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Fix a set A ⊆ R. Consider a game GA where two players, call them Player I and
Player II, collaborate to produce the decimal expansion of a real number a as follows:
Player I picks an integer a0, the integer part of a. Then Player II picks an integer a1

between 0 and 9, Player I picks a2 between 0 and 9, Player II picks a3 between 0 and 9,
and so on. If the players survive through infinitely many rounds, they have produced a
real number a = a0.a1a2a3 · · · = Σ∞n=0an/10n, and the game is over.

The winner of GA is decided as follows: If a ∈ A, then Player I wins. If a /∈ A, Player
II wins.

I 3 4 5 2 5 6 . . .
II 1 1 9 6 3 . . .

Figure 1. A sample play of the game GA.

We draw attention to a few features of this game. First, there are infinitely many
moves. Second, there are two players who move sequentially, and have complete control
over the moves they make (that is, there is no element of chance). Third, each player
has perfect knowledge of the set A, as well as the history of the game at each turn. We
call such a game an infinite two-person game of perfect information.

Notice that some of your favorite (finite) games can be represented as games of the
form GA for the correct choice of A ⊆ R. It’s easy to see how to code tic-tac-toe as such
a game. And you should convince yourself that more complicated finite games, such as
chess, can be similarly encoded.

However, the class of infinite games we have defined is substantially more general. As
an example, consider the case that A is countably infinite. In the course of play, Player
II can enforce a Cantor-style diagonalization, by playing a2n+1 so that a disagrees with
the nth element of A. Since this always ensures a /∈ A, this describes a winning strategy
for Player II. Similary, if R \ A is countable, then Player I can always win GA. A few
questions are immediate:

• For which sets A ⊆ R is there a strategy for one of the players to always win GA?
• How hard is it to show such strategies exist? Or to describe them?
• What does the existence of a winning strategy in GA tell us about A?
• What use could such games possibly have?

These are among the questions that we consider in these notes. As we will see, the
answers are surprisingly deep, with implications for the theory of definability, for the
structure theory of sets of real numbers, and for the foundations of mathematics.
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§1. Games, Determinacy, and the Gale-Stewart Theorem. We begin by in-
troducing some notions that will allow us to define games in a bit greater generality.

Let X,Y be sets. XY denotes the set of functions f : Y → X. For n ∈ ω, we regard
a function s : n → X as a finite sequence 〈s0, . . . , sn−1〉, and write Xn for the set of
all such sequences. (Note then 10 = {∅} = 1!) Similarly, f : ω → X is regarded as an
infinite sequence, and Xω is the collection of such. We denote the collection

⋃
n∈ωX

n

of all finite sequences in X by X<ω.
So for example, if X = ω, then X<ω consists of objects like 〈8, 6, 7, 5, 3, 0, 9〉, or

〈0, 0, 0, 0〉. The empty sequence ∅ is also a sequence, and always belongs to X<ω,
regardless of X (even if X = ∅!).

For s ∈ X<ω, we write `(s) for the length of s, so e.g. `(〈8, 6, 7, 5, 3, 0, 9〉) = 7. We
write s ⊆ t to mean that s is an initial segment of t, that is, s(i) = t(i) for all i <
`(s) (so 〈8, 6, 7〉 ⊆ 〈8, 6, 7, 5, 3, 0, 9〉, but 〈7, 5, 3〉 6⊆ 〈8, 6, 7, 5, 3, 0, 9〉). s_t denotes the
concatenation of s and t: So 〈8, 6, 7〉_〈5, 3, 0, 9〉 = 〈8, 6, 7, 5, 3, 0, 9〉.

These definitions extend naturally to infinite sequences. For example, s ⊆ f for f ∈ Xω

if s is equal to the restriction f � `(s) = 〈f(0), f(1), . . . , f(`(s)− 1)〉.

Definition 1.1. Let X be a set. A tree on X is a non-empty set T ⊆ X<ω so that
if s ⊆ t and t ∈ T , then s ∈ T .

So a tree is just a set T ⊆ X<ω closed under taking initial segments. For example,
X<ω itself is a tree. As another example, consider the tree T0 on ω consisting of all
sequences without two consecutive 1’s, or the tree T1 consisting of decreasing sequences
in ω. By definition, ∅ ∈ T for all trees T ; we define trees to be non-empty to avoid
annoying trivialities.

We call the elements s ∈ T nodes (or sometimes positions) in T . A node s of T is
terminal if s has no immediate successor in T , that is, s ∈ T but s_〈x〉 /∈ T for all
x ∈ X. For example, s ∈ T1 is terminal if and only if s`(s)−1 = 0. For s ∈ T , we let Ts
denote the subtree of T with stem s,

Ts = {t ∈ T | s ⊆ t or t ⊆ s}.
Note that if s ⊆ t then Tt ⊆ Ts; and for all s, t ∈ T , Ts ∪ Tt = Ts∩t.

Definition 1.2. Let T be a tree on X. f ∈ Xω is a(n infinite) branch through T
if f � n ∈ T for all n ∈ ω. The body of T , denoted [T ], is the set of infinite branches
through T .

So f = 〈0, 1, 0, 1, 0, 1, . . .〉 is a branch through T0, but T1 has no infinite branch.

Definition 1.3. Let T be a tree on a set X, and let A ⊆ [T ]. The game on T with
payoff A, denoted G(A;T ), is played as follows: two players, Player I and Player II,
alternate choosing elements of X,

I x0 x2 . . . x2n . . .
II x1 . . . x2n+1 . . .

so that for all n, 〈x0, . . . , xn−1〉 is an element of T . The game ends if either a terminal
node of T is reached, or if an infinite branch 〈x0, x1, . . .〉 ∈ [T ] is produced. A sequence
s is a play in T if s is terminal in T or s ∈ [T ] is an infinite branch. Player I wins the
play s if either

• s ∈ T is a terminal node, and `(s) is odd;
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• s ∈ [T ] is an infinite branch, and s ∈ A.

Otherwise, Player II wins the play s.
When T = ω<ω, we write G(A) for the game G(A;T ) = G(A;ω<ω).

In the game G(A;T ), Player I is trying to produce a branch f through T with f ∈ A;
Player II is trying to ensure f /∈ A. If a terminal node is reached, then the last player
who made a move is the winner.

Intuitively, a strategy for Player I in the game G(A;T ) should be a function that takes
positions s of even length as input, and tells Player I what move to make next. There
are a number of equivalent ways to formalize this. We elect to regard strategies as trees.

Definition 1.4. Let T be a tree. A strategy for Player I in T is a set σ ⊆ T so
that

1. σ is a tree.
2. If s ∈ σ is a position of odd length and x ∈ X is such that s_〈x〉 ∈ T , then
s_〈x〉 ∈ σ.

3. If s ∈ σ is a position of even length, then there is a unique x ∈ X so that s_〈x〉 ∈ σ.

We say an infinite play f is compatible with σ if f ∈ [σ]; a strategy σ is winning for
Player I in G(A;T ) if [σ] ⊆ A (that is, every play compatible with σ is winning for
Player I).

Strategies τ for Player II are defined similarly (exchanging “even” with “odd”); τ is
winning for Player II in G(A;T ) if [τ ] ∩A = ∅.

So a strategy for Player I is a subtree σ of T that picks out moves for Player I, but
puts no restrictions on moves for Player II. We will often abuse notation and regard σ
as a function, writing σ(s) = x for the unique element guaranteed by (3).

Note that (3) implies that no finite play in a strategy is won by the opponent. It is
then not obvious at this stage that given a tree T , a strategy in T (winning or not) exists
for either player!

Definition 1.5. Let T be a tree on X with A ⊆ [T ]. If one of the players has a
winning strategy in G(A;T ), then we say the game is determined.

When T = ω<ω, we often say simply that A ⊆ ωω is determined.
Let ADX denote the statement that for every set A ⊆ X<ω, the game G(A;X<ω) is

determined. The Axiom of Determinacy, denoted AD, is ADω: Every set A ⊆ ωω is
determined.

Note that every strategy in ω<ω is a subset of ω<ω, so that the collection of strategies
in ω<ω has size at most c, where c = |R| is the cardinality of the continuum; furthermore,
for each strategy σ in ω<ω, the set [σ] of plays compatible with σ has size c.

Our first observation is that not all sets are determined.

Theorem 1.6. Assume P(ω) can be well-ordered. Then there is a set B ⊆ ωω so that
G(B) is not determined; in particular, if the Axiom of Choice holds, then AD fails.

Proof. By hypothesis, there exist enumerations 〈σα〉α<c, 〈τα〉α<c of all strategies for
Player I and Player II, respectively, in ω<ω.

We define disjoint sequences 〈aα〉α<c, 〈bα〉α<c by transfinite recursion. Suppose α < c
is such that for all ξ < α, aξ, bξ are defined. Since there are c-many plays compatible
with σα, we have that [σα] \ {bξ | ξ < α} is non-empty. Therefore let aα ∈ ωω be a play
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compatible with σα so that aα 6= bξ for all ξ < α. Similarly, let bα be compatible with
τα so that bα 6= aξ for all ξ ≤ α.

Let A = {aα | α < c} and B = {bα | α < c}. Note that A ∩ B = ∅. We claim G(B)
is not determined. For suppose towards a contradiction that σ is a winning strategy for
Player I. Then σ = σα for some α < c, and we have aα ∈ A ∩ [σα], by definition. So the
play aα is compatible with σ, but not in B, contradicting the assumption that σ was
winning for Player I.

Similarly, if τ is a strategy for Player II, then τ = τα for some α < c. We have by
definition that bα ∈ B is compatible with τ , but is not won by Player II. Then τ is not
winning for Player II in G(B).

We have that neither player has a winning strategy in G(B). a

Theorem 1.7 (Gale-Stewart). (Using the Axiom of Choice.) Let T be a tree. Then
G([T ];T ) is determined.

For reasons that will become clear later, this theorem is often called closed determi-
nacy. To help us prove this theorem, we introduce a more general notion of strategy.

Definition 1.8. Let T be a tree. A quasistrategy for Player I in T is a tree
S ⊆ T satisfying (1) and (2) in Definition 1.4, but instead of (3), satisfying

3′. If s ∈ S has odd length, then there is some x ∈ X so that s_〈x〉 ∈ S.

A quasistrategy can be thought of as a “multi-valued strategy”. Quasistrategies are
typically obtained from the following lemma:

Lemma 1.9. (Using the Axiom of Choice.) Let T be a tree on X, A ⊆ [T ], and suppose
Player II does not have a winning strategy in G(A;T ). Define

S = {s ∈ T | (∀i ≤ `(s)) Player II has no winning strategy in G(A;Ts�i)}.

Then S is a quasistrategy for Player I in T , the non-losing quasistrategy for I in
G(A;T ).

Proof. Clause (1) of the definition of quasistrategy is immediate; closure under initial
segment follows from the definition of S, and the assumption that Player II has no
winning strategy ensures S is non-empty, a requirement for S to be a tree.

For clause (2), suppose s ∈ S has odd length. If s_〈x〉 ∈ T \ S for some x ∈ X,
then by definition of S, there is some strategy τ ⊆ Ts_〈x〉 that is winning for Player II
in the game G(A;Ts_〈x〉). But clearly τ ⊆ Ts is also winning for Player II in G(A;Ts),
contradicting our assumption that s ∈ S.

The key part of the proof is clause (3′). So suppose s ∈ S has even length. We claim
s_〈x〉 ∈ S for some x ∈ X. Suppose instead for a contradiction, that for each x ∈ X,
there is some strategy τx in Ts_〈x〉 that is winning for Player II in G(A;Ts_〈x〉). Define
a strategy τ ⊆ Ts for Player II by setting

t ∈ τ ⇐⇒ t ⊆ s or (∃x)(s_〈x〉 ⊆ t and t ∈ τx).

Note τ does not restrict Player I’s move at s, so τ is a strategy for Player II. If f is a
play compatible with τ , then we have s_〈x〉 ⊆ f for some x ∈ X, so that f is compatible
with τx. It follows that f is a win for II in G(A;Ts), and τ is a winning strategy for
Player II in G(A;Ts), contradicting our assumption that s ∈ S. a
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Proof of Theorem 1.7. Let T be a tree, and suppose Player II does not have a
winning strategy in G([T ];T ). By Lemma 1.9, we obtain a quasistrategy S for Player
II. This can be refined to a strategy σ ⊆ S for I, by choosing a single successor node at
each s ∈ S of even length. It is clear that σ is winning for Player I. a
The uses of the Axiom of Choice in this theorem can be weakened somewhat; in particu-
lar, it is sufficient to assume X can be well-ordered, so that the determinacy of G([T ];T )
follows without choice if e.g. T ⊆ ω<ω.

§2. The Axiom of Choice and Cardinal Numbers. The results of the last section
indicate there is some tension between choice and determinacy. We would like to study
the consequences of AD for analysis, but many standard results about the reals rely on
the Axiom of Choice. It is impossible to prove without some choice, for example, that
the countable union of countable sets is countable!

We therefore isolate some weakenings of choice which are compatible with AD, but
still strong enough to obtain a reasonable theory of the real numbers. First, recall the
statement of the Axiom of Choice.

Definition 2.1. The Axiom of Choice states that whenever {Ai}i∈I is a collection of
non-empty sets, there is a function f : I →

⋃
i∈I Ai such that f(i) ∈ Ai for each i ∈ I.

Such a function is called a choice function for the family {Ai}i∈I .

We can restrict the Axiom of Choice by requiring the sets Ai to be a subset of some
fixed set A, or by fixing the index set I. The following definition allows for both of these
restrictions.

Definition 2.2. Let ACX(A) be the axiom which states: whenever {Ai}i∈X is a
collection of non-empty subsets of A, there is a function f : X → A such that f(i) ∈ Ai
for all i ∈ X.

The Axiom of Countable Choice, abbreviated ACω, states: for all sets A, ACω(A)
holds.

Let’s see ACω in action. For the following theorem, recall that a set B is infinite if
there is no surjection f : n→ B with n ∈ ω.

Theorem 2.3. Assume ACω. If B is infinite, there is an injection f : ω → B.

Proof. For each n ∈ ω, let Bn be the collection of subsets of B containing exactly
2n elements; note that Bn is non-empty for each n since B is infinite. By ACω, there is
a choice function g : ω →

⋃
n∈ω Bn so that for all n, g(n) ∈ Bn.

Now define An by

An = g(n) \
⋃
i<n

g(i).

Note that |
⋃
i<n g(i)| ≤ Σi<n|g(i)| = Σi<n2i = 2n − 1. Since |g(n)| = 2n, it follows that

An is non-empty, and the An are pairwise disjoint. Then again by ACω, we obtain a
choice function f : ω →

⋃
n∈ω An, which is the desired injection into B. a

Some choice is necessary to prove this! Ditto the next theorem:

Theorem 2.4. Assume ACω. Let {An}n∈ω be a collection of countable sets. Then⋃
n∈ω An is countable.
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Proof. We may assume some An is non-empty; then we need to find a surjection
f : ω →

⋃
n∈ω An. We know for each n there is some surjection g : ω → An; the problem

is picking a collection of such gn for all n simultaneously.
Let Fn = {h ∈ Anω | h is surjective}. By assumption, each Fn is non-empty, so by

ACω, we obtain a choice function g : ω →
⋃
n∈ω Fn. Fix some a ∈

⋃
n∈ω An. Let f be

defined by setting

f(n) =

{
g(i)(j) if n = 2i3j for some i, j ∈ ω;
a otherwise.

Then it is easy to see that f : ω →
⋃
n∈ω An is onto. a

It turns out ACω is compatible with AD, and most instances we need actually follow
from AD. From now on, we take the Axiom of Countable Choice for granted, and won’t
draw attention to its use.

There is a stronger choice axiom which is also compatible with AD.

Definition 2.5. The Principle of Dependent Choices, abbreviated DC, states:
Suppose R is a binary relation on a non-empty set X so that for all x ∈ X there is an
element y ∈ X with x R y. Then there is a sequence 〈xn〉n∈ω of elements of X so that
xn R xn+1 for all n ∈ ω.

First observe this follows from AC: if R is such a relation, then for each x ∈ X, let
Ax = {y ∈ X | x R y}. Each Ax is non-empty, and so we obtain a choice function
f : X → X with x R f(x) for all x ∈ X. The desired sequence is obtained by letting
x0 ∈ X be arbitrary, and inductively letting xn+1 = f(xn).

Theorem 2.6. Assume DC. Then ACω holds.

Proof. Let {An}n∈ω be a collection of non-empty sets. Let X be the set of functions
f so that each f ∈ X has dom(f) ∈ ω, and f(n) ∈ An for each n.

Now define R on X by letting f R g if dom(g) = dom(f) + 1 and f ⊆ g. It’s easy
to see that given f ∈ X, we may fix a ∈ Adom(f) and obtain f R f_〈a〉. By DC, we
obtain a sequence 〈fn〉n∈ω with fnRfn+1 for all n. Then f =

⋃
n∈ω is the desired choice

function. a
Heuristically, DC is like a “dynamic” version of ACω: it says that we can make countably
many choices without knowing in advance where the choices have to come from. The
next lemma is one of the most important consequences of DC. (It does not follow from
ACω alone!)

Definition 2.7. A tree T on a set X is finitely branching if for all s ∈ T , the set
{x ∈ X|s_〈x〉 ∈ T} of immediate successors of s in T is finite.

Lemma 2.8 (König). Let T be an infinite finitely branching tree. Then T has an infi-
nite branch.

Proof. Let S ⊆ T be the set of elements s of T so that Ts is infinite. Define R on S
by setting s R t if s ⊆ t.

Since Ts =
⋃
{Ts_〈x〉 | s_〈x〉 ∈ T} and T is finitely branching, we have for each s ∈ S

some x so that Ts_〈x〉 is infinite. Then s_〈x〉 ∈ S, and s R s_〈x〉.
By DC, there is an infinite sequence 〈sn〉n∈ω so that sn ∈ S, and sn ⊆ sn+1 for all n.

Then f =
⋃
n∈ω sn is an infinite branch through T . a
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Recall that the Axiom of Choice is equivalent to the statement that every set can be
well-ordered; equivalently, for all sets X, there is an ordinal α and a bijection f : α→ X.
If κ is the least ordinal for which such a bijection exists, we say κ is the cardinality of
X, and write κ = |X|. A cardinal is an ordinal κ so that κ = |κ|.

The first few cardinal numbers are 0, 1, 2, 3. The least infinite cardinal is ω. Using
choice, we have that P(ω) can be well-ordered, and so there is an uncountable cardinal.
The least such is denoted ω1. Can we show ω1 exists without using choice? The answer
is yes, with “Hartogs’ trick”.

Proposition 2.9. (Without using the Axiom of Choice.) Let κ be an infinite cardinal.
Then there is a cardinal λ > κ.

Proof. Let κ be a cardinal. Consider the set

H = {R ∈ P(κ× κ) | R well-orders some subset of κ}.

For each R ∈ H, there is a unique ordinal η so that the well-order R has order-type η;
that is, there is a bijection f : dom(R)→ η so that α R β if and only if f(α) ∈ f(β), for
all α, β ∈ domR (check this!).

By the Axiom of Replacement, let λ be the image of H under the map sending R to
its order-type. Note that λ is an ordinal with λ > κ. We claim λ is a cardinal. Suppose
instead that α = |λ| < λ; we have a bijection f : α → λ. Since α < λ, we have a well-
order R of some subset of κ with order-type κ, hence a surjection g : κ→ α. Composing
with f , we have a surjection f ◦ g : κ→ λ. This gives rise to a well-order of a subset of
κ with order-type λ. Then λ ∈ λ, a contradiction! a
Evidently the λ we defined in the proof is the least cardinal greater than κ, its so-called
cardinal successor. We write λ = κ+. Using this proposition, we can generate a list
of all the infinite cardinals.

Definition 2.10. ℵ0 is the least infinite cardinal, ℵ0 = |ω|.
Given ℵα, ℵα+1 is the least cardinal greater than ℵα: ℵα+1 = ℵ+

α .
For limit ordinals λ, ℵλ = supα<λ ℵα.

We also write ωα for ℵα. Typically we use the former either when we are emphasizing
the nature of ωα as an ordinal, rather than a cardinal, or if we don’t feel like drawing a
ℵ.

An infinite cardinal κ is a successor cardinal if κ = ℵα+1 for some α; it is a limit
cardinal if κ = ℵλ for a limit ordinal λ.

The least limit cardinal is the ωth cardinal, ℵω. Notice that it is a union of ω many
cardinals each smaller than ℵω. This turns out to be a very special property.

Definition 2.11. A cardinal κ is singular if it is the sup of fewer than κ many
cardinal smaller than κ, that is, if κ = limξ<α ηξ, for some α < κ and ηξ < κ for ξ < α.

A cardinal that is not singular is called regular.

Clearly ω is a regular cardinal. The Axiom of Choice implies every successor cardinal
is regular. And we have just seen that ℵω is singular. So is ℵω1

, and ℵω2
, and so on;

indeed, ℵλ is singular whenever λ < ℵλ. Can there be a regular limit cardinal?

Definition 2.12. A cardinal κ is called weakly inaccessible if κ is a regular limit
cardinal.
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What must such a cardinal look like? Clearly we have κ = ℵκ, but this is not a
sufficient criterion for inaccessibility: Consider the sequence ω, ωω, ωωω , . . . . If κ is the
limit of this sequence, then κ = ℵκ, but is singular.

Our intuition is that weakly inaccessible cardinals are difficult to reach from below.
We have one more stronger notion of inaccessibility:

Definition 2.13. (Using the Axiom of Choice.) A cardinal κ is strong limit if
|2α| < κ for all α < κ.
κ is (strongly) inaccessible if κ is a regular strong limit cardinal.

It’s easy to come up with strong limit cardinals. For example, set κ0 = ω, and for
n < ω, set κn+1 = |2κn |. Then λ = supκn is strong limit, but also singular.

It’s hard to come up with examples of (weakly) inaccessible cardinals, and there is a
reason for this: In ZFC, one cannot prove they exist! We’ll explore this when the time
is right.

We close this section by defining a special class of important subsets of cardinals.

Definition 2.14. Let A ⊆ κ be a set of ordinals. A is unbounded in λ for limit
λ ≤ κ if whenever α < λ, there is some β ∈ A with α < β < λ. A is closed (in κ) if
λ ∈ A whenever A is unbounded in λ < κ.

