and a natural
way to do so is step-by-step, incrementally adding subgroups to our collection until it is faithful. Rather
than keeping track of K(H), we note that HM carries sufficient information to decide whether K(H) is
trivial. Moreover, while the cores K(H) decrease through the lattice of all normal subgroups of G, the
relative coresHM decrease through the lattice T (G) which is much easier to work with.

We now turn to the “minimality” property of a collection, which appears to push in the opposite direction
to “faithfulness”. The first favors selecting large subgroups, and having few of them. The second seems to
suggest choosing small subgroups, or else many large ones will be needed. The multiplicative property of
orders of subgroups actually implies that choosing many large subgroups is the right way (in fact, usually
a necessary approach). The analysis is very similar to that of Johnson [7]. In both cases it is shown that
the elements of a minimal faithful collection may be (and in some cases, must be) drawn from a particular
class of subgroups, using the same trick. However, the class of subgroup we employ seems more useful in
practice. The reader should compare our next result with [7, Lemma 1]

Lemma 3.14. (“replacement lemma”) LetH < G be of codimension at least 2. Then there exist subgroups
H1 andH2 ofG containingH such thatH1

M ∩H2
M = HM and 1

|H1|+
1
|H2| ≤

1
|H| . Moreover, this inequality

is strict unless G contains at least two central involutions.

Proof. By assumption, there exists a subgroup T ∈ T of codimension 1 such thatHM is a proper subgroup
of T . By Proposition 3.7 we choose N1, N2 ∈ M with N1 ⊂ T such that the inclusions HM < HMN1

and T < TN2 are proper, and set H1 = H ·N1, H2 = H ·N2 (semi-direct products as the Ni are minimal
normal subgroups). Now let x ∈ H1

M ∩ H2
M . By Lemma 3.12 we can write x = h1n1 = h2n2 with

h1, h2 ∈ HM , ni ∈ Ni. This means n2 = h−1
2 h1n1 ∈ HMN1 < T , i.e. n2 ∈ N2 ∩ T = {1}, and hence

x = h2 ∈ HM . Finally, since H is a proper subgroup of both H1, H2 its index in both subgroups is at least
2, and we have

1

|H1|
+

1

|H2|
≤
(

1

2
+

1

2

)
1

|H|
=

1

|H|
.

Equality can only happen if both N1 and N2 are of order 2, in which case the non-trivial elements of Ni

are both central involutions. �

Definition 3.15. Let A = A(G) denote the set of subgroups of G of codimension 1.

The reader should compare the next theorem with [7, Cor. 1].
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Theorem 3.16. There exist minimal faithful collections contained inA, and these are the ones of maximal
size. If G has at most one central involution then every minimal faithful collection is contained in A.

Proof. Let H be a faithful collection, and let H ∈ H \ A. If H is of codimension 0 (i.e. HM = M ) we
have

{1} = HM = (H \ {H})M ∩HM = (H \ {H})M .

In particular, H \ {H} is also faithful. Otherwise, let H1, H2 be the subgroups constructed in Lemma
3.14, and let H′ = (H \ {H}) ∪ {H1, H2}. By construction we have H′M = HM = {1} so that H′ is
faithful. In addition, Lemma 3.14 yields ∆(H′) ≤ ∆(H), and this inequality is strict if G has at most one
central involution. In general we note that H′ has more elements than H. In particular, a minimal faithful
collection of maximal size must consist of codimension-one subgroups. �

Definition 3.17. A collection H ⊂ A is said to be independent if its relative core is strictly contained in
that of any proper sub-collectionH′ ( H. The empty collection is also assumed to be independent.

A minimal faithful collection H ⊂ A is certainly independent – otherwise it would have a faithful
proper sub-collection.

Proposition 3.18. The set of independent subsets of A forms a matroid:
(1) A subcollection of an independent collection is independent.
(2) H ⊂ A is independent if and only if codimGHM = |H|.
(3) IfH,H′ are independent collections with |H′| > |H| then there existsH ′ ∈ H′ such thatH∪{H ′}

is independent.
Proof.

