DETERMINACY EXERCISES DAY 5

PROBLEM 1. Prove that regardless of $\alpha < \omega_1$, there is no $W \subseteq 2^{\omega} \times 2^{\omega}$ that is Δ^0_{α} -universal for 2^{ω} .

PROBLEM 2. Suppose Γ is closed under continuous substitution, and that for every Polish space X there is a set $W \subseteq 2^{\omega} \times X$ which is Γ -universal for X. Show for every Polish space X that there is $W^* \subseteq 2^{\omega} \times X$ which is $\exists^{\omega} \Gamma$ -universal for X.

PROBLEM 3. Show $\exists^{\omega} \Pi^0_{\alpha} = \Sigma^0_{\alpha+1}$.

DEFINITION. A set $P \subseteq X$ of a Polish space is **perfect** if P is closed and every element of P is a limit point of P. If X itself is perfect, we say X is a **perfect Polish space**.

PROBLEM 4. The following exercises generalize the hierarchy theorem to perfect Polish spaces besides 2^{ω} .

- 1. Suppose X is a perfect Polish space. Show there is a continuous injective function $f: 2^{\omega} \to X$.
- 2. Prove that if $f: 2^{\omega} \to X$ is continuous and surjective, then f has the nice property that whenever $U \subseteq 2^{\omega}$ is open, so is f[U].
- 3. Prove that if $1 < \alpha < \omega_1$, then for every Polish space Y and perfect Polish space X, there is a Σ^0_{α} -universal set $W \subseteq X \times Y$ for Y.
- 4. Conclude that if $\alpha \geq 1$ and Y is perfect Polish, then there is $A \subseteq Y$ in $\Sigma^0_{\alpha} \setminus \Pi^0_{\alpha}$.