A set C ⊆ κ is club in κ if it is closed and unbounded in κ.

Notice that a set is closed precisely when it is a closed set of ordinals with respect to
the order topology on κ (basic open sets are of the form (α, β) = {ξ ∈ ON | α < ξ < β},
or {0}). Our intuition is that clubs are “large”. We give two examples.

Example 2.15. Let κ be regular, and let A ⊆ κ be unbounded. Then the set of limit
points of A,

A′ = {α < κ | (∀β < α)(∃ξ)β < ξ < α and ξ ∈ A}
is club in κ.

Example 2.16. Let F : κ→ κ be a function with κ regular. Then the set

CF = {α ∈ κ | (∀ξ < α)F (ξ) < α}
is club in κ. CF is called the set of closure points of F .

§3. Baire Space and Cantor Space. In this section, we depart from the more
general setting and focus on set theory of the reals. We will gain more insight into the
reals by working with “set theorists’ reals:” sequences f : ω → ω.

We have already encountered the set ωω of functions f : ω → ω. We regard ωω as a
topological space by taking as a basis all sets of the form

Ns = {x ∈ ωω | s ⊆ x} = [(ω<ω)s],

where s ∈ ω<ω. So endowed, ωω is called Baire space.
Every open set U in Baire space is then of the form U =

⋃
s∈B Ns with B ⊆ ω<ω. We

regard open subsets of ωω as the simplest subsets of ωω, because they come with a finite
certificate for membership: x ∈ U if and only if x � n ∈ B for some n ∈ ω.

As an example, the set U0 = {x ∈ ωω | (∃n)x(n) = 3} is open. Its complement,
U1 = {x ∈ ωω | (∀n)x(n) 6= 3}, is not open, since every s ∈ ω<ω extends to some x ∈ U0.
Similarly, the set U2 = {x ∈ ωω | Σn<ωx(n) > 9,000} is open, but its complement is not.
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We may similarly put a topology on 2ω by using as a basis the sets Ns, for s ∈ 2<ω.
Note that 2ω is the set of branches through the infinite binary tree. We call 2ω with this
topology Cantor space.

A few remarks are in order regarding our basic open sets Ns. If s ⊆ t, then clearly
Ns ⊇ Nt. If it is not the case that s ⊆ t or t ⊆ s, then there must be some i <
min{`(s), `(t)} so that s(i) 6= t(i). In this situation, Ns ∩Nt = ∅. We write s ⊥ t, and
say s, t are incompatible.

We now isolate a number of important topological properties of the spaces ωω, 2ω.

Definition 3.1. A subset C of a topological space is clopen if it is both closed and
open. A topological space is totally disconnected if it has a basis of clopen sets.

Proposition 3.2. ωω and 2ω are totally disconnected.

Proof. Note that ωω \ Ns =
⋃
t⊥sNt. So Ns is clopen for all s ∈ ω<ω. So ωω is

totally disconnected; similarly for 2ω. a
We have the following simple characterization of convergence.

Proposition 3.3. Let 〈xn〉n∈ω be a sequence in Baire space (or Cantor space). Then
limn→∞ xn = x if and only if for all m ∈ ω, there is some N so that xn � m = x � m for
all n ≥ N .

Let X be a topological space. A set D ⊆ X is dense in X if U ∩D 6= ∅ whenever
U ⊆ X is open. X is called separable if it has a countable dense subset. A set D ⊆ ωω
is dense if and only if Ns∩D 6= ∅ for all s ∈ ω<ω; that is, if for all s there is some x ∈ D
with s ⊆ x. It follows that if D0 is the set of eventually zero sequences in ωω, then D0

is dense, and clearly countable. So ωω (and 2ω) is separable.
Let us also mention that ωω and 2ω can be regarded as metric spaces. Define, for

x, y ∈ ωω,

d(x, y) =

{
0 if x = y;
2−n,where n is least so that x(n) 6= x(y) if x 6= y.

The reader should verify that this is a metric on ωω (2ω), and that it generates the
topology of Baire space (Cantor space).

The following characterization of closed sets in Baire space is fundamental. We say
that a tree T is pruned if it has no terminal nodes.

Theorem 3.4. A set C 6= ∅ is closed in Baire space (or Cantor space) if and only if
C = [T ] for some pruned tree T ⊆ ω<ω (2<ω).

Proof. If C is closed, set T = {∅} ∪ {x � n | x ∈ C, n ∈ ω}. It is immediate that T
is a pruned tree, and C ⊆ [T ]. Conversely, suppose x ∈ [T ]. For each n, there is some
xn ∈ C so that xn � n = x � n, by definition of T . Then x = limn→∞ xn ∈ C, since C is
closed.

For the reverse, suppose T is a tree on ω; we need to show [T ] is closed as a subset of
Baire space. Suppose limn→∞ xn = x, where each xn ∈ [T ]. For each m ∈ ω, we have
some n so that xn � m = x � m; in particular, x � m ∈ T for all m. This implies x ∈ [T ],
as needed. a

Recall that a set K in a topological space is compact if every open cover of K admits
a finite subcover: that is, if K ⊆

⋃
i∈I Ui for some collection {Ui}i∈I of open sets, then

there is some finite F ⊆ I with K ⊆
⋃
i∈F Ui. We mention two facts about compactness:
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First, if C0 ⊆ K ⊆ X with K compact and C0 closed, then C0 is compact. Second, if X
is a metric space, then whenever K is compact, K is automatically closed (in particular,
this holds for ωω and 2ω).

The Heine-Borel Theorem states that a set K ⊆ R is compact if and only if it is closed
and bounded. The following is the analogue for compact subsets of ωω, and has a similar
proof.

Theorem 3.5. A non-empty set K ⊆ ωω is compact if and only K = [T ] for some
finitely branching pruned tree T .

Proof. Suppose first that K is compact. Then K is closed, and by Theorem 3.4,
there is a pruned tree T on ω with [T ] = K. We claim T is finitely branching. If not,
there is some s ∈ T so that s_〈a〉 ∈ T for infinitely many a ∈ ω; let 〈an〉n∈ω enumerate
these a in increasing order. Note that [T ]∩Ns_〈an〉 6= ∅ for all n, by the assumption that
T is pruned, and the sets Ns_〈an〉 are pairwise disjoint. It follows that {Ns_〈an〉}n∈ω is
an infinite cover of K with no finite subcover. This contradicts compactness of K, so T
must be finitely branching.

Conversely, suppose T is a finitely branching pruned tree on ω. We claim [T ] is
compact. Suppose otherwise. Then there is some collection {Ui}i∈I of open sets covering
[T ], but so that no finite subcover covers T .

We now inductively construct x ∈ [T ] so that for all n, [Tx�n] cannot be covered by
finitely many of the Ui. This gives the desired contradiction, since x ∈ [T ] implies x ∈ Ui
for some i; then by openness of Ui, there must be some n so that [Tx�n] ⊆ Nx�n ⊆ Ui.

For n = 0, we have by assumption that [T∅] = [T ] cannot be covered by finitely many
of the Ui. Suppose inductively that we have defined x � n = 〈x(0), x(1), . . . x(n− 1)〉 so
that [Tx�n] cannot be covered by finitely many of the Ui. Since T is finitely branching,
we have Tx�n =

⋃
k<m T(x�n)_〈ak〉 for some finite list a0, a1, . . . , am−1 of elements of ω.

Suppose towards a contradiction that each [T(x�n)_〈ak〉] can be covered by {Ui}i∈Fk for
some finite set Fk ⊆ I. Then we have F =

⋃
k<m Fk a finite set so that [Tx�n] is covered

by {Ui}i∈F , contradicting our inductive hypothesis.
So there must be some k < m so that [T(x�n)_〈ak〉] cannot be covered by finitely many

of the Ui. Set x(n) = ak; by induction, we obtain the desired x. a
There is one more notion we would like to introduce and examine in the context of

ωω and 2ω. This notion may be thought of as a purely topological analogue of Lebesgue
measure zero. The main idea is to try to isolate some class of sets that is intuitively
small, in some robust way. The next definition is our first approximation to this notion.

Definition 3.6. Let X be a topological space. We say that A ⊆ X is nowhere
dense if for every non-empty open U ⊆ X, there is a non-empty open V with V ⊆ U
and V ∩A = ∅.

So a set A ⊆ ωω is nowhere dense if for every s ∈ ω<ω, there is some extension t ⊇ s
with Nt ∩ A = ∅. For example, the set U1 defined earlier is nowhere dense. Also, 2ω is
nowhere dense as a subset of ωω (but not as a subset of itself, of course!).

Any nowhere dense set can be enlarged a bit and still be nowhere dense.

Proposition 3.7. If A ⊆ X is nowhere dense, then so is its closure Ā = A ∪ {x ∈
X | x is a limit point of A}.
Proof. This follows immediately from the fact that if V is an open set with V ∩A = ∅,

then V ∩ Ā = ∅. a
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The reader should verify that a finite union of nowhere dense sets is nowhere dense.
Unfortunately (and in contrast with the Lebesgue measure zero sets), it is not the case
that a countable union of nowhere dense sets is nowhere dense. For example, a countable
dense set is a countable union of singletons, each of which is nowhere dense. The following
notion of smallness is more robust.

Definition 3.8. A set A ⊆ X is meager if it is contained in the union of countably
many nowhere dense sets.

It is immediate that if M0 ⊆M with M meager, M0 is meager as well. Nowhere dense
sets are obviously meager. And since countable unions of countable sets are countable,
we have that the countable union of meager sets is meager. In particular, countable sets
are meager. This is a good thing: we think of countable sets as intuitively small.

Of course, one set that shouldn’t be small is ωω itself. This is the content of the
following theorem.

Theorem 3.9 (The Baire Category Theorem). The space ωω is not meager as a sub-
set of itself. (Similarly for 2ω.)

Proof. We have to show that no countable union of nowhere dense subsets of ωω

is equal to all of ωω. Let {Cn}n∈ω be a countable collection of nowhere dense sets.
Replacing the sets Cn with their closures C̄n if necessary, we may assume each Cn is
closed. Then Un = ωω \ Cn is an open dense set.

To show
⋃
n∈ω Cn is not all of ωω, it is sufficient to show

⋂
n∈ω Un is non-empty. In

fact we can do even better.

Claim. The countable intersection of dense open sets is dense.

Fix s ∈ ω<ω. We need to show Ns ∩
⋂
n∈ω Un is non-empty. Set s0 = s. Suppose

inductively that sn has been defined. Since Un is dense open, the set Un ∩Nsn is open
and non-empty, so there is some proper extension sn+1 ⊇ sn so that Nsn+1

⊆ Un.
Put x =

⋃
n∈ω sn. Clearly x ∈ Ns = Ns0 . And for each n, we have x ∈ Nsn ⊆ Un. It

follows that x ∈ Ns ∩
⋂
n∈ω Un. This proves the claim, and the theorem. a

A set A in ωω is called comeager if its complement ωω \ A is meager. A countable
intersection of open sets is called a Gδ set. By the proof just given, the countable
intersection of open dense sets is always a dense Gδ set. Thus a set is comeager if and
only if it contains a dense Gδ.

We close this section by connecting the topology of Baire space with determinacy. The
characterization of closed sets in Theorem 3.4 gives us the following.

Theorem 3.10. Let C ⊆ ωω be closed. Then G(C) is determined.

Proof. Fix a tree T on ω so that C = [T ]. Let T ′ be the tree defined by

T ′ = {s ∈ ω | s ∈ T or (∃n)s = t_〈n〉 for some t ∈ T with `(t) odd.}
Note that [T ′] = [T ] = C, and all terminal nodes in T ′ have even length. By the Gale-
Stewart Theorem 1.7, the game G([T ′];T ′) is determined. We show how to produce a
winning strategy in G(C) given one in G([T ′];T ′).

Suppose σ is a winning strategy for Player I in G([T ′];T ′). By our definition of T ′,
σ can put no restrictions on Player II’s moves; that is, whenever s ∈ σ has odd length,
then s_〈n〉 ∈ σ for all n ∈ ω. Furthermore, since all terminal nodes in T ′ have even
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length, every play of σ is infinite. Consequently, σ is a strategy for Player I in ω<ω, and
is winning in G(C), since [σ] ⊆ [T ′] = C.

Suppose now that τ is winning for Player II in G([T ′];T ′). We can extend τ to a
strategy in ω<ω by letting, for all s with even length,

τ ′(s) =

{
τ(s) if s ∈ τ ;
0 otherwise.

Then τ ′ (or to be more precise, the tree of nodes reachable by playing according to τ ′

for Player II, and putting no restrictions on Player I’s moves) is a strategy for Player II.
Since τ is winning for Player II in G([T ′];T ′), there are no infinite plays compatible with
τ , and it follows that if x ∈ [τ ′], there is some n so that x � n is terminal in T ′; hence
x /∈ [T ′] = C. This shows τ ′ is winning for Player II in G(C). a

§4. Polish Spaces and Pointclasses. In the last section, we introduced the spaces
ωω and 2ω and isolated some useful topological properties of these. In this section, we
abstract these properties into a definition of a class of structures that includes the spaces
ωω, 2ω, R, as well as their products, and many others.

Recall that a metric space (X, d) is complete if every Cauchy sequence in X converges:
that is, whenever 〈xn〉n∈ω is a sequence of elements of X so that for all ε, there is some
N so that m,n ≥ N implies d(xm, xn) < ε, then limn→∞ xn exists in X. We leave it as
an exercise to verify that Baire space and Cantor space are both complete when endowed
with the metric defined in the last section.

Definition 4.1. A topological space (X, T ) is a Polish space if it is separable, and
there exists a metric d : X ×X → R that generates the topology T of X, and so that
(X, d) is a complete metric space.

Notice that the definition of a Polish space asserts the existence of some complete
metric, but there needn’t be a unique such. The point is that if T is generated by
a complete metric it will have nice properties, but we are more interested just in the
topology than the particular metric generating it. Nonetheless, we typically suppress
mention of the topology T , using the domain set X to denote the Polish space (X, T )
when T is clear.

We have seen that R, ωω and 2ω are Polish spaces. So is ω with the discrete topology,
as witnessed by the metric d on ω with d(m,n) = 1 for all m 6= n. Furthermore, if X,Y
are Polish spaces, then so is their product X × Y . This can be seen by setting

dX×Y (〈x1, y1〉, 〈x2, y2〉) = max{dX(x1, x2), dY (y1, y2)}

where dX , dY are the complete metrics witnessing Polishness of X,Y , respectively.
We remark that the proof of the Baire category theorem in the last section was suf-

ficiently general to go through for arbitrary Polish spaces. We obtain: If X is Polish,
then X is not meager in itself.

The following theorem gives an indication of the important status of ωω among all
Polish spaces.

Theorem 4.2. Let Y be Polish. Then there is a continuous surjection f : ωω → Y .

Proof. Let d be a complete metric generating the topology on Y , and fix a countable
dense subset D = {c0, c1, . . . } of Y . We define recursively, for each non-empty s ∈ ω<ω,
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an element ys of D. We ensure for each x ∈ ωω that the sequence 〈yx�n〉n∈ω is Cauchy
in Y .

For each a ∈ ω, set y〈a〉 = ca. Now suppose inductively that we have defined cs
for some s ∈ ω<ω with `(s) = n ≥ 1. For each a ∈ ω, define ys_a as follows: if
d(ys, ca) < 2−n, let ys_〈a〉 = ca; otherwise, set ys_〈a〉 = ys.

We claim for each x, 〈yx�n〉n∈ω is Cauchy. For we have, for all 1 ≤ m ≤ n,

d(yx�m, yx�n) ≤ d(yx�m, yx�m+1) + d(yx�m+1, yx�m+2) + · · ·+ d(yx�n−1, yx�n)

< 2−m + 2−(m+1) + · · ·+ 2−(n−1) < 2−(m−1).

Given ε > 0, take N to be large enough that 2−(N−1) < ε; this witnesses Cauchyness of
〈yx�n〉n∈ω.

Now by completeness of Y , we may set f(x) = limn→∞ yx�n for each x ∈ ωω. We
claim f : ωω → Y is continuous. For suppose x0, x1 ∈ ωω and d(x0, x1) < 2−n, n ≥ 0.
This implies x0 � n = x1 � n, so that in particular, yx0�n = yx1�n. We then have

d(f(x0), f(x1)) ≤ d(f(x0), yx0�n) + d(yx1�n, f(x1)) ≤ 2−n + 2−n = 2−(n−1). By the ε-δ
characterization of continuity, we are done.

Finally, we need to show f is onto. Fix y ∈ Y . Define a sequence of elements of D
tending quickly towards y: for all n, let x(n) ∈ ω be least so that d(y, cx(n)) < 2−(n+2).
We obtain x ∈ ωω; using the triangle inequality, it’s easy to check that d(cx(n), cx(n+1)) <

2−n+1 for all n. Then by induction, we always have yx�n = ax(n), so that f(x) =
limn→∞ ax(n) = y. a

As remarked above, we regard open sets as the simplest subsets of a Polish space.
Shortly we will define larger classes of sets that may contain more complicated sets. We
would like to have a way of working with the class of all sets of a particular complexity
in arbitrary Polish spaces (not just ωω). For this reason, we introduce the following new
concept.

Definition 4.3. We call Γ a pointclass if it consists of pairs (A,X), where A is a
subset of the Polish space X. We say Γ is closed under continuous substitution if,
whenever X,Y are Polish spaces, f : X → Y is continuous, and (A, Y ) belongs to Γ,
then also (f−1[A], X) ∈ Γ.

Given a pointclass Γ and a Polish space X, the restriction of Γ to X is the collection
of sets A so that (A,X) ∈ Γ; that is, Γ(X) = Γ ∩ P(X).

The dual pointclass of Γ, denoted ¬Γ, is the class of complements of elements of
Γ: that is, (A,X) ∈ ¬Γ if and only if (¬A,X) ∈ Γ; here ¬A = X \ A. A pointclass is
self-dual if Γ = ¬Γ.

Typically, the ambient space X will be understood and we simply write A ∈ Γ or say
“A is Γ” to mean that (A,X) ∈ Γ.

Notice that Γ is closed under continuous substitution if and only if ¬Γ is. The class of
open sets in Polish spaces is an example of a pointclass closed under continuous substi-
tution; the class of closed sets (and that of clopen sets) is also closed under continuous
substitution.

Let us connect the notions we are developing to determinacy.

Definition 4.4. Let Γ be a pointclass. We say Γ determinacy holds (and write
Γ -DET) if whenever A ∈ Γ(ωω), the game G(A) is determined.
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We saw that Γ -DET holds when Γ is the class of closed sets. By the following theorem,
we also have ¬Γ (open) determinacy.

Theorem 4.5. Suppose Γ is a pointclass closed under continuous substitution. Then
Γ determinacy is equivalent to ¬Γ determinacy.

For contrast, recall that (under the Axiom of Choice) G(A) may be determined while
G(ωω \A) is not.

Proof. Let A ∈ ¬Γ(ωω) and suppose Γ determinacy holds. We wish to show G(A)
is determined. The proof illustrates a common technique in proofs of determinacy: the
simulation of play in G(A) by that in an auxiliary game.

Define f : ωω → ωω by f(x)(n) = x(n+1) for all n ∈ ω. Clearly f is continuous. Since
¬Γ is closed under continuous substitution, we have f−1[A] ∈ ¬Γ. Let B = ¬f−1[A].
Then B ∈ Γ is determined by hypothesis.

Suppose Player II wins G(B) with strategy τ . We obtain a strategy σ for Player I to
win G(A) by pretending we are Player II in G(B), and that Player I played first move
0. That is, let σ(s) = τ(〈0〉_s) for all s ∈ ω<ω for which the latter is defined.

Then σ is a strategy for Player II in ω<ω. Suppose x is a play compatible with σ; then
〈0〉_x is a play compatible with τ . Since τ is winning for Player II, 〈0〉_x /∈ B, so that
f(〈0〉_x) = x ∈ A. Thus σ is winning for Player I in G(A).

The argument when Player I wins G(B) is similar: If σ is the winning strategy, then
use it to play as Player II to win G(A) (now ignoring the first move made by σ).

We have shown Γ determinacy implies ¬Γ determinacy; the converse holds by sym-
metry. a
We have obtained that open sets and closed sets are determined. In order to investigate
determinacy for more complicated sets, we first explore a way of producing sets that are
more complicated.

The complement of an open set is not, in general, open; and the intersection of count-
ably many open sets may be neither open nor closed. Iterating the operations of com-
plement and countable union gives us a hierarchy of increasingly complicated sets. The
next definition is central to our study of sets of reals.

Definition 4.6. Let X be a Polish space. We define a hierarchy of pointclasses
Σ0
α(X), Π0

α(X), ∆0
α(X) for 1 ≤ α < ω1 by transfinite recursion.

1. U ∈ Σ0
1(X) iff U is an open set in X.

2. Assuming Σ0
α(X) is defined, Π0

α(X) = {A ⊆ X | X \A ∈ Σ0
α(X)}.

3. Assuming Π0
β(X) is defined for all 1 ≤ β < α, we let Σ0

α(X) be the set of countable

unions of sets in
⋃
β<α Π0

β(X). That is, A ∈ Σ0
α(X) if and only if A =

⋃
n∈ω An

for some sequence 〈An〉n∈ω with each An ∈ Π0
βn for some βn < α.

We furthermore define the ambiguous pointclasses ∆0
α(X) to consist of those sets

that are in both Σ0
α(X) and Π0

α(X). That is, ∆0
α(X) = Σ0

α(X) ∩Π0
α(X).

We define Σ0
α to be the pointclass consisting of (X,A) with A in Σ0

α(X) as X ranges
over all Polish spaces. We define Π0

α and ∆0
α similarly.

The classes Σ0
α,Π

0
α are the Borel pointclasses. A set A is a Borel set in X if

A ∈ Σ0
α(X) or A ∈ Π0

α(X) for some α < ω1. We set B(X) =
⋃
α<ω1

Σ0
α(X).

