DETERMINACY EXERCISES DAY 3

PROBLEM 1. Show ω^{ω} and 2^{ω} are complete metric spaces with the metric d defined in class.

PROBLEM 2. Show that there are only countably many clopen subsets of 2^{ω} . Is the same true for Baire space, ω^{ω} ?

Recall for topological spaces $X, Y, f : X \to Y$ is continuous if and only if $f^{-1}[U]$ is open in X for all open $U \subseteq Y$. Spaces X, Y are **homeomorphic** if there is a bijection $f : X \to Y$ so that both f and f^{-1} are continuous.

PROBLEM 3. Let $f: \omega^{\omega} \to \omega^{\omega}$. Prove f is continuous if and only if whenever f(x) = yand $n \in \omega$, there is some m such that $N_{x \upharpoonright m} \subseteq f^{-1}[N_{y \upharpoonright n}]$.

PROBLEM 4. Let s_n be an enumeration of $\omega^{<\omega}$. Suppose $f: \omega^{\omega} \to 2^{\omega}$ is defined by setting f(x)(n) = 0 if and only if $x \in N_{s_n}$. Show f is continuous.

PROBLEM 5. Show the following.

- 1. 2^{ω} and ω^{ω} are *not* homeomorphic: there is no continuous surjection $f: 2^{\omega} \to \omega^{\omega}$.
- 2. There exists a countable set $C \subseteq 2^{\omega}$ so that ω^{ω} and $2^{\omega} \setminus C$ (in the subspace topology) are homeomorphic.
- 3. ω^{ω} and $\mathbb{R} \setminus \mathbb{Q}$ are homeomorphic. (This justifies in part our nasty habit of calling elements of ω^{ω} "reals.")

PROBLEM 6. Let $X \subseteq \omega^{\omega}$. Define X^* to be the collection

 $X^* = \{ y \in \omega^{\omega} \mid (\exists x \in X) (\exists N \in \omega) (\forall n \ge N) x(n) = y(n) \}.$

That is, X^* consists of all y that agree with some $x \in X$ on a tail end. Show the following.

- 1. If X is meager, then so is X^* .
- 2. If X is meager, then there is a nowhere dense set C such that $X \subseteq C^*$.