DETERMINACY EXERCISES DAY 6

PROBLEM 1. Show $AD_{\mathbb{R}}$ implies $AC_{\mathbb{R}}(\mathbb{R})$. (This latter choice principle is equivalent to the statement that for all $A \subseteq \mathbb{R} \times \mathbb{R}$, there is a **uniformizing function for** A, i.e., a function $f : \mathbb{R} \to \mathbb{R}$ such that $\langle x, f(x) \rangle \in A$ whenever A_x is non-empty.)

DEFINITION. Let $\alpha > \omega$ be an ordinal. For each $A \subseteq \omega^{\alpha}$, we define the long game of length α , $G^{\alpha}(A)$, by letting two players alternate choosing natural numbers x_{ξ} , for $\xi < \alpha$, in increasing order; Player I chooses x_{λ} for limit $\lambda < \alpha$.

After α many moves, the players have chosen a sequence $x = \langle x_{\xi} \rangle_{\xi < \alpha} \in \omega^{\alpha}$. Player I wins if $x \in A$. Player II wins if $x \notin A$. We say the game is determined if one of the players has a winning strategy (with strategy defined appropriately).

 AD^{α} is the statement that for all $A \subseteq A^{\alpha}$, the game $G^{\alpha}(A)$ is determined.

PROBLEM 2. Recall (from the weekend problems) that AD implies there is no injection $f: \omega_1 \to \omega^{\omega}$. Show (without choice) that AD^{ω_1} is false.

PROBLEM 3 (Blass). Show $AD_{\mathbb{R}}$ is equivalent to AD^{ω^2} .

PROBLEM 4. Let $C \subseteq \omega^{\omega}$ be clopen, and let $A \subseteq \omega^{\omega}$ with $A \neq \emptyset$ and $A \neq \omega^{\omega}$. Then there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $f^{-1}[A] = C$.

PROBLEM 5. Do the following.

- 1. Prove that if $A \subseteq \omega^{\omega}$ is comeager then it contains a non-empty perfect set.
- 2. Prove that if A has the Baire property then either A or its complement contains a non-empty perfect set.
- 3. Conclude (using Problem 3 from the weekend) that under the Axiom of Choice, there is a set without the Baire property.

PROBLEM 6. Show the following.

- 1. (Kuratowski-Ulam). Suppose $A \subseteq \omega^{\omega} \times \omega^{\omega}$ has the Baire property. Then A is meager if and only all but a meager set of slices A_x is meager; that is, A is meager iff $\{x \in \omega^{\omega} \mid A_x \text{ is non-meager}\}$ is meager. (This is a Baire category analogue of Fubini's Theorem.)
- 2. Let \prec be a well-order of ω^{ω} with order type ω_1 . Then $\{\langle x, y \rangle \in \omega^{\omega} \times \omega^{\omega} \mid x \prec y\}$ does not have the Baire property.
- 3. The same holds when \prec has order type \mathfrak{c} .

DEFINITION. Let X, Y be Polish spaces. A function $f : X \to Y$ is **Baire measurable** if $f^{-1}[U]$ has the Baire property whenever $U \subseteq Y$ is open.

Note that Borel functions are Baire measurable.

PROBLEM 7. Show that if $f: \omega^{\omega} \to \omega^{\omega}$ is Baire measurable then there is a comeager $A \subseteq \omega^{\omega}$ so that $f: A \to \omega^{\omega}$ is continuous on A (with respect to the subspace topology inherited from X).