Let’s look at the first few levels of this hierarchy. Of course, Π0
1 is exactly the collection

of closed sets. The collection Σ0
2 consists of all the countable unions of closed sets;
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sometimes these are also called Fσ sets. Since singletons are closed, any countable set is
Σ0

2.
Π0

2 consists of all countable intersections of open sets; these are also called the Gδ
sets. In the proof of the Baire category theorem we showed the countable intersection
of dense open sets is dense; such sets are called dense Gδ sets. A set is meager precisely
when it is disjoint from a dense Gδ set.

Example 4.7. Let a < b ∈ R. Then the half-open interval [a, b) is ∆0
2: It can be

written both as the countable union of closed sets and as the countable intersection of
open sets.

Example 4.8. The set Q is Σ0
2 as a subset of R. Since Q is meager, it cannot be the

intersection of countably many (necessarily dense) open sets, since this would imply R
is the union of two meager sets, contradicting the Baire category theorem. So Q is not
Π0

2 (and so not ∆0
2).

We pursue a systematic study of this hierarchy in the next section.

§5. The Borel Hierarchy.

Theorem 5.1. Each pointclass Σ0
α,Π

0
α,∆

0
α is closed under continuous substitution.

Proof. We proceed by induction, just as the Borel pointclasses were defined. For Σ0
1,

this is immediate from the definition of continuity. Having shown Σ0
α is closed under

continuous substitution, suppose A ⊆ Y is in Π0
α and f : X → Y is continuous. Then

since Y \A ∈ Σ0
α, we have that f−1[Y \A] ∈ Σ0

α. It follows that f−1[A] = X \f−1[Y \A]
belongs to Π0

α, as needed.
Finally suppose Π0

β is closed under continuous substitution for all β < α. Let A ∈
Σ0
α(Y ); then A =

⋃
n∈ω An where each An is in Π0

βn(Y ) for some βn < α. By inductive

hypothesis, f−1[An] ∈ Π0
βn(X) for each n < ω, and then f−1[A] =

⋃
n∈ω f

−1[An] ∈
Σ0
α(X), as needed.
The claim for ∆0

α follows immediately. a
Let us analyze the hierarchy of Borel sets a little further. First, we note that it really is
a hierarchy.

Proposition 5.2. If 1 ≤ β < α < ω1, we have Σ0
β ⊆∆0

α, Π0
β ⊆∆0

α, while ∆0
β ⊆ Σ0

α

and ∆0
β ⊆ Π0

α.

Proof. If we can show the former claim, then ∆0
β ⊆ Σ0

α and ∆0
β ⊆ Σ0

α follows from

the definition. We prove Σ0
β ⊆∆0

α; that Π0
β ⊆∆0

α is immediate by taking complements.

For this it is clearly enough to only deal with successor ordinals and show Σ0
β ⊆ ∆0

β+1

for all 1 ≤ β < ω1.
Showing Σ0

β ⊆ Π0
β+1 is easy: say A ∈ Σ0

β . Then B = X \A ∈ Π0
β . Setting Bn = B for

all n ∈ ω we have B =
⋃
n∈ω Bn belongs to Σ0

β+1 and thus the complement A belongs

to Σ0
β+1.

It remains to show Σ0
β ⊆ Σ0

β+1. This is a little tougher; we do it by induction on
β ≥ 1. If β = 1, notice that any open set in a Polish space is a countable union of closed
sets. Thus Σ0

1 ⊆ Σ0
2. Now assume inductively that we have Σ0

γ ⊆ Σ0
γ+1 for γ < β; by

taking complements we also have Π0
γ ⊆ Π0

γ+1. Let A ∈ Σ0
β . Then A =

⋃
n∈ω An where
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each An is Π0
γn for some γn < β; thus each An is also Π0

γn+1 where γn+1 < β+1. Thus

indeed A is Σ0
β+1. a

Next we will be interested in the closure properties that the Borel pointclasses enjoy.

Proposition 5.3. Let X be a Polish space. Then for all 1 ≤ α < ω1,

1. Σ0
α(X) is closed under countable unions, and Π0

α(X) is closed under countable
intersections.

2. Σ0
α(X),Π0

α(X),∆0
α(X) are each closed under finite unions and intersections.

3. ∆0
α(X) is closed under complements; in particular, each ∆0

α is self-dual.
4. B(X) =

⋃
α<ω1

Σ0
α is closed under the operations of countable union, countable

intersection, and complementation; that is, B(X) is a σ-algebra, and it is the
smallest σ-algebra containing the open sets of X.

Proof. The first and third items are immediate by definition; we leave the second as
an exercise. For the last, closure under countable unions follows from the fact that ω1 is
regular: if An ∈ Σ0

αn for each n, then α = supn∈ω αn < ω1, and
⋃
n∈ω An ∈ Σ0

α.
For the final claim, suppose F is a σ-algebra containing the open sets of X. Then

Σ0
1(X) ⊆ F , and whenever Σ0

α(X) ⊆ F we must have Π0
α(X) ⊆ F by closure of F under

complements; similarly, if Π0
β(X) ⊆ F for all 1 ≤ β < α, then Σ0

α(X) ⊆ F by closure of
F under countable unions. Thus by transfinite induction we obtain B(X) ⊆ F . a
We next define an operation on sets in product Polish spaces of the form ω ×X.

Definition 5.4. Let X be Polish, and A ⊆ ω ×X. We define

∃ωA = {x ∈ X | (∃n ∈ ω)〈n, x〉 ∈ A}
and

∀ωA = {x ∈ X | (∀n ∈ ω)〈n, x〉 ∈ A}.
These operations determine corresponding operations on pointclasses:

∃ωΓ = {(∃ωA,X) | (A,ω ×X) ∈ Γ}
and similarly for ∀ωΓ.

Before proceeding, we make a general comment about taking slices. If X,Y are Polish
and A ⊆ X × Y , the slice of A at x is defined to be

Ax = {y ∈ Y | 〈x, y〉 ∈ A}.
Note that if Γ is closed under continuous substitution, then A ∈ Γ implies Ax ∈ Γ for
all x ∈ X. This gives us the following:

Proposition 5.5. Each Σ0
α is closed under ∃ω, and each Π0

α is closed under ∀ω. In
symbols: ∃ωΣ0

α ⊆ Σ0
α and ∀ωΠ0

α ⊆ Π0
α.

Proof. It suffices to show ∃ωΣ0
α ⊆ Σ0

α, since ∀ωA = ¬(∃ω¬A). By the previous
remarks, each An is in Σ0

α. But ∃ωA =
⋃
n∈ω An, and so we’re done. a

There is one more important fact about the Borel hierarchy we would like to show.
Namely, we want to show new sets are obtained at each level, so that in particular
Σ0
α 6= Σ0

α+1 for all 1 ≤ α < ω1. This is accomplished by the next theorem.

Theorem 5.6 (The Hierarchy Theorem). Let X be an uncountable Polish space. Then
for each α there is some A ⊆ X with A ∈ Σ0

α \Π0
α.
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Notice that by taking complements we get the existence of a set in Π0
α \Σ0

α. To prove
this theorem the main technical tool we will make use of is the notion of a universal set.

Definition 5.7. Let X and Y be Polish spaces, and let Γ be a pointclass. A set
W ⊆ X × Y is Γ-universal for Y if W ∈ Γ and for every A ⊆ Y with A ∈ Γ there is
some x ∈ X such that A = Wx.

Theorem 5.8. Let X be a Polish space. For each α with Γ equal to either Σ0
α or Π0

α,
there is a Γ-universal set W ⊆ 2ω ×X for X.

We start with the open sets.

Proposition 5.9. For each Polish space X there is a universal open (Σ0
1) set W ⊆

2ω ×X.

Proof. The idea is simple: Since the space X is Polish it has a countable basis
{Ui}i∈ω. Thus the open subsets of X are exactly the countable unions of sets of the
form Ui, and since there are only c = |2ω| of these we can use each x ∈ 2ω to encode the
possible unions.

Thus we define W ⊆ 2ω ×X by

〈f, x〉 ∈W if and only if (∃n ∈ ω)x ∈ Un and f(n) = 1.

We need to see W is open. But this is clear, since

W =
⋃
n∈ω
{f ∈ 2ω | f(n) = 1} × Un

and each set {f ∈ 2ω | f(n) = 1} × Un is open.
Next note W is universal. For let A ⊆ X be open. Then A can be written as a

countable union of the Un; we let f ∈ 2ω indicate which, so that A =
⋃
{Un | f(n) = 1}.

It follows that Wf = A straight from the definition. a
The next proposition is clear.

Proposition 5.10. If W ⊆ 2ω×X is Γ-universal, then (2ω×X)\W is ¬Γ-universal.

The last step in the proof of Theorem 5.8 is the following proposition.

Proposition 5.11. Let 1 ≤ α < ω1, and assume that for each β < α there is a
Π0
β-universal set W β ⊆ 2ω ×X. Then there is a Σ0

α-universal set W ⊆ 2ω ×X.

In order to prove this last proposition we first need to bring up coding. It will be
useful for us to have a way of encoding an infinite sequence of elements of 2ω by a single
f ∈ 2ω. One way to do this is by defining, for f ∈ 2ω, (f)n by (f)n(m) = f(2m3n).
There are two important things to notice. One: the map sending f to (f)n is continuous,
and two: any countable sequence 〈gn〉n∈ω of members of 2ω is coded by some f so that
(f)n = gn for all n.

Proof of Proposition 5.11. Let {γk}k∈ω be an enumeration of all the ordinals
below α, enumerated in such a way that each one repeats infinitely often. Notice that
then A ⊆ X belongs to Σ0

α exactly when there are sets Ak in Π0
γk

with A =
⋃
k∈ω Ak.

Now define W by

〈f, x〉 ∈W if and only if (∃k)〈(f)k, x〉 ∈W γk .
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We claim W belongs to Σ0
α. To see this, for each k ∈ ω let Bk be equal to the collection of

〈f, x〉 such that x ∈W γk
(f)k

. Then clearlyW =
⋃
k∈ω Bk. Now define ϕk : 2ω×X → 2ω×X

by ϕk(f, x) = 〈(f)k, x〉. This map is continuous, and ϕ−1
k [W γk ] is exactly Bk since

〈f, x〉 ∈ Bk if and only if 〈x, (f)k〉 ∈W γk .
We finish by showing W is Σ0

α-universal. Let A ⊆ X be Σ0
α. Then A =

⋃
k∈ω Ak

where each Ak ⊆ X is in Π0
γk

. For each k using the universality of W γk , we fix gk so
that Ak = W γk

gk
. Let f be such that (f)k = gk. Then we have that x ∈Wf exactly when

〈f, x〉 belongs to W . This holds exactly when for some k we have 〈(f)k, x〉 ∈W γk , that
is 〈gk, x〉 ∈W γk which itself is equivalent to x ∈ Ak. So Wf = A as needed. a
Proof of Theorem 5.6. We just do the case X = 2ω; we leave greater generality

for the exercises. Let W ⊆ 2ω × 2ω be a Σ0
α-universal set. Set

A = {x ∈ 2ω | x ∈Wx}.
Then A ∈ Σ0

α: for if f : 2ω → 2ω × 2ω is given by f(x) = 〈x, x〉, then f is continuous,
and A = f−1W .

We claim the set A does not belong to Π0
α. For, supposing for contradiction that A

did belong to Π0
α, its complement ¬A = 2ω \A would belong to Σ0

α. By universality of
W that means there is a y ∈ 2ω such that ¬A = Wy. But then by definition of A, we
have y ∈ A if and only if y ∈Wy if and only if y /∈ A, a contradiction. a
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§6. Wolfe’s Theorem. We have seen that closed determinacy Π0
1 -DET and open

determinacy Σ0
1 -DET both hold. Without too much work, we can extend this to the

next level of the Borel hierarchy, Σ0
2.

Theorem 6.1. Let A ⊆ ωω be Σ0
2. Then G(A) is determined.

Proof. The proof will be an illustration of a technique that appears in virtually all
proofs of determinacy. Namely, we reduce the determinacy of the game we are interested
in to that of a certain auxiliary game which is closed.

Let A be Σ0
2. Then A =

⋃
n∈ω Bn with each Un ∈ Σ0

1.
In order to win the game G(A), Player I must ensure that the play produced belongs

to A, that is, to every open set Un. Since the sets Un are open, we have collections
Pn ⊆ ω<ω of positions so that Un =

⋃
s∈Pn Ns. To win the game G(A) Player I must

enter the sets Pn “one at a time.” We define an auxiliary game G∗ that makes this
precise.

The game is played in a tree on P(ω<ω) ∪ ω<ω. Player I must produce strategies σn
in games on ω; Player II must respond with positions compatible with σn.

I σ0 σ1 . . . σn . . .
II s0 s1 . . . sn . . .

Figure 2. The auxiliary game G∗.

The rules of the game are as follows: σ0 must be a strategy in ω<ω that is winning
for Player I in G(U0). Player II must respond with a position s0 ∈ σ0 so that Ns0 ⊆ U0

and for all i < `(s), Ns0 6⊆ U0.
At the n + 1th round of the game, Player I is required to play a strategy winning in

G(Un+1; (ω<ω)sn). Player II must respond with a proper extension sn+1 ) sn so that
Nsn+1 ⊆ Un+1, and whenever `(sn) < i < `(sn+1), we have Nsn+1�i 6⊆ Un+1.

If at any time Player I cannot produce a strategy as required, then the game ends with
Player II the winner. Player I wins all infinite plays. Note that the positions of G∗ form
a tree T in which all terminal nodes have even length; thus G∗ has the form G([T ];T ).

By the Gale-Stewart Theorem, the game G∗ is determined. Suppose first that Player
I has a winning strategy σ∗. It is easy to see how to convert σ∗ to a winning strategy σ
for Player I in G(A): namely, let σ0 be the first move made by σ∗. Have Player I play
according to σ0 until a position s0 is reached with Ns0 ⊆ U0 (this is bound to happen
since σ0 is winning for Player I in G(U0)). Then attribute the move s0 to Player II in
the game G∗. σ∗ produces a strategy σ1 = σ∗(〈σ0, s0〉), which we use to play against II
until a position s1 is reached with Ns1 ⊆ U1 which we attribute to II in G∗; and so on.

Any play x compatible with the strategy σ we have described is clearly in A, since for
all n we have sn ⊆ x and Nsn ⊆ Un for each n. So σ is winning for Player I in G(A).

Suppose now that Player II has a winning strategy τ∗ in G∗. It is a bit harder to
see how to convert this strategy to a winning τ for II in G(A), since Player II has the
daunting task of attributing strategies σn to Player I as moves in G∗. We need to play
in such a way that if we reach some position s0 with Ns0 ⊆ U0, for example, then
s0 = τ∗(〈σ0〉) for some legal move σ0 by Player I—without knowing in advance what σ0

is.
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To simplify notation, we work on the case n = 0. Let Q be the set of nodes in ω<ω

that are obtained as a response by τ∗ to some legal move by Player I; that is,

Q = {s ∈ ω<ω | τ∗(〈σ〉) = s for some σ winning for Player I in G(U0)}.
Notice that if Q is empty, then there is no winning strategy for Player I in G(U0). By
Gale-Stewart, we can then let τ be a winning strategy for II in G(U0), which is then
automatically winning for II in G(A).

So we can assume Q is non-empty. Consider now the set

V =
⋃
{Ns | Ns ⊆ U0 and no initial segment of s is in Q}.

Claim. Player II has a winning strategy τ0 in G(V ).

Proof of claim. We claim Player I cannot win the game G(V ). For if σ0 were a
winning strategy in G(V ) for Player I, then it would also be winning in G(U0), and so
be a legal first move in G∗. Consider τ∗(〈σ0〉) = s0. Then s0 ∈ Q, and by the rules of
the game G∗, Ns0�i 6⊆ U0 for all i < `(s). But then no extension of s0 can belong to V ,
by definition, contradicting that σ0 was winning for Player I in G(V )!
V is open. By Gale-Stewart, there is a winning strategy τ0 for Player II in G(V ). a

Let τ0 be given by the claim. Have τ agree with τ0 until, if ever, a position s0 with
Ns0 ⊆ U0 is reached. (If no such position is reached, then τ0 produces an infinite play
outside of U0, which is then a win for II in G(A).) By the fact that τ0 is winning in
G(V ) for Player II, we must have s0 in Q. So let σ0 be some strategy for Player I so
that 〈σ0〉 ∈ T , and τ∗(〈σ0〉) = s0.

Repeating this argument at s0 with 〈σ0, s0〉 ∈ τ∗, we have that either Player I has
run out of legal moves in G∗, in which case we have a winning strategy for Player II to
avoid U1 and thus get out of A, or we can play so that if s1 is reached with Ns1 ⊆ U1,
then there is some σ1 legal for II in G∗ with τ∗(〈σ0, s0, σ1) = s1. Continuing in this way,
because τ∗ is winning for Player II in G∗, we must eventually reach a position in G∗ at
which Player I has no legal moves, and so Player II wins in G(A). a
The main idea of this proof—reducing to a closed game in which Player I plays auxiliary
moves which are strategies—can be stretched with a great deal of difficulty to give a
proof of the following landmark theorem.

Theorem 6.2 (Martin). All Borel games are determined.

Later on in the course, we will obtain this (and more) determinacy by assuming the
existence of a certain large cardinal (one rather larger than an inaccessible cardinal).
Martin’s proof, however, goes through in just the standard axioms of set theory, ZF (no
choice necessary!).

This sharper proof is a bit beyond the scope of these notes, but we make a few
remarks. The idea is essentially to show that the determinacy of a given closed set can
be continuously reduced to that of a clopen set in a larger tree; in fact, this can be done
simultaneously for countably many closed sets. If we do this for all of the countably
many sets involved in the construction of a Σ0

α+1 set, then we reduce determinacy of

this set to that of a Σ0
α set (in a larger tree). By iterating this procedure α many times,

we reduce to determinacy of a Σ0
1 set in a tree on Pα+1(ω).

It is a result due to Harvey Friedman that this use of the Power Set Axiom is nec-
essary. Indeed, Σ0

1+α+3 -DET cannot be proven without (roughly) α + 1 many iterated
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applications of the Power Set Axiom to ω. This is a somewhat remarkable state of af-
fairs: Borel determinacy, though it is a simple statement about subsets of ωω, cannot be
proven without appeal to the existence of uncountably many larger infinities than ωω!

Borel determinacy is, in a sense, the extent of determinacy provable without recourse
to large cardinals: if Γ is a pointclass closed under continuous substitution that prop-
erly contains

⋃
α<ω1

Σ0
α, then Γ -DET implies ZFC is consistent with the existence of

inaccessible cardinals, and more—in particular, Γ -DET is not provable in ZFC.
We will see more of this connection between determinacy and large cardinals later on.

For now, we explore determinacy principles as a powerful tool for reasoning about sets
of reals.

§7. The Baire Property and the Banach-Mazur Game. Recall that a set A ⊆
X is meager in X if it is contained in some countable union of nowhere dense sets; A is
comeager in X if its complement is meager. Note that meagerness is a relative notion, in
the sense that a set meager in X may not be meager in a subset of X; for example, 2ω is
non-meager in 2ω by the Baire category theorem, but is meager as a subset of ωω. The
following proposition shows that meagerness persists between a space and its subsets,
provided those subsets are open.

Proposition 7.1. Suppose X ⊆ Y and X is an open set in Y . Then A ⊆ X is meager
in X exactly when it is meager in Y .

Proof. First suppose A is meager as a subset of X. Then A ⊆
⋃
n∈ω Cn where each

Cn ⊆ X is nowhere dense as a subset of X. We claim each Cn is also nowhere dense as
a subset of Y , from which it follows that A is meager in Y . For if U ⊆ Y is a non-empty
open set, then U ∩ X is open in X. If it is empty, then we already have U ∩ Cn = ∅;
otherwise, since Cn is nowhere dense there is V0 ⊆ U ∩X which is open in X and disjoint
from Cn. Then we have V0 = V ∩X for some open V ⊆ Y , and we easily see that V is
disjoint from Cn as needed.

Going the other way, suppose A is meager as a subset of Y . Then A ⊆
⋃
n∈ω Cn,

where each Cn is nowhere dense as a subset of Y . The reader may check that Cn ∩X is
nowhere dense as a subset of X, which is enough. a

We think of the meager sets as small, or thin. The next class of sets we define are
those which are just a meager set away from being open.

Definition 7.2. Let X be a Polish space. A set B ⊆ X has the Baire property if
there is some open set U ⊆ X such that B4U is meager. (Here B4U is the symmetric
difference (B \ U) ∪ (U \B).)

Proposition 7.3. Suppose B ⊆ ωω has the Baire property. Then either B is meager
or there is some s such that B ∩Ns is comeager in the topology on Ns.

Proof. Since B has the Baire property there is some open set U such that (B \U)∪
(U \ B) is meager. If U is empty then B is meager. So assume U is non-empty. Let
Ns ⊆ U . Since U \B is meager so is Ns \B.

We have Ns = (B∩Ns)∪(Ns\B). Since Ns\B is meager in Ns by the last proposition,
the former set is comeager in Ns. a

Proposition 7.4. Every Borel set has the Baire property.
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Proof. It is enough to show that the open sets have the Baire property, and that the
class of sets with the Baire property is closed under intersection and countable unions.

Certainly the open sets have the Baire property; if B is open, take U = B and
B 4 U = ∅ is meager. For countable unions, suppose B0, B1, . . . all have the Baire
property. Thus for each Bn there is an open set Un so that Bn4Un is meager. It follows
that the union

⋃
n<ω Bn4Un is meager. Let B =

⋃
n<ω Bn and let U =

⋃
n<ω Un. Since

B 4 U ⊆
⋃
n∈ω Bn 4 Un we see that B has the Baire property.

Now for complements. Suppose B has the Baire property. We want to show ωω \ B
has the Baire property. Let U be open with B 4 U meager. Let C be the closure of U ;
so ωω \C is an open set. Notice that (ωω \B)4 (ωω \U) is equal to B4U . Also notice
that (ωω \B)4 (ωω \C) ⊆ (ωω \B)4 (ωω \U)∪ (C \U). If we can show that C \U is
nowhere dense we will be done.