(1) Let H ⊂ A be independent, and suppose H′′ us a proper subcollection of H′ ⊂ H such that
H′′M = H′M . Letting H̄ = H \H′, we have(

H̄ ∪ H′′
)

M
= H̄M ∩H′′M = H̄M ∩H′M = HM ,

contradicting the independence ofH.
(2) Let S, T ∈ T (G) with codimG T = 1. Then ST either equals T or M , and we have dimG S∩T =

dimG S or dimG S − 1, respectively, by the inclusion-exclusion formula of Lemma 3.7(5). By
induction on the size of any collection H = {H i}ki=1 ⊂ A we see that codimGHM ≤ |H|,
with equality if and only if the sequence of intersections ∩m

i=1H
i
M is strictly decreasing with m,

1 ≤ m ≤ k.
(3) We have dimGH′M < dimGHM , and henceH′M does not containHM . It follows that we can find

H ′ ∈ H′ such that H ′M does not contain HM . Then dimG(HM ∩H ′M) = dimGHM − 1 (equality
is not possible by the choice of H ′). By part (2) we see that thatH ∪ {H ′} is independent.

�

Corollary 3.19. LetH ⊂ A be independent. Then the following are equivalent:
(1) |H| = dimG;
(2) H is faithful;
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(3) H is a maximal independent subset ofA. Here, maximal means maximal with respect to inclusion.

Proof. The equivalence of (1) and (2) is contained in part (2) of Proposition 3.18. An independent collec-
tion with HM = {1} is certainly maximal. An independent collection with HM 6= {1} is not maximal
since in that case there exists some T ∈ T of codimension 1 which does not containHM , and we can add
it toH to form a larger independent collection. �

Corollary 3.20. A subset H ⊂ A is a minimal faithful collection if and only if it is independent and
maximizes

w(H) =
∑
H∈H

(
2− 1

|H|

)
among the independent subsets.

Proof. We have already noted that a minimal faithful collection contained in A is independent and maxi-
mal (with respect to inclusion), and that a maximal (with respect to inclusion) independent set is a faith-
ful collection. It is clear that a subset maximizing this weight function is maximal independent, since
2− 1

|H| > 0 for all subgroups H . Finally, we note that a maximal independent set H satisfies

w(H) = 2 dimG−∆(H).

�

Corollary 3.21. There exist minimal faithful collections of cardinality dimG. If G has more than one
central involution, there may also exist minimal faithful collections of smaller cardinality.

Proof. We have seen that there exist minimal faithful collections contained inA, that these are independent
sets, and that every independent set has dimG elements. �

Example 3.22. Let G be a p-group for a prime p, and let Z = Z(G) be its center. It is well-known
(and follows from the class formula) that every normal subgroup of G intersects the center non-trivially.
Since every subgroup of the center is normal, it follows thatM(G) =M(Z), and in particular dimG =
dimZ(G). This observation recovers [7, Thm. 3]:

Theorem 3.23. Let G be a p-group with center Z. Then there exists a minimal faithful collection for G of
cardinality dimZ. If p is odd this holds for all minimal faithful collections.

3.3. The Algorithm. Again we assume that G is a finite group satisfying the conclusion of Lemma 3.12.
We have reduced the problem of finding a minimal faithful collection to maximizing an additive weight
function on a matroid. This is a problem which is solvable by a greedy algorithm. Before we give the
algorithm we record a simplifying Lemma:

Lemma 3.24. Let H ⊂ A be independent, and suppose H ′ < G has the largest cardinality possible such
that H ′M does not contain HM . Then H ′ ∈ A, H ∪ {H ′} is independent, and H ′ maximizes the function
w(H) = 2− 1

|H| among all H ∈ A such thatH ∪ {H} is independent.
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Proof. By Lemma 3.7(6) we can find T ∈ T of codimension 1 containing H ′M but not containing HM .
Setting H = H ′T we have HM = H ′MT = T , which does not contain HM . By the maximality of H ′ we
have H = H ′ implying H ′M = T , so that H ′ is of codimension 1 and H ∪ {H ′} is independent. Finally
H ′ was chosen to maximize w(H) in an even larger family than needed. �

Algorithm 3.25. (“Greedy Algorithm”) Let G be a non-trivial group. We assume we are given the sub-
group lattice of G, and that normal subgroups are marked as such.

