DETERMINACY EXERCISES DAY 7

Let E be an equivalence relation on X. A function $f: X \to X$ is a selector for E if f(x) = f(y) whenever $x \in y$, and $x \in f(x)$ for all $x \in X$.

PROBLEM 1. Let E_0 be the equivalence relation on ω^{ω} given by setting $x E_0 y$ exactly when x and y are eventually equal. Prove that if $f: \omega^{\omega} \to \omega^{\omega}$ is a selector for E_0 , then f is not Baire measurable.

PROBLEM 2. Let $I = \{x \in \omega^{\omega} \mid \lim_{n \to \infty} x(n) = \infty\}$. Is I meager or comeager?

PROBLEM 3. Let $C \subseteq \omega^{\omega}$ be clopen and $A \subseteq \omega^{\omega}$ any set with $A \neq \emptyset, \omega^{\omega}$. Describe a winning strategy for Player II in $G_{W}(C, A)$.

PROBLEM 4. Show, assuming the Axiom of Choice, that there exist sets $A, B \subseteq \omega^{\omega}$ so that $A \not\leq_{\mathrm{W}} B$ and $B \not\leq_{\mathrm{W}} \neg A$.

DEFINITION. Let $A \subseteq \omega^{\omega}$ and Γ a pointclass closed under continuous substitution. We say A is Γ -complete if $A \in \Gamma$ and $B \leq_{W} A$ for all $B \in \Gamma$.

PROBLEM 5. Let $A \subseteq \omega^{\omega}$ be a set consisting of just a single point. Show explicitly that A is Π^0_1 -complete, either by describing for each closed $C \subseteq \omega^{\omega}$ a continuous function $f : \omega^{\omega} \to \omega^{\omega}$ with $f^{-1}[A] = C$, or (equivalently) a winning strategy for Player II in $G_W(C, A)$.

PROBLEM 6. Let Q be the set of all $x \in \omega^{\omega}$ which are eventually constant. Show explicitly that Q is Σ_2^0 -complete.

PROBLEM 7. Do the following.

1. Fix a bijection $\psi: \omega \times \omega \to \omega$. Let

$$P = \{ x \in \omega^{\omega} \mid (\forall m) (\exists N) (\forall n > N) x (\psi(m, n)) = 0 \}.$$

You can think of P as the set of $\omega \times \omega$ matrices with all rows eventually zero. Show that P is Π_3^0 -complete.

2. Using the previous item, show that the set

$$I = \{ x \in \omega^{\omega} \mid \lim_{n \to \infty} x(n) = \infty \}$$

is Π_3^0 -complete.