Let V ⊆ ωω be an open set; we want to find an open W ⊆ V disjoint from C \ U . If
V ∩ (C \U) is empty there is nothing for us to do. Otherwise, let x ∈ V ∩ (C \U). Then
x is a limit point of U ; hence by definition of a limit point V ∩ U is non-empty. Take
W = V ∩ U ; then W ∩ (C \ U) is empty. a

Definition 7.5. We say that A ⊆ ωω is a tail set if for every x, y ∈ ωω if there exists
some k ∈ ω such that x(j) = y(j) for all j > k, then x belongs to A exactly when y
belongs to A.

In other words, if we consider the equivalence relation E0 defined by xE0 y if and only
if there exists some k ∈ ω such that x(j) = y(j) for all j > k, then a tail set is one which
is a union of E0 equivalence classes.

Theorem 7.6. If A is a tail set with the Baire property, then A is either meager or
comeager.

Proof. Let us suppose towards a contradiction that A is neither comeager nor mea-
ger. Since A has the Baire property, there is by Proposition 7.3 some s so that A∩Ns is
comeager in Ns. By the same reasoning applied to the complement of A, there is some
t so that (ωω \A) ∩Nt is comeager in Nt; that is, A ∩Nt is meager in Nt.

Extending one of s, t if necessary, we may by Proposition 7.1 assume `(s) = `(t) = k.
Consider the map ϕ : Ns → Nt defined by

ϕ(x)(i) =

{
t(i) if i < k,
x(i) otherwise.

This is clearly a homeomorphism. Thus the image of A∩Ns under ϕ should be comeager
in Nt. But in fact ϕ(x) ∈ A if and only if x ∈ A because A is a tail set. Then
ϕ[A ∩Ns] = A ∩Nt with the latter meager in Nt, a contradiction! a
The same argument of course works for subsets of 2ω.

This theorem is handy in immediately identifying that certain sets are meager or
comeager. For example, the set {x ∈ ωω : limn→∞ x(n) = ∞} is a tail set and is Borel,
so has the Baire property. So without even thinking about it we know it must be either
meager or comeager.

Under the Axiom of Choice there are sets which do not have the Baire property
(exercise). On the other hand, under AD there are no such examples. This we aim to
show next.
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Definition 7.7. Let A ⊆ ωω. We define the Banach-Mazur Game GBM(A) to be
the game with moves in ω<ω, played as follows: Player I plays s0, Player II plays s1 ) s0,
Player I plays s2 ) s1, and so on.

I s0 s2 . . . s2n . . .
II s1 s3 . . . s2n+1 . . .

Figure 3. The Banach-Mazur game GBM(A).

A play of the game is an increasing sequence 〈sn〉n∈ω of elements of sn. Set x =⋃
n∈ω sn. Then Player I wins if x ∈ A; otherwise, Player II wins.

Claim. A is meager if and only if Player II has a winning strategy in GBM(A).

Proof. First suppose that A is meager. Write A ⊆
⋃
n∈ω Cn where each Cn is

nowhere dense. Player II’s strategy essentially consists in proving the Baire category
theorem with the sets Cn. Namely, given s2n, since Cn is nowhere dense, there is some
sn+1 ) sn with Nsn+1 ∩ Cn = ∅. Playing in this fashion clearly produces a real x /∈ A,
so this strategy is winning for Player II.

Conversely, suppose that Player II has some winning strategy τ . For each position p
in the Banach-Mazur game, let sp =

⋃
i<`(p) p(i) denote the node in ω<ω reached by p

(so if p = 〈s0, . . . , sn〉 then sp = sn, and s∅ = ∅). For each even-length position p ∈ τ ,
we define a set Dp ⊆ ωω by

Dp =
⋃
{Nt | t ⊥ sp or (∃s ) sp)τ(p_〈s〉) = t}.

So x belongs to Dp if and only if x ⊥ p, or there is some move by Player I at p which
prompts τ to respond with an initial segment of x.

Clearly Dp is open; we claim it is dense. Fix s ∈ ω<ω with `(s) > `(sp). If s ⊥ sn,
then by definition of Dp we have Ns ⊆ Dp. Otherwise s ) sp, so s is a legal move for
Player I at p. Set t = τ(p_〈s〉). Then t ) s and Nt ⊆ Dp as needed.

Now
⋂
pDp is a dense Gδ, so is comeager. Suppose x ∈

⋂
pDp. Then we can in-

ductively construct a play 〈s0, s1, s2, . . .〉 of GBM(A) compatible with τ and so that
x =

⋃
n∈ω sn: let s0 be a move by Player I witnessing x ∈ D∅, and s1 τ ’s response.

And inductively, set s2n a witness to membership of x in D〈s0,...,s2n〉, and s2n+1 =
τ(〈s0, . . . , s2n〉) ⊆ x.

Since τ is winning for Player II, x /∈ A. So A is disjoint from a comeager set, hence
meager. a
Claim. Player I has a winning strategy in GBM(A) if and only if there is some s ∈ ω<ω

with A comeager in Ns.

Proof. The same arguments in the proof of the previous claim show this. Just note
that after Player I plays a first move s0, the game is essentially GBM(Ns0 \ A) with the
roles of the players reversed. a
Claim. Given A ⊆ ωω there is an open set UA such that if GBM(A\UA) is determined,

then A has the Baire property.

Proof. Let UA =
⋃
{Ns | A is comeager in Ns}. We claim that I cannot have a

winning strategy in GBM(A \ UA); supposing otherwise, we have by the last claim that
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(A \ UA) is comeager in Ns for some s. But then clearly A is comeager in Ns, so that
Ns ⊆ UA, so that (A \ UA) ∩Ns is empty, a contradiction.

Then if the game is determined it must be Player II who has the winning strategy.
By the first claim A \ UA is meager. And UA \A is also meager, being contained in the
union of all the Ns \A for which this set is meager. So A4UA = (A \UA)∪ (UA \A) is
meager. Thus A has the Baire property. a

Theorem 7.8. Assume AD. Then every set A ⊆ ωω has the Baire property.

Proof. By the previous claims it is enough to see that GBM(A) is determined for
all A ⊆ ωω. But GBM(A) can clearly be coded by a game on ω of the form G(A∗), for
example by fixing an enumeration 〈ti〉∈ω of ω<ω \ {∅} and setting x ∈ A∗ if and only if
ϕ(x) = tx(0)

_tx(1)
_tx(2)

_ · · · ∈ A. a
This argument yields the following slight refinement which still applies in settings where
Choice may hold:

Theorem 7.9. Let Γ be a pointclass closed under continuous substitution and finite
intersection, with Γ ⊇ Π0

1. If Γ -DET holds, then every member of Γ has the Baire
property.

Proof. Let A ∈ Γ. By assumption A0 = A \ UA ∈ Γ. Again it is sufficient to
show GBM(A0) is determined; but by the proof of Theorem 7.8 we have A∗0 ⊆ ωω and a
game G(A∗0) whose determinacy is clearly equivalent to that of GBM(A0). Since ϕ is a
continuous map, we have A∗0 = ϕ−1[A0] ∈ Γ, and by Γ -DET, we are done. a

§8. Wadge and Lipschitz Reducibility. What does is mean for one set of reals
A ⊆ ωω to be simpler than another, B? If A and B both happen to be Borel the answer
would be clear: A is simpler than B if it appears in a lower level of the Borel hierarchy.
But what if these sets aren’t Borel?

Here is one idea. Suppose B is Borel, and α is minimal with B ∈ Σ0
α. For any

continuous function f : ωω → ωω, the set A = f−1[B] is also in Σ0
α by closure under

continuous reducibility. But it could also be in Σ0
β for some β < α, and indeed, all sets

in Σ0
β for β < α are of the form f−1[B] for some continuous f .

In light of this, A should be thought of as simpler thanB precisely when f−1[B] = A for
some continuous f . Intuitively, the function f reduces the problem of deciding whether
x ∈ A to that of deciding f(x) ∈ B. Since we think of continuous functions as being
“simple”, the problem of deciding membership in A is no harder than that for B (compare
analogous notions—Turing reducibility or polynomial time reducibility—in the theories
of computation and complexity).

Definition 8.1. Let A,B ⊆ ωω. We write A ≤W B and say A is Wadge reducible
(or continuously reducible) to B if there is a continuous function f : ωω → ωω such
that x ∈ A if and only if f(x) ∈ B.

Of course, this says exactly that A ≤W B if and only if f−1[B] = A for some continuous
f : ωω → ωω. We immediately get:

Proposition 8.2. Suppose Γ is closed under continuous substitution. If B ∈ Γ and
A ≤W B, then A ∈ Γ.
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So for example, each level of the Borel hierarchy is closed downwards under ≤W.
The basic properties of ≤W are immediate:

Proposition 8.3. The relation ≤W is a preorder of P(ωω). That is,

1. ≤W is transitive.
2. ≤W is reflexive.

Note however that ≤W is not antisymmetric: for example, if A = {x ∈ ωω | (∀n)x(n)
is even} and B = {x ∈ ωω | (∀n)x(n) is odd}, then A ≤W B and B ≤W A (with the
same f witnessing both directions), but clearly A 6= B. However, under our notion of
reducibility, these two sets have exactly the same complexity, and we introduce a notion
to identify them.

Definition 8.4. Let A,B ⊆ ωω. We say that A and B are Wadge equivalent,
written A ≡W B, if A ≤W B and B ≤W A.

Proposition 8.5. The relation A ≡W B on P(ωω) is an equivalence relation.

For A ⊆ ωω we define the Wadge degree of A to be the equivalence class [A]W =
{B ⊆ ωω | B ≡W A} of A with respect to ≡W. We will use the letters a, b, c to denote
Wadge degrees.

Each Wadge degree is a pointclass. By definition each Wadge degree is closed under
continuous substitution (restricting now to functions f : ωω → ωω). They are also the
smallest such pointclasses.

Proposition 8.6. Suppose Γ is closed under continuous substitution. Then Γ(ωω) is
a disjoint union of Wadge degrees.

It’s easy to see that the Wadge order and the operation of complementation is well-
defined on the Wadge degrees:

Proposition 8.7. Let A,A′, B,B′ ⊆ ωω with A ≡W B and A′ ≡W B′. Then

1. A ≤W B if and only if A′ ≤W B′, and
2. ¬A ≡W ¬A′.

This justifies our use of the notation ¬a = [¬A]W when A ∈ a, and a ≤W b when
A ≤W B for any A ∈ a and B ∈ b (the choice of representative A and B does not matter).
Thus ≤W, taken as an order on the collection of Wadge degrees, is antisymmetric, and
so ≤W partially orders the Wadge degrees.

Example 8.8. If A ≤W ωω, then A = ωω. So [ωω]W = {ωω}. The dual degree is
[∅]W = {∅}. If B is any non-empty set with non-empty complement, then ωω,∅ are
both ≤W-below B.

Example 8.9. Suppose C is clopen, and B is any non-empty set with non-empty
complement. Then the map sending x ∈ C to some fixed y0 ∈ B, and x /∈ C to some
fixed y1 /∈ B, is a continuous reduction witnessing C ≤W B.

So we have that ∅, ωω are the unique ≤W-minimal sets, and just above them is the
Wadge degree of non-trivial clopen sets.

Before venturing any further up into the world of Wadge degrees, we introduce a game
that will be a powerful tool in their analysis.
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Definition 8.10. Let A,B ⊆ ωω. The Wadge Game GW(A,B) is played as follows:
Players I and II build reals x, y ∈ ωω, respectively. For ω-many rounds, Player I produces
the digits x(n) of x in order, and Player II may either play the next digit of y, or “pass”.

I x(0) x(1) . . . x(n0) x(n0 + 1) . . . x(n1) . . .
II y(0) y(1) . . .

Figure 4. A play of the Wadge game GW(A,B).

The game concludes after infinitely many rounds. If for some n, y(n) is undefined,
then Player II loses. Otherwise, the players have produced x, y ∈ ωω. Then Player II
wins if it is the case that x ∈ A ⇐⇒ y ∈ B; that is, either x ∈ A and y ∈ B, or x /∈ A
and y /∈ B.

We remark that though this is not a game on a tree in ω<ω as required by Definition 1.3,
it is easy enough to encode the Wadge game as one (say, by letting the move 0 by II
indicate a pass, and letting n+ 1 code play of y(i) = n). Of course, it is simpler to deal
with these games directly, with the notions of position, strategy, determined game, etc.
adapted appropriately.

Proposition 8.11. Let A,B ⊆ ωω. Then A ≤W B if and only if Player II has a
winning strategy in GW(A,B).

Proof. The point is that strategies for Player II are essentially the same thing as
continuous functions; continuity corresponds to the fact that strategies τ for Player II
produce the digits y(i) of y based on a finite amount of information about x.

Suppose first that τ is a winning strategy for Player II. Define f : ωω → ωω in the
natural way: Given a real x ∈ ωω, let 〈y(n)〉n∈ω be the sequence produced by II when
Player I plays x. Note that because τ is winning for Player II, we must have y(n) defined
for all n, so y ∈ ωω. Since τ is winning for Player II, we have x ∈ A if and only if y ∈ B,
so that f is a reduction. We just need that f is continuous. For all k, there is some
finite stage nk of the game at which τ produces y(k). Then any extension x′ of x � nk
will prompt a response f(x′) = y′ by τ with y � k = y′ � k. This shows f [Nx�nk ] ⊆ Ny�k,
which proves f is continuous.

Conversely, suppose we have a continuous f : ωω → ωω with f−1[B] = A. We define
a strategy τ by describing how to play for Player II: First Player II waits until Player I
has played naturals x(0), . . . , x(n0) so that for some a0 ∈ ω, we have f [N〈x(0),...,x(n0)〉] ⊆
f [N〈a0〉]; then Player II plays y(0) = a0. Player II then waits until Player I has given
x(0), . . . , x(n1), with n1 > n0, so that for some a1, f [N〈x(0),...,x(n1)〉] ⊆ N〈y(0),a1〉; then
plays y(1) = a1. And so on.

We claim that against any play by x, this strategy must always produce infinitely
many moves by Player II. For otherwise, we obtain a real x, a natural N , and a finite
sequence t = 〈y(0), . . . , y(i − 1)〉, so that there do not exist n > N and a ∈ ω for
which f [Nx�n] ⊆ Nt_〈a〉. But it is clear by our definition of the strategy τ that we
should have f(x) � i = t. This gives a contradiction, since by continuity of f , we have
Nx�n ⊆ f−1[Ny�i+1] for some n > N .

Since the strategy τ responds to x with f(x) and f witnesses A ≤W B, it is immediate
that τ is winning for II in the Wadge game GW(A,B). a
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The Wadge game is somewhat complicated because we allow Player II to pass. What if
we deny Player II this privilege?

Definition 8.12. A function f : ωω → ωω is Lipschitz if whenever f(x) = y and
n ∈ ω, Nx�n ⊆ f−1[Ny�n].

So a function is Lipschitz if the first n digits of f(x) depend only on (at most) the first
n digits of x. Clearly Lipschitz functions are continuous, but the reverse is not true: For
example, consider the map 〈x(n)〉n∈ω 7→ 〈x(2n)〉n∈ω.

Notice that the composition of Lipschitz functions is Lipschitz. So we feel comfortable
making the following definitions.

Definition 8.13. Let A,B ⊆ ωω. We write A ≤L B and say A is Lipschitz re-
ducible to B if there is a Lipschitz function f : ωω → ωω such that for each x ∈ ωω, we
have x ∈ A if and only if f(x) ∈ B.

If A ≤L B and B ≤L A, we say A and B are Lipschitz equivalent, and write
A ≡L B. The Lipschitz degrees are the equivalence classes of ≡L.

Clearly A ≤L B implies B ≤L A. It follows that each Wadge degree is a disjoint union
of Lipschitz degrees.

Of course, Lipschitz and Wadge reducibility are not the same thing. To see this, notice
N〈0,0〉 ≤W N〈0〉 (as witnessed by the map x 7→ 〈x(0)+x(1), x(2), . . .〉), butN〈0,0〉 6≤L N〈0〉,
since any Lipschitz f with f [N〈0,0〉] ⊆ N〈0〉 would have to satisfy f [N〈0,1〉] ⊆ N〈0〉, and
so fail to be a reduction.

To return to our motivating point: Just as with Wadge reducibility, Lipschitz re-
ducibility admits a characterization in terms of games.

Definition 8.14. Let A,B ⊆ ωω. The Lipschitz Game GL(A,B) is played as
follows: Players I and II alternate playing natural numbers to produce reals x, y ∈ ωω,
respectively.

I x(0) x(1) x(2) . . . x(n) . . .
II y(0) y(1) y(2) . . . y(n) . . .

Figure 5. A play of the Lipschitz game GL(A,B).

Player II wins if it is the case that x ∈ A ⇐⇒ y ∈ B; that is, either x ∈ A and y ∈ B,
or x /∈ A and y /∈ B.

The proof of the next proposition is almost identical to that of Proposition 8.11.

Proposition 8.15. Let A,B ⊆ ωω; then Player II has a winning strategy in GL(A,B)
if and only if A ≤L B.

When are the Wadge and Lipschitz games determined? The following proposition
shows that for many pointclasses Γ, Γ -DET is enough to ensure the existence of winning
strategies in the Lipschitz game.

Proposition 8.16. Suppose Γ -DET holds, where Γ is a pointclass closed under con-
tinuous substitution, complementation, finite union, and finite intersection. Then for all
sets A,B ⊆ ωω in Γ, the game GL(A,B) is determined.
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Proof. Let π1, π2 project ωω to even and odd coordinates, respectively; i.e. for
z ∈ ωω, π1(z) = 〈z(2n)〉n∈ω and π2(z) = 〈z(2n+ 1)〉n∈ω. Set

C = {z ∈ ωω | π1(z) ∈ A ⇐⇒ π2(z) ∈ B}.
It is easy to check, using the closure properties of Γ, that C ∈ Γ, and determinacy of
G(C) yields a winning strategy for the same player in GL(A,B). a
So for example, if A,B are both Borel, then GL(A,B) has Borel payoff, and by Borel
determinacy, a winning strategy exists in the Lipschitz game.

Our purpose in introducing Lipschitz reducibility is two-fold. First, the game char-
acterization of Lipschitz reducibility is simpler than that of Wadge reducibility. And
second, since Lipschitz reducibility is a refinement of Wadge reducibility, many of the
properties of Wadge reduction we prove are true for, and implied by, those for Lipschitz
degrees.

The following lemma is the fundamental consequence of determinacy for structure of
the Wadge and Lipschitz degrees.

Lemma 8.17 (Wadge). Suppose Γ -DET holds, where Γ is a pointclass closed under
continuous substitution, complementation, finite union, and finite intersection. For all
sets A,B ∈ ωω, we have A ≤L B or B ≤L ωω \ A; and so in particular, A ≤W B or
B ≤W ωω \A.

Proof. If Player II has a winning strategy in the Wadge gameGL(A,B), then A ≤L B
by Proposition 8.15. Suppose now that Player I has a winning strategy σ in GL(A,B).
Then define g : ωω → ωω by letting g(y) be that unique x which σ produces when Player
II plays y. Then g is Lipschitz (in fact, better than Lipschitz, since g(y) � n+ 1 depends
only on y � n). Because σ is a winning strategy for Player I, we have that it is not the
case that y ∈ B ⇐⇒ g(y) ∈ A. Equivalently, y ∈ B ⇐⇒ g(y) /∈ A, and so g witnesses
B ≤L ω

ω \A. a
Assuming AD imposes a great deal of structure on the Wadge degrees. Even without
this assumption, Borel determinacy gives us these nice consequences for the Borel Wadge
degrees.

The following definition captures what it means for a set B in Γ to be as complicated
as possible; note the analogy with the notion of completeness in (e.g.) complexity theory.

Definition 8.18. Let Γ be a pointclass and let B ⊆ ωω. We say B is Γ-complete if
B ∈ Γ, and for all A ∈ Γ(ωω), we have A ≤W B.

For many pointclasses, we have the simplest possible characterization of completeness:

Theorem 8.19. Let Γ be a pointclass satisfying the hypotheses of Lemma 8.17 that is
not self-dual, and so that Γ -DET holds. Let A ⊆ ωω. Then A is Γ-complete if and only
if A ∈ Γ \ ¬Γ.

In particular, A is Σ0
α-complete if and only if A ∈ Σ0

α \Π0
α.

Proof. Suppose A were Γ-complete. Suppose towards a contradiction that A ∈ ¬Γ.
Let B ∈ Γ be arbitrary; then B ≤L A by Γ-completeness of A. By closure under
continuous substitution, we obtain B ∈ ¬Γ. So Γ ⊆ ¬Γ. But this contradicts the
assumption that Γ is not self-dual.

Conversely, suppose A ∈ Γ\¬Γ. We want to show B ≤W A, for all B ∈ Γ. Otherwise,
by Γ -DET and by the Wadge Lemma 8.17, we have A ≤W ¬B. But then A ∈ ¬Γ by
closure under continuous substitution, a contradiction. a
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Notice that the same proof works if instead of considering Wadge reduction, we con-
sider sets A which are complete with respect to Lipschitz reduction. In particular, we
obtain that A is Σ0

α-complete precisely when B ≤L A for all B ∈ Σ0
α. So Σ0

α \ Π0
α

consists of just a single Wadge (Lipschitz) degree.
Next we show that the Wadge Lemma implies that the Wadge degrees are “almost

linearly ordered” by ≤W; the only difficulty is the non-self-dual degrees. Let us write
a <W b if a ≤W b and b 6≤W a. Notice that under AD, ≤W is a partial order, so that
a <W b if any only if a ≤W b and a 6= b.

Similarly define a <L b.

Theorem 8.20. Assume AD. Then the Wadge degrees are semilinearly ordered by
<W. Precisely: Let a be a Wadge degree. Assume a = ¬a. Then for any Wadge degree
b, exactly one of the following holds:

1. a = b.
2. a <W b.
3. b <W a.

If instead a 6= ¬a, then for any Wadge degree b, we have exactly one of:

1. a = b.
2. ¬a = b.
3. a,¬a <W b.
4. b <W a,¬a.

The same holds for the Lipschitz degrees.

Dropping the AD assumption, the theorem remains true for the Borel Wadge degrees.

Proof. First we deal with the case a = ¬a. Suppose a 6= b and a 6<W b. Then by
Wadge’s lemma, b ≤W ¬a = a. So b <W a.