(1) Fine the socle M of G.
(2) InitializeH = ∅, T = M , ∆ = 0.
(3) Repeat until T = {1}

(a) Find a subgroup H of maximal cardinality not containing T .
(b) Add H toH, 1

|H| to ∆.
(c) Set T = T ∩K(H).

(4) Output ∆,H.

Theorem 3.26. The algorithm will repeat step (3) exactly dimG times, after which H will contain a
minimal faithful collection of size dimG and ∆ will equal ∆(G).

Proof. From Lemma 3.24 it is clear that the independence ofH and the equality T = HM are invariants of
the loop, and that dimT decreases by 1 after each iteration. In particular the loop terminates after exactly
dimG steps.

We show by induction that after k iterations of step (3),
∑

H∈H
1
|H| is minimal among independent

collections of size k. This is certainly the case before the loop begins. Thus let H be the set at the
beginning of the kth iteration (hence of size k − 1), and let Hk be the subgroup chosen at that iteration.
Suppose there is an independent collection H′ ⊂ A of size k such that

∑
H′∈H′

1
|H′| <

1
|Hk|

+
∑

H∈H
1
|H| .

We may then write H′ = H′′ ∪ {H ′k} where H ′k is a member of minimal cardinality. By the inductive
hypothesis,

∑
H∈H

1
|H| ≤

∑
H′∈H′′

1
|H′| , and hence we must have |Hk| < |H ′k|. By the choice of H ′k,

we actually have |Hk| < |H ′| for all H ′ ∈ H′. We now use the matroid property of the independent
subcollections of A shown in Proposition 3.18(3): since H′ is of size k, while H is of size k − 1, there
exists some H ′ ∈ H′ such that H ∪ {H ′} is independent. In particular this implies that (H ∪ {H ′})M is
strictly contained inHM , and as |H ′| > |Hk| we have a contradiction to the existence ofH′. �

Remark 3.27. In a preliminary version of this paper, Lemma 3.12 was stated for an arbitrary finite groupG.
That the lemma fails in general was pointed out by Neil Saunders [10] who also constructed an interesting
counterexample. Saunders’ counterexample can be described in the following fashion. The cyclic group
C7 has two non-isomorphic three-dimensional irreducible representations over F2. Let V be the direct sum
of these two representations V1, V2 and let G be the semidirect product of C7 and V . The minimal normal
subgroups of G are V1, V2; the socle is thus V .

Let W ⊂ V be any codimension-1 subspace (in the sense of linear algebra) not containing either of the
Vi. Then W is a core-free subgroup of G of index 14; clearly there do not exist smaller faithful transitive
G-sets. To see that this representation is minimal we need to rule out representations with two orbits,
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which here must be the ones produced by our algorithm (since the only possible relative cores are V , Vi

and the empty set). Since the largest subgroup not containing Vi is C7 n V3−i which is of index 8, our
algorithm produces a non-minimal permutation representation of degree 16.

To construct V explicitly note that the cyclotomic polynomial p(x) = (x7−1)/(x−1) decomposes over
F2 as the product of two co-prime irreducible cubic polynomials p1, p2. Take any matrix A ∈M6(F2) with
characteristic polynomial p. Then A is of order 7 (the eigenvalues are roots of unity of order 7) and hence
defines a representation of C7 on V ' F6

2. By Galois invariance the subspaces Vi(F2) of V (F2) spanned
by eigenvectors of A with eigenvalues which are roots of the pi are defined over F2; they are obviously
A-invariant. The resulting representations are not isomorphic since the eigenvalues of A are distinct.

4. APPLICATIONS

4.1. The proof of Theorem 1.2. Let G be a finite group satisfying Lemma 3.12. We show here that all
minimal permutation representations with dimG orbits have the same (multi-)set of orbit sizes.

It is an easy corollary of the proof of Theorem 3.26 that a unique set of orbit sizes is associated to all
the minimal permutation representations that may be constructed by Algorithm 3.25.

Conversely, we show that every minimal permutation representation with dimG orbits may be con-
structed by the algorithm.