Suppose now a 6= ¬a. If the first three items fail, we have a 6= b, ¬a 6= b, and either
a 6<W b or ¬a <W b. Say ¬a 6<W b. Then by Wadge’s lemma we get b ≤W a. Since
a 6= b it must be the case that a 6≤W b, so that b ≤W ¬a. Since b does not equal either a
or ¬a, we have b <W a and b <W ¬a. The case a 6<W b follows by symmetry. a
So assuming determinacy, we obtain an almost linear order of the Wadge (Lipschitz)
degrees. If we collapse these classes further by identifying the non-self-dual degrees,
then we have a way of linearly ordering all sets of reals according to their complexity.

§9. Well-foundedness of the Wadge Hierarchy and the ordinal Θ. The Borel
hierarchy provided a nice stratification of the class of Borel sets, and we have seen that
under AD, the Wadge order not only refines this picture, but extends it to an almost
linear hierarchy on all sets of reals. In fact, the picture is even nicer: the Wadge hierarchy
is well-founded!

Theorem 9.1 (Martin). Assume AD + DC. Then ≤W is well-founded, i.e. for any
non-empty collection A of sets of reals, there some A ∈ A that is ≤W-minimal in A.

Proof. We note first that assuming AD, A <W B implies A <L B (exercise).
Assume towards a contradiction that ≤W is not well-founded. Using DC, we obtain

an infinite sequence 〈An〉n∈ω of sets An ⊆ ωω so that An+1 <W An for all n ∈ ω. (We
remark that without assuming DC, our proof will show just with AD that there is no
infinite <W-descending sequence of sets of reals.)
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By our first observation, we have An+1 <L An for all n. By definition, An 6≤L An+1

for all n. We also have An 6≤L ¬An+1 for all n; since otherwise, we would have

An ≤L ¬An+1 ≤L ¬An ≤L An+1 ≤L An,

implying An ≡L An+1, contrary to our assumption.
For n ∈ ω, let G0

n denote the game GL(An,¬An+1), and G1
n the game GL(An, An+1).

By Proposition 8.15, Player I has a winning strategy in each of the games G0
n, G

1
n. Let

σ0
n, σ

1
n be winning strategies for Player I in these respective games (note this uses ACω(R),

which follows from AD).
We define a map on 2ω so that each u ∈ 2ω produces an infinite sequence 〈xun〉u∈ω of

elements of ωω. This sequence will be obtained by simultaneously playing the Lipschitz

games G
u(n)
n for n ∈ ω. In each game G

u(n)
n , Player I will always play according to σ

u(n)
n ,

and Player II’s moves are obtained by copying Player I’s moves from the next game

G
u(n)
n+1 .

G
u(0)
0

I xu0 (0) xu0 (1) . . . xu0 (k) . . .
II xu1 (0) xu1 (1) . . . xu1 (k) . . .

↗ ↗ ↗

G
u(1)
1

I xu1 (0) xu1 (1) . . . xu1 (k) . . .
II xu2 (0) xu2 (1) . . . xu2 (k) . . .

↗ ↗ ↗

G
u(2)
2

I xu2 (0) xu2 (1) . . . xu2 (k) . . .
II xu3 (0) xu3 (1) . . . xu3 (k) . . .

↗ ↗ ↗
...

...
...

G
u(n)
n

I xun(0) xun(1) . . . xun(k) . . .
II xun+1(0) xun+1(1) . . . xun+1(k) . . .

↗ ↗ ↗
...

...
...

Figure 6. Obtaining the sequence 〈xun〉n∈ω using the strategies σ
u(n)
n .

A bit more formally, we define simultaneously for all n the values xun(k) for each k,

by induction on k. For all n, let xun(0) be σ
u(n)
n ’s first move. Supposing inductively that

we have defined xun(i) for all i ≤ k and all n, we let xun(k + 1) be σ
u(n)
n ’s move in the

game G
u(n)
n at the position where Player I has played xn(0), . . . , xn(k), and Player II has

played xn+1(0), . . . , xn+1(k).
The 〈xun〉n∈ω are defined so that the pair 〈xun, xun+1〉 is the outcome of a play of the

game G
u(n)
n where Player I plays according to the strategy σ

u(n)
n . Since each σ

u(n)
n is

winning for Player I in the game G
u(n)
n , we have that whenever u(n) = 0, xun ∈ An if and

only if xun+1 ∈ An+1; and if u(n) = 1, then xun ∈ An if and only if xun+1 /∈ An+1.
Notice that the play of each game Gun does not affect that of any of the subsequent

games Gum with m > n. In particular, this tells us that xun does not depend on the values
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u(i) for i < n; thus whenever u, v ∈ 2ω are sequences that agree beyond n − 1 (that is,
u(m) = v(m) for all m ≥ n), we have xum = xvm for all m ≥ n.

Note also that by our definition of the games G
u(n)
n , if we toggle a single coordinate

u(n) of u, then we “flip” membership of xum in Am for all m ≤ n; in particular, if u, v
disagree on exactly one coordinate, that we have xu0 ∈ A0 if and only if xv0 /∈ A0. This
rather strange property of the map u 7→ xu0 will be enough to reach a contradiction: We
will obtain a set which does not have the Baire property, and so by the results of Section
7, violates AD!

So consider now the set

B = {s ∈ 2ω | xu0 ∈ A0}.
We claim this set cannot be meager. For then B would be meager in both N〈0〉 and N〈1〉.
But by our previous discussion, 〈0〉_u ∈ B if and only if 〈1〉_u /∈ B. In particular,
the homeomorphism of 2ω sending u to the sequence 〈1− u(0), u(1), u(2), . . .〉 sends the
meager set B ∩N〈0〉 to the comeager set N〈1〉 \B, a contradiction!

Since we are assuming AD, we have from Theorem 7.8 that every set in 2ω has the
Baire property. Since B is not meager, we obtain by Proposition 7.3 some s ∈ 2<ω so
that B is comeager in Ns. But now we have, for all u ∈ 2ω,

s_〈0〉_u ∈ B ⇐⇒ xs
_〈0〉_u ∈ A0 ⇐⇒ xs

_〈1〉_u /∈ A0 ⇐⇒ s_〈1〉_u /∈ B.
We again have a contradiction: the homeomorphism toggling the `(s)th coordinate of u
maps the comeager-in-Ns_〈0〉 set B to the meager-in-Ns_〈1〉 set ¬B. a
In the event that AD fails, we still obtain this nice structure of the Wadge hierarchy when
we restrict to Wadge degrees contained in pointclasses Γ for which we have determinacy.

Theorem 9.2. Assume Γ -DET, where Γ is a pointclass closed under finite union and
intersection, complementation, and continuous substitution. Then <L (and hence <W)
restricted to the set of degrees a with a ⊆ Γ(ωω) is well-founded.

In particular, <L and <W are well-founded on the Borel Wadge degrees.

The so-called “reduced” Wadge degrees are obtained by identifying each non-self-dual
pointclass a with its dual ¬a. Defining <W on these degrees in the natural way, we have
that <W is a well-order on the reduced Wadge hierarchy. To each set A ⊆ ωω we assign
an ordinal, its Wadge rank, defined to be the order-type of the reduced Wadge degrees
below A under <W.

How tall is the Wadge hierarchy?

Definition 9.3. The ordinal Θ (“Big Theta”) is the least ordinal that is not the
surjective image of the reals. That is,

Θ = {α | there exists a surjection ϕ : ωω → α}.

It’s easy to see Θ is a cardinal, and by Hartogs’ trick, ω1 < Θ. Assuming the Axiom
of Choice, Θ is simply c+, and the Continuum Hypothesis is equivalent to the statement
Θ = ω2. When choice fails, it still makes sense to talk about Θ, and the statement
Θ = ω2 can be thought of as a “choice-free” version of the Continuum Hypothesis.

The next theorem is our reason for introducing Θ.

Theorem 9.4. Assume AD + DC. Let λ be the set of Wadge ranks of sets A ⊆ ωω.
Then λ = Θ.
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Proof. Fix an indexing 〈fx〉x∈ωω of all continuous functions f : ωω → ωω. If α < λ,
then there is some A ⊆ ωω so that the Wadge rank of A is α. Define a map ϕ : ωω → α
by letting ϕ(x) be the Wadge rank of f−1

x [A]. Then ϕ is a surjection onto α.
For the converse, we first observe that given a set A ⊆ ωω, there is a uniform way

to define a set A′ ⊆ ωω so that A,¬A <W A′ by diagonalizing against all continuous
functions. Namely,

A′ = {〈0〉_x | fx(〈0〉_x) /∈ A} ∪ {〈1〉_x | fx(〈1〉_x) ∈ A}.

Then there can be no continuous reduction f : A′ → A, for then f = fx for some x, and
we have 〈0〉_x ∈ A′ if and only if f(〈0〉_x) /∈ A. Similarly, A′ 6≤W ¬A.

Now suppose α < Θ. Then there is some surjection ϕ : ωω → α. We use this surjection
to define a <W-increasing sequence of sets 〈Aξ〉ξ<α by induction on ξ.

Suppose we have defined Aξ for all ξ < η. Put

Bη = {x ∈ ωω | ϕ(π1(x)) < η and π2(x) ∈ Aϕ(π1(x))}.

where here π1 : x 7→ 〈x(0), x(2), . . .〉 and π2 : x 7→ 〈x(1), x(3), . . .〉. Put Aη = B′η.
It is easy to see Aξ ≤W Bη for each ξ < η: If y satisfies ϕ(y) = ξ, then the map
x 7→ 〈z(0), x(0), z(1), x(1), . . .〉 is a continuous reduction of Aξ to Bη. Then by the above
remarks, we have Aξ <W B′η = Aη, as needed. a
We remarked above that Θ = ω2 can be regarded as a choice-free version of the Con-
tinuum Hypothesis. It turns out that under AD, this hypothesis fails rather badly: If
AD holds, then Θ is a limit cardinal; and in the presence of some weak choice, Θ is even
inaccessible! We will investigate the connection between determinacy and large cardinals
later.

So far we know the Axiom of Determinacy banishes pathological consequences of the
Axiom of Choice, and it gives us a greal deal of information about the structure of
sets of reals. But which sets can we actually prove are determined? And what sort of
assumptions will we need?

Our next immediate goal is to define a hierarchy of sets beyond the Borel sets. We
will develop a structure theory for the lowest sets in this hierarchy, and, from strong
hypotheses, prove these are determined.

§10. The Projective Hierarchy. Our basic operations for generating the Borel
sets were negation and countable union, and we saw how the latter could be realized as
quantification ∃ω over the set of natural numbers. What if we allow ourselves to quantify
over a bigger set?

Definition 10.1. Let X be a Polish space, and A ⊆ ωω ×X. We define

∃ω
ω

A = {y ∈ X | (∃x ∈ ωω)〈x, y〉 ∈ A}.

For a pointclass Γ, we let

∃ω
ω

Γ = {(A,X) | A = ∃ω
ω

B for some (B,ωω ×X) ∈ Γ}.

Similarly define operations ∀ωωA and ∀ωωΓ for sets and pointclasses.

Definition 10.2. For n ∈ ω we define the projective pointclasses Σ1
n,Π

1
n by in-

duction, as follows:

1. Π1
0 = Π0

1, and Σ1
0 = Σ0

1.
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2. Given Σ1
n, let Π1

n be the dual pointclass, Π1
n = ¬Σ1

n.
3. Given Π1

n, put Σ1
n+1 = ∃ωωΠ1

n.

The ambiguous projective pointclasses are defined to be ∆1
n = Σ1

n ∩Π1
n.

The sets obtained in the projective hierarchy are the projective sets. We call the
members of Σ1

1 the analytic sets; those of Π1
1 are the coanalytic sets.

Proposition 10.3. Each projective pointclass is closed under continuous substitution.

Proof. We show something a bit more general: if Γ is closed under continuous sub-
stitution, then so is ∃ωωΓ. Let f : X → Y be continuous, and suppose A ∈ ∃ωωΓ
with A ⊆ Y ; so A = ∃ωωB with B ⊆ ωω × Y . Define g : ωω × X → ωω × Y by
g(〈z, x〉) = 〈z, f(x)〉. Then

f−1[A] = {x ∈ X | f(x) ∈ A}
= {x ∈ X | (∃z ∈ ωω)〈z, f(x)〉 ∈ B}

= ∃ω
ω

g−1[B],

And this last set belongs to ∃ωωΓ by closure of Γ under continuous substitution.
The proposition now follows by induction on the levels of the projective hierarchy

(using the fact that Γ is closed under continuous substitution if and only if ¬Γ is). a

Proposition 10.4. Each Σ1
n is closed under ∃ωω ; each Π1

n is closed under ∀ωω .

Proof. Notice that the second claim follows from the first and De Morgan’s law
∀ωωA = ¬∃ωω¬A. Then we have it for n = 0, since the projection of an open set is open:
If B ⊆ ωω × X is open and x ∈ ∃ωωB, we have 〈z, x〉 ∈ B; taking Ns × U ⊆ B with
〈z, x〉 ∈ Ns × U , and U ⊆ ∃ωωB.

Suppose now that A ⊆ ωω ×X is in Σ1
n+1 for some n ∈ ω. By definition A = ∃ωωB

with B ⊆ ωω×ωω×X, B ∈ Π1
n. We need to show ∃ωωA ∈ Σ1

n+1. Let φ : ωω → ωω×ωω
be a homeomorphism, with φ(w) = 〈φ0(w), φ1(w)〉 for all w ∈ ωω. Now the set

C = {〈w, x〉 ∈ ωω | 〈φ0(w), φ1(w), x〉 ∈ B}

belongs to Π1
n by closure under continuous substitution, and ∃ωωC = ∃ωωA is in Σ1

n+1

as needed. a
Just as with the Borel hierarchy, we have universal sets at each level of the projective

hierarchy.

Theorem 10.5. Suppose W ⊆ 2ω×ωω×X is Γ-universal for ωω×X where Γ is closed
under continuous substitution. Then there is W ∗ ⊆ 2ω ×X which is ∃ωωΓ-universal for
X.

Proof. Fix a Γ-universal set W for ωω × X. The ∃ωωΓ-universal set will be the
obvious one, obtained by projecting along the ωω coordinate; that is

W ∗ = {〈u, x〉 ∈ 2ω ×X | (∃w ∈ ωω)〈u,w, x〉 ∈W} = ∃ω
ω

{〈w, u, x〉 | 〈u,w, x〉 ∈W}.

Closure of Γ under continuous substitution implies the set on the inside of the ∃ωω is in
Γ; so W ∗ is in ∃ωωΓ.

Now if A ∈ ∃ωωΓ, we have A = ∃ωωB with B ⊆ ωω × X in Γ. Say B = Wu with
u ∈ 2ω. It is now easy to check that A = W ∗u . a
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Corollary 10.6. For every Polish space X and n ∈ ω, there exist Σ1
n-universal and

Π1
n-universal sets for X.

With the same diagonalization argument we used on the Borel hierarchy, we have

Corollary 10.7. For ever n ∈ ω there is a set A ⊆ 2ω in Σ1
n \Π1

n (and so ¬A ∈
Π1
n \Σ1

n).

Let us mention some more closure properties. First we note that our existential quan-
tifier can range over any Polish space.

Definition 10.8. Let X,Y be Polish spaces, with B ⊆ X × Y . Then ∃XB is the set
{y ∈ Y | 〈x, y〉 ∈ B}.

Proposition 10.9. Each Σ1
n is closed under ∃X , for all Polish spaces X.

Proof. Exercise. a
Proposition 10.10. Each Σ1

n,Π
1
n,∆

1
n for n > 0 is closed under ∃ω,∀ω, countable

unions, and countable intersections.

Proof. We first show Σ1
n is closed under ∀ω and ∃ω; then closure for Π1

n follows from
De Morgan’s laws, and for the ∆1

n by definition.
Closure under ∃ω follows from the last proposition, since ω is a Polish space. So

suppose B ⊆ ω ×X with B ∈ Σ1
n. We need to show ∀ωB ∈ Σ1

n. We have by definition
of Σ1

n that there is a set C ∈ Π1
n−1 so that B = ∃ωωC. Now

x ∈ ∀ωB ⇐⇒ (∀n ∈ ω)〈n, x〉 ∈ B ⇐⇒ (∀n ∈ ω)(∃w ∈ ωω)〈w, n, x〉 ∈ C.
We require a way of reversing the order of quantifiers ∀n,∃ωω . Let w 7→ 〈(w)n〉n∈ω be a
homeomorphism of ωω with (ωω)ω, so that each ω-sequence of elements of ωω is coded
by a single w. We have, for each x ∈ X,

(∀n ∈ ω)(∃w ∈ ωω)〈w, n, x〉 ∈ C ⇐⇒ (∃w ∈ ωω)(∀n)〈(w)n, n, x〉 ∈ C.
The right to left direction is clear; for the reverse, suppose for each n there is some
un ∈ ωω so that 〈un, n, x〉 ∈ C, and (by countable choice) let w be a real with (w)n = un
for all n.

Now the set D = {〈w, x〉 ∈ ωω × X | (∀n)〈(w)n, n, x〉 ∈ C} belongs to Π1
n−1, since

C ∈ Π1
n−1 and this pointclass is closed under continuous substitution and ∀ω. Since

∀ωB = ∃ωωD, we have ∀ωB ∈ Σ1
n as needed.

Finally, we need to show Σ1
n is closed under countable unions and intersections. Sup-

pose 〈An〉n∈ω is a sequence of members of Σ1
n(X). Let W ⊆ 2ω × X be Σ1

n-universal
for X. For each n ∈ ω, pick some yn ∈ 2ω with An = Wyn . By closure under continuous

substitution, the set C = {〈n, x〉 | 〈yn, x〉 ∈ W} = {〈n, x〉 | x ∈ An} is in Σ1
n (since the

map n 7→ yn is automatically continuous). But ∃ωC =
⋃
n∈ω An and ∀ωC =

⋂
n∈ω An

then both belong to Σ1
n. a

Corollary 10.11. Every Borel set belongs to ∆1
1.

Proof. Every closed F ⊆ X belongs to Σ1
1, since F × F is closed in X ×X, and so

F = ∃XF × F ∈ Σ1
1. Every open set is the countable union of closed sets, and so is in

Σ1
1 by the previous proposition. Then the closed and open sets are in Π1

1 as well.
Now ∆1

1 contains the open and closed sets, and is closed under complement, countable
union, and countable intersection. It follows that ∆1

1 contains all the Borel sets. a
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We have seen that the analytic sets contain the Borel sets, and that there is a set that
is in Σ1

1 but not in ∆1
1—in particular, this set is not Borel. That the projection of a

Borel set in the plane is Borel was incorrectly asserted by Lebesgue; the existence of
a counterexample was discovered by Suslin, a graduate student at the time. And so
descriptive set theory was born.

In a surprising and useful turn of events, the converse of the previous corollary holds:
∆1

1 consists of exactly the Borel sets! In order to show this, we need some tools to help
us analyze Σ1

1. Recall that closed sets in Baire space were precisely the sets of branches
through trees T ⊆ ω<ω. Since sets in Σ1

1 are projections of closed sets in ωω × ωω, it
will be useful to introduce a system of notation to study trees

Definition 10.12. We say a non-empty set T ⊆ ω<ω × ω<ω is a tree if

1. For all 〈s, t〉 ∈ T , we have `(s) = `(t).
2. If s ⊆ s′, t ⊆ t′, `(s) = `(t) and 〈s′, t′〉 ∈ T , then 〈s, t〉 ∈ T .

We say that 〈x, y〉 ∈ ωω×ωω is a branch through the tree T if for all n, 〈x � n, y � n〉 ∈ T ,
and write [T ] ⊆ ωω × ωω for the set of branches.

Similar definitions are made for the higher products ω<ω × ω<ω × ω<ω and so forth.

Of course, there is an obvious correspondence between trees T on ω × ω and trees in
ω<ω×ω<ω as defined here. This new definition essentially introduces a systematic abuse
of notation, identifying the sequence of pairs 〈〈s(0), t(0)〉, . . . , 〈s(n − 1), t(n − 1)〉〉 ∈ T
with the pair of sequences 〈s, t〉.

Proposition 10.13. A set C ⊆ ωω × ωω is closed if and only if C = [T ] for a tree
T ⊆ ω<ω × ω<ω.

Proof. Set T = {〈x � n, y � n〉 | 〈x, y〉 ∈ C}; the proof that [T ] is closed when T is a
tree is the same as before. a

Corollary 10.14. A set A = ωω ×ωω is Σ1
1 if and only if A = ∃ωω [T ] for some tree

T ⊆ ω<ω × ω<ω.

As expected, for 〈s, t〉 ∈ T we denote

Ts,t = {〈s′, t′〉 ∈ T | s ⊆ s′ and t ⊆ t′, or s′ ⊆ s and t′ ⊆ t}.

Observe we have the equality

Ts,t =
⋃

m,n∈ω
Ts_〈m〉,t_〈n〉.

We are just about ready to prove that all ∆1
1 sets are Borel. First, one more definition.

Definition 10.15. Suppose A,B are disjoint sets. We say C separates A from B if
A ⊆ C and B ∩ C = ∅.

The key fact is the following theorem.

Theorem 10.16 (Lusin). Suppose A,B ∈ Σ1
1(ωω) are disjoint. Then there is a Borel

set C ⊆ ωω that separates A from B.

Proof. We take advantage of the following simple fact.
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Claim. Suppose A =
⋃
i∈I and B =

⋃
j∈J Bj, and suppose for each i ∈ I and j ∈ J

there is a set Ci,j which separates Ai from Bj. Then the set C =
⋃
i∈I
⋂
j∈J Ci,j separates

A and B.

Proof of claim. Suppose x ∈ A; then x ∈ Ai for some i. Since A ⊆ Ci,j for all
j ∈ J , we have x ∈ C. So A ⊆ C.

Now suppose x ∈ B. Then x ∈ Bj for some j ∈ J . For every i, we have Ci,j ∩Bj = ∅.
In particular, x /∈

⋂
j∈J Ci,j for each i; so x /∈ C, and B ∩ C = ∅. a

Now let A,B be disjoint in Σ1
1. Let S, T ⊆ ω<ω × ω<ω be trees with A = ∃ωω [S] and

B = ∃ωω [T ]. We proceed by contradiction: Suppose A,B cannot be separated by a Borel
set.

Now we have

A = ∃ω
ω

[S] =
⋃
k,l∈ω

∃ω
ω

[S〈k〉,〈l〉], B = ∃ω
ω

[T ] =
⋃

m,n∈ω
∃ω

ω

[T〈m〉,〈n〉].

By (the contrapositive of) the claim, there must exist some k0, l0,m0, n0 ∈ ω so that
∃ωω [S〈k0〉,〈l0〉],∃ω

ω

[T〈m0,n0〉] cannot be separated by a Borel set. Clearly then 〈〈k0〉, 〈l0〉〉 ∈
S and 〈〈m0〉, 〈n0〉〉 ∈ T , since otherwise one of these sets would be empty and so
easily separated by a Borel set. Notice also that we must have l0 = n0, for clearly
∃ωω [S〈k0〉,〈l0〉] ⊆ N〈l0〉 and ∃ωω [T〈m0,n0〉] ⊆ N〈n0〉; if these were distinct, then N〈l0〉 would
separate A from B.

Now suppose inductively that we have sequences s = 〈k0, . . . , ki−1〉, t = 〈m0, . . . ,mi−1〉,
and u = 〈n0, . . . , ni−1〉, so that the sets ∃ωω [Ss,u] and ∃ωω [Tt,u] cannot be separated by a
Borel set. By the same argument, we have some ki,mi, ni so that 〈s_〈ki〉, u_〈ni〉〉 ∈ S,
〈t_〈mi〉, u_〈ni〉〉 ∈ T , and the sets ∃ωω [Ss_〈ki〉,u_〈ni〉] and ∃ωω [T〈t_〈mi〉,u_〈ni〉] cannot
be separated by a Borel set.

By induction we obtain x = 〈ki〉i∈ω, y = 〈mi〉i∈ω and z = 〈ni〉i∈ω. By construction
we have 〈x, z〉 ∈ S and 〈y, z〉 ∈ T . But then z ∈ ∃ωω [S] ∩ ∃ωω [T ] = A ∩B, contradicting
our assumption that A,B were disjoint. a

Corollary 10.17 (Suslin). The Borel subsets of ωω are exactly those in the class ∆1
1.

Proof. We already saw that every Borel set is ∆1
1. Suppose that A ⊆ ωω is in

∆1
1 = Σ1

1 ∩Π1
1. Then both A and ¬A are in Σ1

1; by the theorem, we have a Borel set C
in ωω with A ⊆ C and ¬A ∩C = ∅. But the only possibility for such a C is C = A! a

§11. Analyzing Co-analytic Sets. We now restrict our attention to the first level
of the projective hierarchy, that of Σ1

1 and Π1
1. Our analysis will hinge on the fact that

the sets in Σ1
1 are the projections of trees. We start off by defining a notion that lets us

convert trees on ω into linear orders.

Definition 11.1. The Kleene-Brouwer order is the order <KB defined on ω<ω as
follows. We say s <KB t if and only if

1. s ) t, or
2. s(n) < t(n), where n is least such that s(n) 6= t(n).

Proposition 11.2. <KB is a linear order.
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Any linear order restricted to a subset of its domain is again a linear order; in particu-
lar, <KB is a linear order on any tree T ⊆ ω<ω. The following proposition is our reason
for introducing <KB.

Proposition 11.3. Suppose T is a tree on ω, and that 〈sn〉n∈ω is an infinite sequence
of nodes in T with sn+1 <KB sn for all n. Then there is an infinite branch through T .

Proof. By our definition of <KB, we have sn+1(0) ≤ sn(0) for all n. In particular, the
sequence 〈sn(0)〉n∈ω is eventually constant, so there must be some k0 so that sn(0) = k0

for all but finitely many n.
Now suppose inductively that we have found t = 〈k0, . . . , ki−1〉 so that t ⊆ sn for all

but finitely many n. For each such n, we again have sn+1(i) ≤ sn(i), and so there exists
ki so that sn(i) = ki for all but finitely many n; thus eventually t_〈ki〉 ⊆ sn.

By construction each finite string 〈k0, . . . , ki〉 is an initial segment of some sn, and so
the sequence 〈kn〉n∈ω is a branch through T . a

Corollary 11.4. Let T be a tree on ω. Then [T ] = ∅ if and only if <KB restricted
to T is a well-order.

Proof. We have just shown that if <KB is not a well-order on T , then it [T ] 6= ∅.
Conversely, suppose x ∈ [T ]; then x � n+ 1 <KB x � n for all n, so <KB is ill-founded on
T . a
This justifies the following terminology: A tree T is well-founded if it has no infinite
branches.

We can now give a useful characterization of Π1
1 sets. We need one more piece of

notation.
Let T ⊆ ω<ω × ω<ω be a tree. For y ∈ ωω, we let T (y) ⊆ ω<ω be the set

T (y) = {s ∈ ω<ω | 〈s, y � `(s)〉 ∈ T}.
Then T (y) is a tree.

Proposition 11.5. For all x, y ∈ ωω and trees T ⊆ ω<ω × ω<ω, we have 〈x, y〉 ∈ [T ]
if and only if x ∈ [T (y)].

Proof. This falls right out of the definitions: x ∈ [T (y)] iff (∀n ∈ ω)x � n ∈ T (y) iff
(∀n ∈ ω)〈x � n, y � n〉 ∈ T iff 〈x, y〉 ∈ [T ]. a

Corollary 11.6. A set B is Π1
1 if and only if there is some tree T ⊆ ω<ω × ω<ω

such that

B = {y ∈ ωω | T (y) is well-founded}.

Proof. If B is Π1
1, then ¬B is Σ1

1 and so ¬B = ∃ωω [T ] for some tree T . Then y ∈ B
iff y /∈ ∃ωω [T ] iff (∀x)〈x, y〉 /∈ [T ] iff (∀x)x /∈ [T (y)] iff T (y) is well-founded. a
With this characterization down, we can isolate a particularly interesting Π1

1 set. But
first, let’s talk about coding. We want to regard elements of 2ω as coding binary relations
on ω, that is, members of P(ω×ω). For this, we set down a canonical way of identifying
ω and ω × ω: Set pi, jq = 2i(2j + 1) for i, j ∈ ω. As the reader can check, this is a
bijection from ω × ω to ω.

Now, given x ∈ 2ω, define Rx to be the relation on ω obtained by setting

i Rx j ⇐⇒ x(pi, jq) = 1.



38 SHERWOOD HACHTMAN AND JUSTIN PALUMBO

We can now encode classes of countable mathematical structures as sets of reals, and
talk about the complexity of these in terms of descriptive set theory. For example, let
LO be the set of all x encoding a linear order:

LO = {x ∈ 2ω | Rx is a linear order of some subset of ω}.

Proposition 11.7. LO is Borel.

Proof. This amounts to writing down the definition of a linear order and observing
that the only quantifiers we use are first-order—that is, we only quantify over elements
of the linear order (as opposed to its subsets). We have

x ∈ LO ⇐⇒ (∀i ∈ ω)(i Rx i)

∧ (∀i, j, k ∈ ω)(i Rx j ∧ j Rx k → i Rx k)

∧ (∀i, j ∈ ω)(i Rx j ∧ j Rx i→ i = j)

∧ (∀i, j ∈ ω)(i Rx i ∧ j Rx j → i Rx j ∨ j Rx i).

Since for any fixed i, j ∈ ω, the set of 〈x, i, j〉 satisfying iRx j (equivalently, x(pi, jq) = 1)
is clopen, we have a Borel definition of LO. a
We obtain a more complicated class of structures by restricting to well-orders:

WO = {x ∈ 2ω | Rx is a well-order}.

Proposition 11.8. WO is Π1
1.

Proof. Notice that x ∈WO if and only if x ∈ LO and Rx has no infinite descending
chains. This last condition is the same as saying there is no infinite sequence i0, i1, . . .
such that in+1 Rx in and in 6= in+1 for all n ∈ ω. Thus x ∈WO if and only if

x ∈ LO∧¬(∃y ∈ ωω)(∀n ∈ ω)¬(y(n+ 1) 6= y(n) ∧ x(py(n+ 1), y(n)q) = 1).

Now the set of 〈x, y, n〉 such that y(n + 1) 6= y(n) ∧ x(py(n + 1), y(n)q) = 1 is clearly
open. So by the closure properties of Σ1

1, we have a Π1
1 definition of WO. a

Now if x ∈ WO then its associated well-ordering of ω is isomorphic to some countable
ordinal, the order-type of x. Let us write ot(x) = γ if and only if (ω,Rx) is isomorphic
to (γ,∈).

Proposition 11.9. For each γ, let WOγ = {x ∈ 2ω | ot(x) = γ}. Then WOγ is Σ1
1.

Proof. Exercise. a
Notice that this gives us (without using choice) an equivalence relation on 2ω with
precisely ω1 equivalence classes, each of which is Σ1

1. Under AD, there is no selector for
this relation.

Let’s now see that WO is as complicated as a Π1
1 set can get.

Theorem 11.10. Let A ⊆ ωω. Then A is Π1
1 if and only if there is a continuous

function f : ωω → 2ω such that for all x ∈ ωω, f(x) ∈ LO, and f satisfies the equivalence

x ∈ A ⇐⇒ f(x) ∈WO .

Proof. If we have such a function f , then A = f−1[WO]. That A ∈ Π1
1 follows from

closure of this pointclass under continuous preimages.



NOTES ON DETERMINACY 39

Now, suppose A ∈ Π1
1. We have a tree T ⊆ ω<ω × ω<ω so that x ∈ A precisely when

x /∈ ∃ωω [T ]; equivalently, x ∈ A if and only if T (x) is well-founded if and only if <KB

restricted to T (x) is a well-order.
The trick, then, is to try to define f so that f(x) will encode the Kleene-Brouwer order

on T (x). Let’s fix an enumeration 〈si〉i∈ω of ω<ω; let’s also require that our enumeration
has the property that i ≤ j whenever si ⊆ sj (that is, we list all proper initial segments
of si before we list si). We will define f(x) so that i Rf(x) j when si, sj ∈ T (x) and
si <KB sj . For those i for which si /∈ T (x), we simply put i on the top of Rf(x) in the
usual order; this ensures that Rf(x) has domain all of ω.

Formally, we define

f(x)(pi, jq) =


1 if si, sj ∈ T (x), and si <KB sj ,
1 if i < j and si, sj /∈ T (x),
1 if si ∈ T (x) and sj /∈ Tx,
0 otherwise.

Now for any x, f(x) is a linear order because <KB is; and f(x) is well-founded exactly
when <KB is, that is, when x ∈ A.

Finally, notice that f is continuous: given x � n, we know exactly which elements of
ω<ω of length at most n are in T (x), and so know the values of f(x)(pi, jq) whenever
pi, jq = 2i(2j + 1) ≤ n—in fact, because of how we enumerated the si, this guarantees
f is Lipschitz. a

Corollary 11.11. The set WO is Π1
1 and not Σ1

1.

Proof. Because by closure under continuous substitution WO ∈ Σ1
1 would imply

Π1
1 ⊆ Σ1

1! a
The following theorem is usually invoked as “Σ1

1 Boundedness”.

Theorem 11.12. Suppose B ∈ Σ1
1 and B ⊆WO. Then there is some γ < ω1 so that

for all x ∈ B, we have ot(x) < γ.

Proof. Suppose otherwise towards a contradiction, so members of B achieve arbi-
trarily high countable order-type. We’ll show that WO would then be a member of
Σ1

1.
For each x ∈ WO, we have by assumption some y ∈ B with ot(x) ≤ ot(y). In

particular, we have an injective map f : ω → ω which embeds the linear order coded by
x into that coded by y; that is to say, x(pi, jq) = 1 if and only if y(pf(i), f(j)q) = 1.
Conversely, given x ∈ LO and such a map f and y ∈ B, we have x ∈WO. That is,

x ∈WO ⇐⇒ (x ∈ LO) ∧ (∃y ∈ B)(∃f : ω → ω)f embeds Rx into Ry.

We claim this definition is Σ1
1. Since LO is Borel and B is Σ1

1, this is guaranteed by the
closure properties of Σ1

1, provided the set {〈x, y〉 | (∃f : ω → ω)f embeds Rx into Ry} is

shown to be Σ1
1. This sacred task we entrust to the reader. a
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§12. Ultrafilters and Measurable Cardinals. Our next task is to connect deter-
minacy with large cardinals. For this purpose, we introduce an abstract notion of size
for subsets of a fixed set X.

Definition 12.1. Let X be a set. A filter on X is a collection F ⊆ P(X) satisfying

1. X ∈ F , and ∅ /∈ F .
2. If A ∈ F and A ⊆ B, then B ∈ F .
3. For all A,B ∈ F , we have A ∩B ∈ F .

A filter is κ-complete for κ a cardinal if for all α < κ and sequences 〈Aα〉ξ<α of sets in
F , we have

⋂
ξ<αAξ ∈ F . A filter is countably complete if and only if it is ω1-complete

(closed under countable intersections).

Example 12.2. For X infinite, F = {A ⊆ X | X \ A is finite} is a filter on X; it is
called the Fréchet filter on X.

Example 12.3. F = {A ⊆ ωω | A is comeager} is a countably complete filter on ωω.

Example 12.4. Suppose κ is regular; then F = {A ⊆ κ | A is club in κ} is a κ-
complete filter on κ.

We think of sets in a filter as being “large”; complements of sets in a filter are “small”.
We will be particularly concerned with those filters which assign every subset of X a
value of either “large” or “small”.

Definition 12.5. A filter U on X is an ultrafilter if for every A ⊆ X, either A ∈ U
or X \A ∈ U .

We have one trivial example of an ultrafilter: given a non-empty set X with a ∈ X, let
U = {A ⊆ X | a ∈ X}. Then U is an ultrafilter on X, called the principal ultrafilter
generated by a.

More interesting are non-principal ultrafilters. Notice that if an ultrafilter U on X is
non-principal, then it can contain no sets of size 2: If {a, b} ∈ U , then either {a} ∈ U , or
else X \ {a} ∈ U , so that intersecting with {a, b} yields {b} ∈ U . Proceeding inductively,
we can show U contains no finite sets. In particular, a non-principal ultrafilter must
extend the Fréchet filter on X.

Theorem 12.6 (Tarski). A filter U on X is an ultrafilter if and only if it is a maximal
filter: that is, whenever F is another filter on X with U ⊆ F , we have F = U .

Proof. Exercise. a

Corollary 12.7. Assume the Axiom of Choice. Then for every infinite set X, there
is a non-principal ultrafilter U on X.

Proof. Let F ⊆ P(X) be the Fréchet filter on X. By Zorn’s Lemma, there is a
maximal filter U ⊇ F ; then by Theorem 12.6, U is an ultrafilter, and since U extends F ,
it is non-principal. a
We remark that choice is required to produce non-principal ultrafilters in general, and
AD implies there are no non-principal ultrafilters on ω.

We next isolate an additional property of ultrafilters on ordinals that entails a number
of nice properties.
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Definition 12.8. Let U be an ultrafilter on κ. We say U is a normal measure if it
is non-principal and κ-complete, and whenever A ∈ U and f : A→ κ satisfies f(α) < α
for all α ∈ A, we have some fixed ξ < κ so that

{α < κ | f(α) = ξ} ∈ U .
A cardinal κ is measurable if there is a normal measure on κ.

Normality is a form of reflection: if there is a normal measure U on κ, then many
first-order properties of κ also hold for a U-large set of ordinals α < κ. Let’s first see
how measurability of κ entails largeness.

Theorem 12.9 (Ulam). (Using the Axiom of Choice.) Suppose κ is a measurable
cardinal. Then κ is strongly inaccessible.

Proof. Fix a normal measure U on κ. We first show κ is regular. Suppose f : λ→ κ
is an increasing map with λ < κ, and, towards a contradiction, that f [λ] is unbounded
in κ. For each α < κ, let G(α) be the least ξ < λ with α < f(ξ). Since U is κ-complete
and non-principal, we have that A = κ\λ is in U , and G(α) < α for all α ∈ A. It follows
from normality that we have some fixed ξ < λ and B ∈ U with G(α) = ξ for all α ∈ B;
but since B is in U , it is unbounded in κ. But this contradicts our assumption that f [λ]
was unbounded in κ.

We next need to show κ is a limit cardinal. Suppose not; then κ = λ+ for some λ < κ.
We will reach a contradiction through the use of an Ulam matrix.

Lemma 12.10. (Using the Axiom of Choice.) Let λ be a cardinal. Then there is an
array 〈Aαξ | ξ < λ, α < λ+〉 of subsets of λ+ so that

1. For each ξ < λ and α 6= β < λ+, Aαξ ∩A
β
ξ = ∅.

2. For α < λ+, we have |λ+ \
⋃
ξ<λA

α
ξ | < λ+.

Proof of Lemma. For each η < λ+, fix a surjection fη : λ→ η + 1. Let

Aαξ = {η < λ+ | fη(ξ) = α}.
That (1) holds is immediate. And for each α < λ+, we have for each η with α ≤ η < λ+

that fη(ξ) = α for some ξ; that is, λ+ \ α ⊆
⋃
ξ<λA

α
ξ , and this gives (2). a

Let 〈Aαξ | ξ < λ, α < λ+〉 be as in the lemma. Now for each α < λ+, we have
⋃
ξ<λA

α
ξ ∈

U ; that is,
⋂
ξ<λ(λ+ \Aαξ ) /∈ U . So by κ-completeness of U , there must be some ξ so that

Aαξ ∈ U .

For each α < κ = λ+, let F (α) = ξ least so that Aαξ ∈ U . Notice that the set

{α < κ | F (α) < α} belongs to U , so that by normality, we have some fixed ξ so that
{α < κ | Aαξ = AαF (α) ∈ U} is in U . But this is a clear contradiction to condition (1) on

our matrix 〈Aαξ 〉.
We leave the proof that κ is strong limit as an exercise. a

The main property of normal measures we need is an analogue of Ramsey’s theorem.
For the following proposition, recall [X]n denotes the collection of n-element subsets of
X.

Proposition 12.11. (Using the Axiom of Choice.) Ramsey’s theorem fails for ω1.
That is, there is a coloring c : [ω1]2 → 2 with no homogeneous subset of size ω1, i.e. if
H ⊆ ω1 with |H| = ω1, then c � [H]2 is non-constant.
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Proof. Using choice, let 〈xα | α < ω1〉 be a sequence of real numbers. Color [ω1]2 by
setting

c({α, β}) = 0 ⇐⇒ (α < β ⇐⇒ xα < xβ).

Suppose towards a contradiction that H was a monochromatic subset of size ω1, say
H = {ξα | α < ω1} enumerates H in increasing order. If c is constant on [H]2 with value
0, then for each α < ω1 let qα be a rational number with xα < qα < xα+1. But then
α 7→ qα is an injection of ω1 into Q, a contradiction! Similarly argue when c is constant
with value 1. a
On the other hand, we do have a version of Ramsey’s theorem for measurable cardinals.

Theorem 12.12 (Rowbottom). Let U be a normal measure on κ, and let c : [κ]n → λ
be a coloring of n-element subsets of κ. Then there is a set H ∈ U which is homogeneous
for c; that is, c � [H]n is constant.

Proof. The case n = 1 is immediate by κ-completeness. So suppose we have the
theorem for some fixed n; let c : [κ]n → λ be a coloring. We define a sequence of
colorings cα : [κ \ (α+ 1)]n → λ for α < κ, by setting

cα(a) = c(a ∪ {α})
for all a ⊆ κ\(α+1) of size n. For each α, we have by inductive hypothesis some Hα ∈ U
(with Hα ⊆ κ \ (α + 1)) so that Hα is homogeneous for cα, say with constant value ξα.
Set H ′ to be the diagonal intersection of the Hα, that is

H ′ = 4α<κHα = {α < κ | α ∈
⋂
β<αHβ}.

Finally, we have by κ-completeness some ξ < λ and a set A ∈ U so that ξα = ξ for all
α ∈ A. Put H = H ′ ∩A.

Now let a ∈ [H]n+1, say a = {α0, . . . , αn}, with the elements listed in increasing order.
Then H ′ \ (α0 + 1) ⊆ Hα0

by definition, so that in particular we have {α1, . . . , αn} ∈
[Hα0 ]n. Thus

c(a) = cα0
({α1, . . . , αn}) = ξα0

= ξ,

with the last equality holding since α0 ∈ A. Thus H is homogeneous for c as needed. a
We remark that although most of the combinatorial content of measurable cardinals
comes through normality, the existence of measurables follows from just the existence of
a non-principal countably complete ultrafilter.

§13. Analytic Determinacy from a Measurable. With the results of the last
two sections, we are ready to prove determinacy of Π1

1 games from the existence of a
measurable cardinal.

Theorem 13.1 (Martin). Assume there is a measurable cardinal. Then Π1
1 -DET

holds.

Proof. Let A ⊆ ωω be Π1
1. The idea is to simulate the game G(A) by an auxiliary

closed game in the players collaborate to form a real x as usual, but Player I is also
required to produce a witness to membership of x in A.

By Theorem 11.10, we have a Lipschitz reduction f : ωω → LO so that for all x,
x ∈ A iff f(x) ∈ WO. From that proof, we have that the order Rf(x) restricted to n
only depends on x � n; so we let <s denote the linear order of `(s) that results from
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restricting Rf(x), for any x ⊇ s; furthermore set <x=
⋃
n∈ω <x�n= Rf(x). So for all

x ∈ ωω, we have x ∈ A iff <x is a well-ordering.
Now consider an auxiliary game G∗(A), played as follows: The players take turns

producing naturals x(0), x(1), . . . , and Player I also plays ordinals ξn < κ for n ∈ ω.

I x(0), ξ0 ξ1, x(2), ξ2 . . . ξ2n−1, x(2n), ξ2n . . .
II x(1) x(3) . . . x(2n+ 1) . . .

Figure 7. A play of the auxiliary game G∗(A).

At each stage of the game, 〈ξi〉i<n is required to be an embedding of (n,<x�n) into κ;
that is, Player I must ensure i <x�n j if and only if ξi < ξj . Player I wins all infinite
plays of G∗(A).

Now the auxiliary game G∗(A) is closed, and so by Gale-Stewart, is determined. If
Player I has a winning strategy σ∗, then Player I easily converts this to a winning
strategy σ in G(A), simply by ignoring the extra moves ξn. This is winning since any
play x according to σ lifts uniquely to a play of σ∗ with the same natural number moves
x(n); then the sequence 〈ξn〉n∈ω is a witness to well-foundedness of <x, so that x ∈ A.