Proposition 4.1. LetH = {H i}dim G
i=1 be a minimal faithful collection, w.l.g. ordered such that∣∣H1

∣∣ ≥ ∣∣H2
∣∣ ≥ · · · ≥ ∣∣Hdim G

∣∣ .
Then each Hk has maximal cardinality among all subgroups H ′ of G such that

(
{H i}k−1

i=1 ∪ {H}
)

M
is a

proper subgroup of
(
{H i}k−1

i=1

)
M

.

Proof. By induction, it suffices to check that if a subgroup H ′ < G is independent of {H i}k−1
i=1 then there

exists l ≥ k such that H ∪ {H ′} \
{
H l
}

is independent. For this we set Sj = ∩j
i=1H

i
M . It is then easy to

see that we may take l to be the first j such that H ′M ∩ Sj = Sj . �

4.2. Accumulation points of ∆(G). Let n, p ∈ N with p > n a prime. Then ∆(Cn×Cp) = 1
n

+ ∆(Cn)
p

=
1
n

+ O(1
p
). In particular, limp→∞∆(Cn × Cp) = 1

n
. This means that for each positive integer n, the point

1
n

is an accumulation point of the set {∆(G);G finite group} in the interval [0, 1]. In fact, in Theorem
4.7 below we show that these points are the only non-zero accumulation points. We begin with some
preliminary lemmas.

Lemma 4.2. Let H < G be a subgroup. Then d(H) ≤ d(G) and ∆(G) ≤ ∆(H).

Proof. The first claim is obvious. For the second, let H′ be a faithful collection of subgroups of H and
note that ∆(H) is independent of the ambient group. Then KG(Hi) ⊂ KH(Hi) (larger intersection). In
particular, KG(H) = {1}. ChoosingH minimal for H we deduce that ∆(G) ≤ ∆(H) = ∆(H). �
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Remark 4.3. A cyclic p-group has relative degree 1. In particular, if P < G is a cyclic p-group then

∆(G) ≥ d(P )

|G|
=

1

[G : P ]
.

Conversely, Babai-Goodman-Pyber [1] give an explicit function f : [0, 1] → R such that if ∆(G) ≥ ∆
then G has a cyclic p-subgroup of index at most f(∆). In other words, as |G| grows with ∆(G) ≥ ∆, the
degree of G is controlled (up to bounded multiplicative error) by the size of the largest cyclic p-subgroup
of G. Specifically, they show that when G does not possess a large cyclic group of prime-power order it
has a pair of reasonably large subgroups with trivial intersection.

Note that the above bound on ∆(G) is derived from a faithful collection of size 2. In Lemma 4.4
we show that when ∆(G) ≥ ∆ there exists k depending only on ∆ such that a minimal permutation
representation of G has at most k orbits. The case of groups of prime exponent and nilpotence class two,
studied in [1, Thm. 3.6] as well as [8] shows that we need k > 2 in general.

Lemma 4.4. Let k = dimG. Then ∆(G) ≤ k
2k−1 .

Proof. LetM = M(G) be the socle ofG and writeM as the direct product of k minimal normal subgroups
{Si}ki=1. For 1 ≤ i ≤ k let Hi =

∏
j 6=i Sj . It is clear that {Hi} is a faithful collection of size k and each of

its elements has size at least 2k−1. �

Lemma 4.5. Let P be a cyclic p-subgroup of G. Then PM < M(P ) (M(P ) is the socle of P ). If |G| is
large enough compared to [G : P ] then equality holds.

Proof. Let N < P be non-trivial and normal in G. Then M(P ) is a characteristic subgroup of N , so PM

is either trivial, or equal to M(P ). In any case, we have dimG P ≤ 1.
Finally, the core of P has index at most ([G : P ])! (it is the kernel of a homomorphism into S[G:P ]).

If |G| > ([G : P ])! then KG(P ) is a non-trivial normal subgroup of G contained in P , hence M(P ) is
normal in G and thus PM = M(P ). �

In fact, if G has a large cyclic p-subgroup then a permutation representation with two orbits is almost
optimal:

Corollary 4.6. Let P be a cyclic p-subgroup ofG, and let l(G) be the order of the smallest point stabilizer
in an orbit in a minimal permutation representation of G. Then

1

l(G)
≤ ∆(G) ≤ 1

l(G)
+

1

|P |
.