Suppose now that Player II has a winning strategy τ∗ in G∗(A). In order to convert
this to a winning strategy in G(A), we need some way of attributing ordinal moves ξn to
Player I in G∗(A) so that partial plays in τ lift to partial plays in G∗(A). We describe
how to play for Player II, inductively defining a sequence of sets Hn ∈ U so that τ∗

always plays the same natural x(2n + 1), regardless of which ordinals 〈ξi〉i<n Player I
has played so far, as long as they come from Hn.

First consider n = 0. Player I plays x(0) in G(A), and we need to attribute ξ0 to
Player I in G∗(A). Let c : κ → ω be the map obtained by setting c(ξ) = τ∗(〈x(0), ξ〉).
By κ-completeness of U , there is a set H0 ∈ U so that c � H0 is constant. Let τ(〈x(0)〉)
be this constant value.

Now suppose inductively that we have Hn ∈ U , and that we have produced a play
〈x(0), . . . , x(2n), so that for all i with 2i+ 1 < 2n,

τ∗(〈x(0), ξ1, x(2), . . . , x(2i), ξ2i〉) = x(2i+ 1),

as long we have all the ξj in Hn and j 7→ ξj preserving the order <x�2i.
Notice that for each 2n + 1-element subset a of Hn, there is a unique way to embed

2n + 1 into a in a <x�2n+1-preserving way. We thus obtain an ω-coloring of [H]2n+1,
setting

c({ξ0, . . . , ξ2n}) = τ∗(〈x(0), ξi0 , . . . , x(2i), ξi2i〉),

where i0, . . . , i2n reindexes the ordinals ξi in such a way as to preserve the order <x�2n+1.
Then by Rowbottom’s Theorem 12.12, we have Hn+1 ∈ U homogeneous for c. Let
τ(〈x(0), . . . , x(2i)〉) be this constant value. Then we have preserved the condition of our
inductive definition of the strategy τ .

We have thus described a strategy τ for Player II in G(A); we claim it is a winning
strategy. Suppose x ∈ [τ ] is an infinite play according to σ. Let Hn be the homogeneous
sets obtained as in the above construction as the real x is played, and put H =

⋂
n∈ωHn;

then H ∈ U by κ-completeness of U .
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Suppose for contradiction x ∈ A. Then <x is a well-order, so we have some sequence
〈ξn〉n∈ω so that each ξn ∈ H and i <x j iff ξi < ξj . By our construction of τ , we have
x(2n) = τ∗(〈x(0), ξ0, x(1), . . . , x(2n − 1), ξ2n−1〉) for all n ∈ ω. Then x, 〈ξn〉n∈ω is an
infinite play in G∗(A) according to τ∗. But this contradicts our assumption that τ∗ was
winning for Player II in G∗(A)! a
We remark that a measurable cardinal is a bit stronger than what is strictly necessary to
prove Π1

1 -DET. By joint results of Martin and Harrington, Π1
1 -DET is equivalent to the

statement that for all reals x, there exists another real, x# (“x sharp”), which measures
the distance between the set theoretic universe and the universe of sets constructible
from x. In a sense, x# is the least complicated real that cannot be seen by the smallest
model of set theory containing x; the sharp operator may be thought of as a “models of
set theory” analogue of the jump operator on Turing degrees.

§14. Large Cardinals from the Axiom of Determinacy. We have just seen that
we can obtain determinacy from certain large cardinal assumptions. In this section we
see how to go the other way. We first present Solovay’s seminal proof that AD implies
the existence of a measurable cardinal. This result is already striking, but what is more
surprising is the identity of the cardinal of interest: it is none other than ω1!

To motivate the game, we will return to a game that was first introduced in the
exercises. First, let’s visit another old friend, the club filter. Recall a subset A of ω1 was
called a club if it was closed and unbounded in ω1.

Proposition 14.1. Let F : ω1 → ω1 be a function, and let

CF = {α < ω1 | F [α] ⊆ α}

be the set of closure points of F . Then CF is a club.

Proof. It’s easy to see CF is closed, since if 〈αn〉n∈ω is a sequence of closure points
of F , then F [supn∈ω αn] =

⋃
n∈ω F [αn] ⊆ supn∈ω αn. So we just need to see CF is

unbounded.
Let α0 be arbitrary, and inductively define αn+1 = supF [αn] + 1, for each n ∈ ω.

Note that regularity of ω1 implies αn < ω1 for all n, and this sequence is increasing.
If α = supn∈ω αn, then for any β < α, we have β < αn for some n; but then F (β) ∈
F [αn] ⊂ αn+1 < α, so that α is a closure point of F , as needed. a

Proposition 14.2. Suppose Cα is club in ω1 for each α < ω1. Then the diagonal
intersection 4α<ω1Cα = {α < ω1 | α ∈

⋂
β<α Cβ} contains a club.

Proof. Let F : ω1 → ω1 be defined by letting F (α) = min
⋂
ξ<α Cξ \ α; note that

F (α) is always defined, since the intersection of countably many clubs in ω1 is a club
(exercise!). We claim the diagonal intersection 4α<ω1

Cα contains the set CF of closure
points of F .

Suppose α ∈ CF . Let ξ < α; then for each β with ξ < α, we have β ≤ F (β) < α,
and F (β) ∈ Cξ. In particular, we have unboundedly many points of Cξ below α, so that
α ∈ Cξ. This shows α ∈ 4α<ω1

Cα. a

Definition 14.3. Let A ⊆ ω1. The club game Gc(A) is played on ω1 as follows:
Players I and II take turns to produce a sequence of ordinals ξ0 < ξ1 < ξ2 < . . . with
each ξn < ω1.
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I ξ0 ξ2 . . . ξ2n . . .
II ξ1 ξ3 . . . ξ2n+1 . . .

Figure 8. A play of the club game Gc(A).

Player I wins if and only if supn<ω ξn ∈ A.

Proposition 14.4. Player I has a winning strategy in the club game Gc(A) if and
only if A contains a club.

Proof. Suppose A contains a club;
Conversely, suppose σ is a winning strategy for Player I in Gc(A). Define a function

F : ω1 → ω1 by taking F (α) to be the supremum of moves made by σ in response to
sequences in α. That is,

F (α) = sup{σ(〈ξ0, ξ1, . . . , ξ2n+1〉) | ξ0 < ξ1 < · · · < ξn < α, and 〈ξ0, . . . , ξ2n+1〉 ∈ σ}.

Notice that α<ω is countable for each α, so F (α) is defined and less than ω1 for each α.
Let CF be the set of closure points of F above ∅. Then CF is a club; we claim CF ⊆ A.

For suppose α ∈ CF . Fix a countable increasing sequence 〈ηk〉k∈ω with supk∈ω ηk = α.
Define a play against σ by induction: suppose we are given 〈ξ0, . . . , ξ2n〉 ∈ σ, with each
ξi < α. Let ξ2n+1 = ηk, where k is least so that ηk > ξ2n. Since α is a closure point of
F , we have ξ2n+2 = σ(〈ξ0, . . . , ξ2n+1〉) ∈ α. So the induction proceeds.

The sequence produced is defined so that ηn ≤ ξ2n+1 < α for all n ∈ ω; in particular,
supn∈ω ξn = α, so we have α ∈ A as required. a
The same proof gives

Proposition 14.5. Player II has a winning strategy in Gc(A) if and only if ω1 \ A
contains a club.

Now, if we had determinacy of all the games Gc(A), we’d be done: since then every
set A ⊆ ω1 either contains or is disjoint from a club, and we have already seen the club
filter is closed under diagonal intersections, so is normal!

Of course, we are only assuming AD, determinacy for games with natural number
moves. Nonetheless, we obtain determinacy of the games Gc(A), and in the obvious
way: by having the players play codes for reals coding countable well-orders.

For the following definition, recall we have a canonical map x 7→ 〈(x)n〉n∈ω whereby
each x ∈ ωω codes a countable sequence of reals (x)n.

Definition 14.6. Let A ⊆ ω1. The coded club game Gcc(A) is played on ω: Player
I plays a real x, and Player II plays a real y.

I x(0) x(1) x(2) . . . x(n) . . .
II y(0) y(1) y(2) . . . y(n) . . .

Figure 9. A play of the coded club game Gcc(A).

The winner is determined as follows: we regard the reals x, y as coding sequences
〈(x)n〉n∈ω, 〈(y)n〉n∈ω, respectively. If there is some n so that one of (x)n, (y)n is not in
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WO, then, letting n be the least such, if (x)n /∈ WO, Player I loses; if (x)n ∈ WO and
(y)n /∈WO, then Player II loses.

If neither player has yet lost, then we have sequences of ordinals ξn = ot((x)n) and
ζn = ot((y)n). Let α = sup{ξn} ∪ {ζn}. Then Player I wins if α ∈ A, and Player II wins
otherwise.

Theorem 14.7 (Solovay). Suppose AD holds. Then the club filter on ω1 is an ultra-
filter; in particular, ω1 is a measurable cardinal.

Proof. Let A ⊆ ω1. Then by AD, the game Gcc(A) is determined. Suppose Player I
is the winner, as witnessed by the strategy σ. We show A contains a club; the case when
Player II wins is similar.

As in the club game Gc(A), we wish to define a function F : ω1 → ω1 so that F (α)
will be an upper bound on order-types of possible moves by σ in response to sequences of
reals coding well-orders of order-type < α. However, this has grown hairier, since there
are uncountably many possible such reals, and so it’s not immediately obvious that such
an F (α) < ω1 will exist.

We define, for each α < ω1 and n < ω,

Xn
α = {(σ ∗ y)n ∈ ωω | (∀m < n)(y)m ∈WO and ot((y)m) < α}.

Here σ ∗ y denotes the real x played by σ in response to Player II’s play y. Notice
Xn
α is Σ1

1, since for each γ < α, the set of y ∈ WOγ is Σ1
1, and then the set of y with

(∀m < n)(y)m ∈WOγ , for some γ < α, is obtained by countable unions and intersections
and continuous preimages. Xn

α is then just the image of this set of y under the continuous
map y 7→ (σ ∗ y)n.

Now since σ is winning for Player I, we have by the rules of the game Gcc(A) that
Xn
α ⊆WO. Then by Σ1

1 Boundedness, we have that {ot(x) | x ∈ Xn
α} is bounded in ω1;

let βn(α) be the supremum of this set, and put F (α) = supn∈ω βn(α).
We again claim that the set CF of closure points of F is contained in A. For suppose

γ ∈ A; fix y ∈ ωω so that supn∈ω ot((y)n) = γ, and let x = σ ∗ y. Suppose we have
α = supm<n ot((y)m) < γ; then ot(x)n ≤ βn(α) < F (α) < γ. Thus ot((x)n) < γ for
all n, and we obtain γ = sup{ot((x)n)} ∪ {ot((y)n}; since σ is winning for Player I in
Gcc(A), we have γ ∈ A as needed. a
ω1 isn’t the only small cardinal that finds itself with large cardinal features under AD;
following an alternate proof of Martin’s that ω1 is measurable, Solovay showed ω2 is
measurable; and though each of the ωn’s for 2 < n ≤ ω is singular under AD, Klein-
berg showed these each possess certain combinatorial properties characteristic of large
cardinals.

Recall Θ was defined to be the least ordinal not the surjective image of the reals. We
remarked above that Θ = ω2 can be regarded as a choice-free version of the Continuum
Hypothesis. We now show this hypothesis fails—rather badly—under AD.

Theorem 14.8 (Moschovakis). Assume AD, and suppose α < Θ. Then there is a
surjection ψ : ωω → P(α).

Proof. Fix a surjection ϕ : ωω → α witnessing α < Θ. We prove inductively (without
choice!) that there is a sequence 〈gξ〉ξ≤α of surjections gξ : ωω → ξ. Set g0 : ωω → P(0)
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the constant 0 map. At successor steps, we set

gξ+1(x) =

{
gξ(〈x(1), x(2), . . .〉) if x(0) is even;
gξ(〈x(1), x(2), . . .〉) ∪ {ξ} if x(0) is odd.

Suppose we have reached some limit stage λ. Using ϕ and the surjections gξ so far
defined, we may regard each real x as a code for a pair 〈ηx, Ax〉 with ηx < λ and
Ax ⊆ ηx: Just set ηx = ϕ(π1(x)) if this is < λ (and 0 otherwise), and Ax = gξ(π2(x)).

With this in mind, we define for each Z ⊆ λ a game GZ on ω in which the players
compete to play reals coding the largest possible initial segment of Z. Namely, Player
I produces x ∈ ωω, and II produces y ∈ ωω in the usual way. These reals code pairs
〈ηx, Ax〉, 〈ηy, Ay〉.

Player II wins if either Ax 6= Z ∩ ηx, or if ηx < ηy and Ay = Z ∩ ηy. Otherwise, Player
I wins.

By AD, one of the players has a winning strategy in this game. We claim that the set
Z can be reconstructed from a winning strategy (for either player).

Suppose first that σ is a winning strategy for Player I. Then let

Zσ =
⋃
{Ax | (∃y ∈ ωω)σ responds to Player II’s play y with x}.

We claim Zσ = Z. By the rules of the game, any play by σ produces x with Ax = Z∩ηx.
So it is sufficient to show ηx can be arbitrarily large below λ. Suppose ξ < λ; let y be
a real with ηy = ξ and Ay = Z ∩ ξ. Then σ must respond to y with x coding 〈ηx, Ax〉,
and since σ is a winning strategy for Player I, we must have ηx ≥ ηy = ξ.

Next suppose Player II has a winning strategy τ . By the definition of the game GZ , we
have that whenever x codes 〈ηx, Z ∩ ηx〉, τ ’s response y codes 〈ηy, Z ∩ ηy〉 with ηy > ηx.
We claim Z is the unique set with this property. Suppose Y was another such set; let α
be the least element of Z4Y . Then, fixing a code x with ηx = α and Ax = Y ∩α = Z∩α,
let τ respond to x with y. But then α ∈ Z if and only if α ∈ Ay if and only if α ∈ Y ,
contrary to our choice of α.

We now obtain our surjection gλ : ωω → λ, by letting gλ(x) = Z if x codes a winning
strategy for either player in the game GZ . The above argument shows this Z is unique,
so our function gλ is well-defined, and surjective. a
It follows from this theorem that under AD, Θ is a limit cardinal. In fact, with some
additional assumptions, Θ is regular, and therefore weakly inaccessible.

§15. An Application of Borel Determinacy to Definable Graphs. In this
section we introduce some ideas in Borel combinatorics, focusing in particular on Borel
graphs and colorings. Let’s begin by recalling some definitions from the theory of graphs.

Definition 15.1. Let X be a set. Recall that a graph G on X is a binary relation
G ⊆ X ×X that is irreflexive and symmetric; X is the vertex set and G is the set of
edges.

The degree of a vertex x ∈ X is |{y ∈ X | 〈x, y〉 ∈ G}|. If every vertex of X has finite
(countable) degree, we say G is locally finite (countable). If every vertex of G has
degree exactly d, we say G is d-regular.

A path in G is a sequence 〈x0, . . . , xn−1〉 of elements of X so that for all i < n,
〈xi, xi+1〉 ∈ G, and xi 6= xj for distinct i, j < n, except possibly if i, j ∈ {0, n − 1}. If
x0 6= xn−1, we call this a path from x0 to xn−1. The connected component of x in
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G is the set of all y ∈ X for which y = x, or there exists a path from x to y. A path is
a cycle if x0 = xn−1 and n > 3; a graph is acyclic if it contains no cycles.

For cardinals κ, a κ-coloring of G is a function c : X → κ so that adjacent vertices
are sent to different colors: that is, if 〈x, y〉 ∈ G then χ(x) 6= χ(y). The least κ for which
there exists a κ-coloring is the chromatic number of G, written χ(G).

The study of arbitrary infinite graphs is a vast departure from the finite setting, and
many natural questions turn out to be undecidable in ZFC alone. Instead, we here
restrict to a definable setting, so retaining certain similarities with finite graph theory
and avoiding the spectre of independence. As we will see, though, these graphs differ
from finite graphs in some surprising ways.

Definition 15.2. Let X be a Polish space. A graph G on X is called a Borel graph
if G is Borel as a subset of X ×X.

Example 15.3. Let X = 2ω, and set x G y for x, y ∈ X iff |{n | x(n) 6= y(n)}| = 1.
Then G is a locally countable Borel graph whose connected components are precisely
the E0-equivalence classes.

Example 15.4. Let Γ be a countable group with identity element e. ωΓ = {f : Γ→ ω}
with the product topology is then a Polish space. Define the left shift action of Γ on
ωΓ by setting, for x ∈ ωΓ and all g, h ∈ Γ,

g · x(h) = x(g−1h).

Define the free part of the action on ωΓ to be

X = {x ∈ ωΓ | (∀g ∈ Γ)g 6= e implies g · x 6= x}.
Let ∆ be a set of generators for Γ. Then we define a graph G on X by setting

x G y ⇐⇒ (∃g ∈ ∆)g · x = y ∨ g · y = x.

Then G is a Borel graph on X, and each connected component is isomorphic to the
Cayley graph of Γ generated by ∆.

Example 15.5. Let X be a Polish space, and let F = {Fi}i∈ω be a countable family
of Borel functions Fi : X → X. Then set

x GF y ⇐⇒ x 6= y and (∃i)Fi(x) = y or Fi(y) = x.

Then GF is a Borel graph. If each Fi is countable-to-one, then GF is locally countable.

In fact, every locally countable graph has this form:

Theorem 15.6. Suppose (X,G) is a locally countable Borel graph. Then there is a
family F = {Fi}i∈X of Borel functions Fi : X → X so that G = GF . If every vertex of
G has degree at most k, then we can furthermore assume F contains exactly k functions.

A proof of this theorem is beyond the scope of these notes, but we will need the
theorem to produce definable colorings. As all examples of Borel graphs we consider
will be obviously of this form, the reader who wishes to take this characterization as the
definition of locally countable Borel graph will lose nothing in doing so.

Definition 15.7. Let (X,G) be a Borel graph. A map c : X → ω is a Borel k-
coloring of G (k ≤ ω) if c is a k-coloring which is Borel. The Borel chromatic number
of G, χB(G), is the least k ≤ ω for which there exists a Borel k-coloring; if there is no
such, we say G has uncountable Borel chromatic number, and write χB(G) > ω.
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We first observe that these chromatic numbers need not coincide: for example, if G is
the graph in Example 15.3, then χ(G) = 2, but it is easy to check that for any 2-coloring
c : 2ω → 2, that c−1[{0}] cannot have the Baire property—in particular, c is not Borel.

This example seems to indicate that our ability to produce Borel colorings hinges in
part on whether we can make choices in a definable way. The following is a dramatic
example of just how much the Borel picture departs from the finite one:

Proposition 15.8. There is an acyclic Borel graph G so that χB(G) > ω.

For contrast, notice that χ(G) ≤ 2 for any acyclic G: just choose a vertex from each
connected component, color it 0, and alternate colors to color all of G.

To give this example, we need to recall a basic structure from group theory.

Definition 15.9. Let X be a set; let X−1 = {x−1 | x ∈ X} be disjoint from X.
The words in X are finite sequences of elements of X ∪ X<ω, which we denote as

w = xi00 x
i1
1 . . . x

in−1

n−1 , where each xk ∈ X and ik = ±1. For words u, v, let uv denote the
concatenation of u and v.

A reduced word is a word that contains no occurrences of xx−1 or x−1x, for any
x ∈ X. By an annoying inductive argument, there exists for each word w a unique
reduced word w obtained by iteratively deleting occurrences of xx−1 or x−1x in w, for
x ∈ X. Let FG(X) be the set of reduced words.

Define a multiplication operation on FG(X) by setting u · v = uv. Then FG(X) is a
group, with identity element the empty word; FG(X) is called the free group on X.

Proof of Proposition 15.8. Let S∞ = {f ∈ ωω | f is a bijection}. Note S∞
(considered as a subspace of ωω) is Polish. Let {gn}n∈ω be a dense sequence of elements
of S∞ so that the subgroup generated by the gn is isomorphic to FG(ω) under the map
gn 7→ n.

Let G be the graph on S∞ obtained by left-multiplication by the gn; that is, for
x, y ∈ S∞,

x G y ⇐⇒ (∃n)gnx = y ∨ gny = x.

Since 〈gn〉n∈ω is a free subgroup of S∞, we have that G is an acyclic graph. We claim
χB(G) > ω; that is, there is no Borel coloring c : S∞ → ω. Suppose towards a contra-
diction that we have such a map.

Since c is Borel, each Ci = c−1({i}) has the Baire property; therefore (by Baire
category), we have some Ci non-meager, and so comeager in Ns ∩S∞ for some s ∈ ω<ω.
Extending s if necessary, we may assume s � `(s) is a bijection from `(s) to itself.

Now, since {gn}n∈ω is dense, we have gn � `(s) is the identity map on `(s), for some
n ∈ ω. The map x 7→ gnx is a homeomorphism of Ns∩S∞ to itself; since Ci is comeager
in Ns ∩S∞, the same is true of gnCi. So there must exist x, y ∈ Ci so that gnx = y; but
then x G y, contradiction our assumption that c was a coloring. a
We have seen that the Borel notion of chromatic number diverges from the usual one.
We now show that for Borel graphs with finite bounded degree, we at least have a similar
bound on χB(G) as we do on χ(G).

Theorem 15.10 (Kechris-Solecki-Todorcevic). Suppose (X,G) is a locally finite graph
so that every vertex has degree at most k, where k ≤ ω. Then χB(G) ≤ k + 1.
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Proof. Recall the proof for a finite graph: color the vertices in order, giving each
vertex the least color < k + 1 that hasn’t already been used by an adjacent vertex. We
would like to give the same proof, but need a lemma to let us color the vertices “in
order.”

Lemma 15.11. Let G be a locally finite Borel graph on a Polish space X. Then G has
Borel chromatic number ≤ ω.

Proof. Fix a family of Borel functions F = {Fi}i∈ω with G = GF . Let {Un}n∈ω be
a fixed countable basis for X. Define, for each n ∈ ω,

An = {x ∈ X | (∀i)x /∈ F−1
i [Un] ∧ Fi(x) /∈ Un}.

That is, An is the set of x that belong to Un, but are not G-adjacent to any element of
Un. Note that since G is locally finite, every x ∈ X belongs to some An. We may then
set c(x) = min{n | x ∈ An}. Then c is a Borel ω-coloring. a
Now fix a Borel ω-coloring c : X → ω ofG. Inductively define a coloring d, by coloring the
sets c−1[{n}] in order: if c(x) = 0, set d(x) = 0. If d is defined on c−1[{0, 1, . . . , n− 1}],
define d on c−1[{n}] by setting

d(x) = i least such that d(y) 6= i for all y with c(y) < n and 〈x, y〉 ∈ G.
It’s easy to check that d so defined is a Borel map, and since every vertex has degree
≤ k, d is a k + 1-coloring. a

So we have one similarity between the Borel chromatic number χB(G) and the usual
chromatic number χ(G). A new question arises: What finite values are possible? It turns
out every finite n ≥ 2 can be realized as the chromatic number of an acyclic Borel graph,
but the earliest discovered examples all had infinite degree. It was a long-standing open
question whether, for all n ∈ ω, there exists an acyclic Borel graph with degree at most
n and Borel chromatic number n+ 1. We now show this is the case.

Definition 15.12. The n-fold free product of Z2, denoted Z∗n2 , is the group with
n generators, γ0, γ1, . . . , γn−1 satisfying the relations γ2

i = e for i < n; that is, Z∗n2 =
〈γ0, . . . , γn−1 | γ2

i = e〈. It can be obtained by taking the quotient of the free group
FG({γ0, . . . , γn−1}) by the normal subgroup generated by {γ2

i | i < n}.

The graph we define will be that given by the left shift action of the generators on a
certain subset X of ωZ∗n

2 . For each map c : X → n, we will define a finite collection of
games in which winning strategies will ensure the existence of adjacent x, y ∈ X with
c(x) = c(y). The games defined will be Borel, and so non-n-colorability will follow from
Borel determinacy.

Theorem 15.13 (Marks). Let n ≥ 1. Then there is a n-regular acyclic Borel graph G
with χB(G) = n+ 1.

Proof. We let Z∗n2 act by left shift on a subset X of ωZ∗n
2 . Let

X = {x ∈ ωZ∗n
2 | (∀α ∈ ωZ∗n

2 )(∀i < n)x(α) 6= x(αγi)}.
In particular, we have γi · x 6= x for all x ∈ X. Let G be the graph on X with x G y if
and only if γi · x = y for some i < n. Notice that G is n-regular, but not acyclic.

We first show that G does not have a Borel n-coloring; we conclude by showing that
the same is true of the restriction of G to the free part of the action on X.
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Claim. Suppose c : X → n is Borel. Then there exists some x ∈ X and i < n so that
c(x) = c(γi · x) = i.

Proof of claim. We define a game Gi,j , for each j ∈ ω and i < n. The players
cooperate to define an element x of X with x(e) = j. Player I chooses x(γi); Player II
then chooses x(γk) for i 6= k < n. At the nth round of the game, Player I defines x(α)
for all reduced words α of length n that start with γi; Player II then defines x on reduced
words of length n that start with any other γk. At the end of play, Player I is the winner
if c(x) 6= i; otherwise Player II wins.

Notice that the winning condition of the game is Borel, so by Borel determinacy, each
Gi,j is determined. We claim that for all j ∈ ω, there is some i so that Player II wins
Gi,j . Otherwise, we would have some j so that Player I has winning strategies σi in Gi,j ,
for each i < n. But then we could play the games Gi,j for i < n simultaneously, so that
Player I’s moves in each Gi,j are given by σi, and Player II’s moves in Gi,j are copied
from Player I’s moves in Gk,j for k 6= i. We thus obtain a single real x that is produced
by all of the strategies σi; in particular, we must have c(x) 6= i for all i < n. But this is
a contradiction.

So we have for every j ∈ ω some i < n so that Player II has a winning strategy in Gi,j .
By the Pigeonhole principle, there must be some j0 6= j1 so that Player II wins both of
the games Gi,j0 , Gi,j1 . Let τ0, τ1 be the respective winning strategies.

We now consider simultaneous play of the games Gi,j0 , Gi,j1 . We think of Gi,j0 as

producing x ∈ ωZ∗n
2 ; play in Gi,j1 is producing γi · x. Copying moves by II in each game

to moves for I in the other, we successfully define x ∈ X with x(e) = j0, x(γi) = j1, and
c(x) = c(γi · x) = i (since the strategies τ0, τ1 are winning for Player II). a
In particular, we have that there is no n-coloring of G; let Y be the free part of X,

Y = {x ∈ X | (∀α ∈ Z∗n2 )α · x 6= x}.

Then G � Y is n-regular and acyclic. So we need to show χB(G � Y ) = n+ 1.

Lemma 15.14. There is a Borel function c∗ : X \Y → n such that for all x and i < n,
either c∗(x) 6= i or c∗(γi · x) 6= i.

Once we have the lemma, we will be done: for suppose d : Y → n is a Borel map.
Then c = c∗ ∪ d is also Borel. By what was already shown, we have some x ∈ X and
i < n so that c(γi · x) = c(x) = i. By the lemma, we cannot have x /∈ Y ; so we have
x, γi · x ∈ X with x G γi · x; in particular, d(x) = c(x) = c(γi · x) = d(γi · x), so d is not
a coloring.

Proof of Lemma. Since we are in X \ Y , we have that every vertex x belongs to a
cycle, say 〈x0, x1, . . . , xm+1〉 with x = x0 = xm+1; this is witnessed by some sequence of
generators 〈γi0 , γi1 , . . . , γim〉 so that γik 6= γik+1

for all k ≤ m. The idea is to pick such a
cycle from each connected component, and set c∗(xk) = ik for k ≤ m. We then work our
way out from there, defining c∗ by induction by cycling through the i < n, and setting
c∗(γi · x) = i whenever c∗(x) has already been defined.

The hard part is choosing a cycle from each connected component in a Borel way. For
this, first fix an open basis 〈Uj〉j∈ω for X. Define B to be the set of triples

(〈x0, . . . , xn+1〉, 〈γi0 , . . . , γim〉, 〈Uj0 , . . . , Ujm〉)

satisfying
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1. m ≥ 1.
2. x0 = xm+1 and xk 6= xl for k < l ≤ m.
3. γik · xk = xk+1 and γik 6= γik+1

for all k ≤ m.
4. Ujk ∩ Ujl = ∅ for all distinct k, l ≤ n.
5. xi ∈ Umi for all i ≤ n.

So the xk form a cycle, with this witnessed by the γik , and the Ujk separate them.

Given x = 〈 ~xk, ~γik , ~Ujk〉 ∈ B, let π(x) denote the projection to the second two coor-
dinates of x. Suppose π(x) = π(y) for some x,y ∈ B. We claim that then either x = y,
or the sets {x0, . . . , xm+1} and {y0, . . . , ym+1} are disjoint. Firstly we can’t have xk = yl
with k 6= l, because these are separated by Ujk and Ujl . And if xk = yk for some k, then
we obtain xl = yl for all l ≤ m, since both cycles are obtained by application of the same
sequence of γi’s.

Now we can fix some well-order ≺ of the countable set {γi}<ω × {Uj}<ω; we let A be
the set of x ∈ B so that π(x) � π(y) whenever y ∈ B with y0 in the same connected
component as x0. Note that this definition only requires quantification over sequences of
generators for Z∗n2 and of basis elements Uj , so A is Borel; and if 〈x0, . . . , xm+1〉 is the
first coordinate of some x ∈ A, then it is the unique cycle in its connected component
belonging to A.

Now, for (〈x0, . . . , xm+1〉, 〈γi0 , . . . , γim〉, 〈Uj0 , . . . , Ujm〉) ∈ A, set c∗(xk) = ik. Note
that then for any x and i, if c∗ is defined on both x and γi · x, then c∗(x) = i implies
c∗(γi · x) 6= i.

We define c∗ in ω many stages, preserving this last condition at each step. Let i0, i1, . . .
be a listing of 1, . . . , n so that each i ≤ n appears infinitely often. At stage k, if c∗(x)
has been defined and c∗(γik · x) has not, set c∗(γik · x) = ik.

Then c∗ is Borel, and it is easy to check it has the property stated in the lemma. a
This completes the proof of the lemma, and so the theorem. a
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§16. Appendix: An Inner Model of the Axiom of Choice. We have seen there
is a connection between the axiom AD and the existence of certain large cardinals; we
have also made reference to the fact that AD is not provable in, and is fact significantly
stronger than, the axioms of ZFC. But we have yet to see why this is so. Indeed, although
we have characterized the measurability of ω1 as a large cardinal property, it is not clear
this largeness will carry over to a context in which the Axiom of Choice holds.

In this section, we introduce some ideas to help us study the relative strength of set
theoretic hypotheses. The main construction shows that inside any model of ZF, there is
a (possibly) smaller submodel which satisfies ZFC. As a consequence, we have that the
consistency of ZF implies that of ZFC; but we will also see that large cardinal notions
transfer from the larger model to the smaller, so obtaining (e.g.) that AD implies the
consistency of ZFC with the existence of strongly inaccessible cardinals.

First, for easy reference, here are the axioms of ZFC.

• Extensionality : Two sets are equal if and only if they have the same elements.
• Pairing : If a and b are sets, then so is the pair {a, b}.
• Comprehension Scheme: For any definable property φ(u) and set z, the collection

of x ∈ z such that φ(x) holds, is a set.
• Union: If {Ai}i∈I is a set, then so is its union,

⋃
i∈I Ai.

• Power Set : If X is a set, then so is P(X), the collection of subsets of X.
• Infinity : There is an infinite set.
• Replacement Scheme: For any definable property φ(u, v), if φ defines a function on

a set a, then the pointwise image of a by φ is a set.
• Foundation: The membership relation, ∈, is well-founded; i.e., every non-empty set

contains a ∈-minimal element.
• Choice: If {Ai}i∈I is a collection of nonempty sets, then there exists a choice

function f with domain I, so that f(i) ∈ Ai for all i ∈ I.

ZFC without the Axiom of Choice is called ZF.
The language of set theory is the first-order language whose only non-logical symbol

is a binary relation symbol, ∈. It’s worth noting that each axiom of ZFC can be written
as a formula in this language. For example, we can formalize the Axiom of Foundation
as

∀x(∃y(y ∈ x)→ ∃z(z ∈ x ∧ ∀y(y ∈ x→ ¬(y ∈ z)))),

and for each formula φ(u, v1, . . . , vn), we have an instance of the Axiom Scheme of
Comprehension,

∀a1 . . . ∀an∀x∃z∀y(y ∈ z ←→ (y ∈ x ∧ φ(y, a1, . . . , an))).

In particular, note that the “definable properties” of the Axiom Schema of Comprehen-
sion and Replacement both allow the use of set parameters ai.

Models of set theory will be our main focus in this section. A model in the language of
set theory is a pair (M,E), where M is a set and E is a binary relation on M . Of course,
E need not resemble the true membership relation ∈, but we would like to restrict to
those modelsM whose interpretation ∈M agrees with the true membership relation; that
is, models of the form (M,∈). It will also be important that our models are transitive.
Recall a set z is transitive if for every y ∈ z, y ⊆ z. We will say a model of set theory
(M,∈) is transitive if M is.
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Transitive models are important because they reflect basic facts about the universe of
sets. A stockpile of transitive models in the language of set theory is furnished by the
next definition.

Definition 16.1. The cumulative hierarchy (or von Neumann hierarchy) of
sets is defined by transfinite induction. We set

1. V0 = ∅.
2. Vα+1 = P(Vα).
3. For limit λ, Vλ =

⋃
α<λ Vα.

We set V =
⋃
α∈ON Vα. For x ∈ V , the von Neumann rank of x is the least ordinal α

so that x ∈ Vα+1.

The reader should verify (by induction) that each Vα is transitive, that α < β implies
Vα ⊆ Vβ , and Vα ∩ON = α for all ordinals α.

One axiom of ZFC that might seem somewhat less well-motivated than the rest is the
Axiom of Foundation. Let’s look at this axiom in a little more detail.

Proposition 16.2. The Axiom of Foundation is equivalent to the statement: For all
sets x, there exists an α so that x ∈ Vα.

Proof. Suppose the Axiom of Foundation holds. Let x be a set. Suppose x /∈ Vα;
by Foundation, we can assume x is ∈-minimal, that is, every element of x belongs to
some Vα. Let F (y) for y ∈ x be the least ordinal β so that x ∈ Vβ+1. By the Axiom
of Replacement, there is an ordinal γ so that F (y) < γ for all y ∈ x. Then each y ∈ x
belongs to Vγ ; so x ⊆ Vγ , and by definition, x ∈ Vα+1, a contradiction.

Now suppose every x belongs to some Vα. Fix a non-empty set x, and let y be an
element of x so that the von Neumann rank α of y is minimal among elements of x.
We claim y is ∈-minimal in x. For otherwise there is some z ∈ y ∩ x, and y ⊆ Vα by
definition, so that the von Neumann rank of z is less than α, contradicting our choice of
y. This proves the Axiom of Foundation. a
Now is also a good time to see why strongly inaccessible cardinals imply the consistency
of ZFC.

Proposition 16.3. Working in ZFC, suppose κ is a strongly inaccessible cardinal.
Then Vκ |= ZFC.

Proof. We check Replacement, leaving the rest as an exercise. Suppose φ is a formula
so that for some fixed p ∈ Vκ,

Vκ |= (∀x)(∃!y)φ(x, y, p).

That is, φ defines a function G : Vκ → Vκ. Let a ∈ Vκ. Now for each x ∈ a, define
F (x) to be the least ordinal α < κ so that there is y ∈ Vα+1 with φ(x, y, p)Vκ . Since κ is
strongly inaccessible, we have that the range of F is bounded in κ. In particular, letting
λ = supF [x], we have that the pointwise image of x by G is a subset of Vλ. We obtain
precisely the pointwise image in Vκ via an application of Comprehension in Vκ. a

Exercise 16.4. Is the converse of this proposition true? That is, if Vκ |= ZFC, is κ
inaccessible?

There is one other tool that will be essential in our study of inner models.
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Theorem 16.5 (The Reflection Theorem). Let φ(x1, . . . xn) be a formula. The follow-
ing is provable in ZF: For any ordinal ξ, there is an α > ξ such that for all ~a ∈ (Vα)n,
φVα(~a) if and only if φ(~a).

Proof. Let φ1, . . . φn be an enumeration of all subformulas of φ. We can assume that
∀ does not appear in any of the φj , since ∀ can be replaced with ¬∃¬. Let ξ be given.

We define by induction an increasing sequence of sets αi for i < ω. Suppose that αi
has be defined for some i < ω. We choose αi+1 with the following property, for all j ≤ n
and all tuples ~a from Vαi :

If ∃xφj(x,~a), then there is b ∈ Vαi+1
such that φj(b,~a).

Let α = supi<ω αi. Now we prove that φ is absolute to Vα by induction on the complexity
of formulas appearing in φ1, . . . φn. The atomic formula case follows from transitivity
of Vα; the conjunction, disjunction, negation and implication steps are straightforward.
The existential quantifier step follows from our construction of the αi: Given a tuple ~a
from Vα and a formula φj for which ∃xφj(x,~a) holds, all of the tuple’s elements appear
in some V αi and therefore there is a witness to ∃xφj(x,~a) in Vαi+1 . a
The reader may have noticed the odd way in which the Reflection Theorem is stated: “For
each formula φ, there is a proof in ZF that...”. Looking into our proof, we indeed see that
proving an instance of reflection requires an application of the Axiom of Replacement
tailored to the formula φ. And indeed, the order of quantifiers here can’t be reversed:
It is an easy consequence of the Reflection Theorem that if T is any finite subset of ZF,
then ZF proves the existence of a model of T . If ZF could prove this for all finite subsets
T simultaneously, then by compactness we would have proved consistency of ZF in ZF,
contradicting Gödel’s Second Incompleteness Theorem.

Our next goal is to work in ZF, and give a definition for a class of sets that will
constitute a model of ZFC. This definition for membership in this class will simply be a
formula in the language of set theory, say θ; then the model will have the form

N = {x | θ(x)}.
Of course, N may then be a proper class; and we would like to have a shorthand way
of saying that some formula φ in the language of set theory holds in N . We therefore
introduce the relativization of φ to N , written φN , by induction on formula complexity:

• For atomic φ, φN is just φ.
• If φ is of the form ¬ψ, then φN is the formula ¬ψN ; similarly for ∨ and ∧.
• If φ is of the form ∃xψ, then φN is the formula (∃x)θ(x) ∧ ψN ; similarly for ∀.
Definition 16.6. A set x is ordinal definable, and we say x ∈ OD, if there is some

formula φ in the language of set theory and some finite sequence α0, . . . , αn of ordinals,
so that

x = {y | φ(y, α0, . . . , αn)}.
In light of Tarski’s theorem on the non-definability of truth, it isn’t obvious from our

definition that OD should even be a definable class. We show that it is, via the Reflection
Theorem.

Proposition 16.7. A set x belongs to OD if and only if there exists a formula φ and
ordinals β and α0, . . . , αn < β, so that

x = {y ∈ Vβ | Vβ |= φ(y, α0, . . . , αn)}.
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Proof. It is immediate that any x of the form described will be in OD, as we have
just given the definition (and using the definability of the satisfaction relation for sets
Vβ). So suppose x ∈ OD. Let φ be the defining formula, and α0, . . . , αn the ordinal
parameters witnessing this. By reflection, there is an ordinal β so that φ is absolute to
Vβ ; we can assume x ⊆ Vβ . Then for all ξ0, . . . , ξn < β and y ∈ Vβ , we have

φ(y, ξ0, . . . , ξn) ⇐⇒ Vβ |= φ(y, ξ0, . . . , ξn).

In particular, plugging in the αi’s for the ξi’s gives the proposition. a
So OD is definable, and it comes with a ready-made well-ordering, by associating each
set x in OD with the lexicographically least tuple β, φ, α0, . . . , αn that defines x. But
OD suffers from a defect: It need not be transitive! Indeed, each Vα is in OD, and so
we will have OD transitive if and only if V = OD. We obtain a transitive model by just
keeping those OD sets whose transitive closures are in OD.

Recall the transitive closure of a set x, denoted TC(x), is the least transitive set
containing x as a subset; if we set x0 = x and xn+1 =

⋃
xn = {y | (∃z ∈ x)y ∈ z}, then

TC(x) =
⋃
n∈ω xn.

Definition 16.8. A set x is hereditarily ordinal definable, and we write x ∈ HOD,
if TC({x}) ⊆ OD.

Then it is immediate that HOD is a definable transitive class; it is also easy to see
that HOD contains all the ordinals.

Theorem 16.9. Work in ZF. Then HOD is a transitive proper class model of ZFC.

Proof. We check the more non-trivial ZFC axioms. First, Comprehension: suppose φ
is a formula and that z, p ∈ HOD. We need to show that HOD satisfies the corresponding
instance of Comprehension, that is, we need

A = {x ∈ z | φ(x, p)HOD}

to be an element of HOD. Now z, p are in OD, so we can fix formulae ψ, π and ordinals
ζ, η that witness this. By Reflection, let β be an ordinal above ζ, η so that z ⊂ Vβ , and
φHOD, ψ, and π are all absolute for Vβ . Then we have, for all x ∈ Vβ ,

x ∈ A ⇐⇒ x ∈ z ∧ φ(x, p)HOD ⇐⇒ Vβ |= x ∈ z ∧ φ(x, p)HOD.

Then we can substitute in the OD definitions for z and p, and obtain

A = {x ∈ Vβ | Vβ |=(∃z)(∀a)(a ∈ z ↔ ψ(a, ζ))

(∃p)(∀b)(b ∈ p↔ π(b, η))(x ∈ z ∧ φ(x, p)HOD}.

We have a definition of A using only ordinals β, ζ, η as parameters, so A ∈ OD. That
TC({A}) ⊆ OD is immediate since A ⊆ z ∈ HOD.

Now let’s check Power Set. We need to show, for each X ∈ HOD, that P(X)∩HOD ∈
HOD, as this will witness the Power Set Axiom for X. But

a ∈ P (X) ∩HOD ⇐⇒ a ⊆ X ∧ a ∈ OD .

Now the claim follows, by plugging in the OD definition of X and using definability of
membership in OD.
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Finally, let us verify that the main axiom of interest, the Axiom of Choice, holds in
HOD. For each x ∈ OD, let F (x) be the lexicographically least tuple β, k, α0, . . . , αn so
that

x = {y ∈ Vβ | Vβ |= φk(y, α0, . . . , αn)}.
Note that the relation F (x) = 〈β, k, α0, . . . , αn is an ordinal definable one. So for each
A ∈ HOD, the set {〈x, F (x)〉 | x ∈ A} is ordinal definable (expanding the OD definition
of A); and it is easy to see that each pair 〈x, F (x)〉 is in HOD. From this set, we obtain
a well-order of A, using some canonical well-order of tuples of ordinals. Thus the Axiom
of Choice holds in HOD. a
All that is left is to show is that the large cardinals of the AD world entail large cardinal
strength in HOD.

Theorem 16.10. Assume the club filter on κ is an ultrafilter. Then κ is a measurable
cardinal in HOD.

Proof. Notice that the club filter is ordinal definable: If Cκ is the club filter on κ,
we have

X ∈ Cκ ⇐⇒ (∃C ⊆ κ)C ⊆ X ∧ C is a club in κ.

Now since every ordinal is in OD, any set of ordinals in OD is automatically in HOD.
Put

U = Cκ ∩OD .

Then U ∈ HOD. It is easy to check that U is a normal measure in HOD. a

Corollary 16.11. Assume AD. Then there is a measurable cardinal in HOD; in
particular, we have that there exists a model of ZFC plus the existence of a proper class
of strongly inaccessible cardinals.

Proof. The cardinal is κ = ω1. Since HOD is a model of choice, we have in HOD
that κ is inaccessible, and there are unboundedly many inaccessible cardinals below κ.
So the model V HOD

κ = Vκ ∩HOD witnesses the final clause of the corollary. a