Proof. Let H be a minimal faithful collection for G, chosen so that it contains an element H1 of smallest
possible order (denoted above by l(G)). Clearly ∆(G) = ∆(H) ≥ 1

l(G)
. For the other assertion, we may

as well assume M(P ) ∈ M(G), otherwise KG(P ) = {1} and the claim is clear. Then H, being faithful,
must contain an element H2 disjoint from M(P ), hence {P,H2} is a faithful collection. �

Theorem 4.7. LetGn be a sequence of groups with orders increasing to infinity such that limn→∞∆(Gn) >
0. Then this limit is of the form 1/l for some l ∈ N.
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Proof. For n large enough we have ∆(Gn) > ∆ > 0. The main result of [1], already quoted above, is that
Gn has a cyclic pn-subgroup Pn of index at most f(∆) for some f : [0, 1]→ N. It follows that∣∣∣∣∆(Gn)− 1

l(Gn)

∣∣∣∣ ≤ f(∆)

|Gn|
.

Here l(Gn) is as in the statement of Corollary 4.6. As |Gn| → ∞, we see that 1
l(Gn)

tends to a positive
limit. The sequence of integers l(Gn) must then be eventually constant. �

Note that we have shown more, that if ∆(G) ≥ ∆ > 0 then any minimal permutation representa-
tion consists of one large orbit of size essentially |G|∆(G), and several other orbits of size and number
bounded in terms of ∆. Indeed, the number of orbits is bounded by Lemma 4.4. We have an obvious
bound l(G) ≤ (∆(G)− f(∆)/ |G|)−1. Next, as soon as |G| is large enough so that 1

l(G)+1
+ f(∆)
|G| <

1
l(G)

,
the subgroups H1, H2 of Lemma 4.5 must have the same cardinality. We conclude that if ∆(G) > ∆ and
|G| is large enough (depending on ∆), G has a cyclic p-subgroup P of index at most f(∆) such thatM(P )
is normal inG and a subgroupH of order l(G) belonging to a minimal faithful collection and disjoint from
M(P ). Then every other member of that minimal faithful collection may be replaced with P keeping the
collection faithful. Hence all other orbits in the representation must have size at most f(∆).

4.3. Some numerical results. The thesis [5] contains an implementation of Algorithm 3.25 in the alge-
braic programming language MAGMA [11]. Using the limited computing power of a personal computer,
p-groups of order pn with n ≤ 6 with small p were examined. Any such group can be found in the
MAGMA database. Let us summarize the findings.

There is only one group G of order p, and for this group ∆(G) = 1. There are two groups of order p2,
namely Zp × Zp and Zp2 . Here ∆(Zp × Zp) = 2

p
and ∆(Zp2) = 1. Consequently

∑
|G|=p2 ∆(G) = 1 + 2

p
.

There are five groups of order p3: one cyclic with ∆ = 1; one elementary abelian with ∆ = 3
p2 ; one

abelian with a generator of order p2, having ∆ = 1
p

+ 1
p2 ; and two non-abelian groups both having ∆ = 1

p
.

Observe that
∑
|G|=p3 ∆(G) = 1+ 3

p
+ 4

p2 . For groups of order p4 and p5 we state the following conjecture:

Conjecture 4.1. For p > 3 ∑
|G|=p4

∆(G) = 1 +
5

p
+

11

p2
+

9

p3
,

∑
|G|=p5

∆(G) = 1 +
7

p
+

34 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

p2
+

54

p3
+

24

p4
.

For any prime p ≥ 3, there are exactly fifteen groups of order p4, and these can be enumerated and
described. So the proof of the first part of the conjecture should be straightforward. We have computation-
ally verified the conjecture for groups of order p4 for every prime p in the range 3 < p < 50 and several
larger values of p (≈ 1000). We considered the groups of order p5 for p ≤ 19. Note that the number of
groups of order p5 is 61 + 2p + 2 gcd(p − 1, 3) + gcd(p − 1, 4). For groups of order p6, we did not have
enough data points to be able to guess a formula.
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