DETERMINACY EXERCISES DAY 8

PROBLEM 1. Let Q_0 be the set of all eventually zero members of ω^{ω} , and Q the set of all eventually constant members of ω^{ω} . Show $Q \leq_{\mathrm{L}} Q_0$ directly, e.g. by giving a winning strategy for Player II in $G_{\mathrm{L}}(Q, Q_0)$.

PROBLEM 2. Give an example of sets $A, B \subseteq \omega^{\omega}$ with $A \equiv_{W} B$ but $A \not\equiv_{L} B$.

PROBLEM 3. Assume AD. Show for all $A, B \subseteq \omega^{\omega}$ that $A <_{W} B$ implies $A <_{L} B$.

PROBLEM 4. Assume AD. Let $A \subseteq \omega^{\omega}$ and let $A^+ = \{\langle 0 \rangle \widehat{\ } x \mid x \in A\}$. Show $A^+ \equiv_{\mathcal{L}} A$ if and only if $A \not\equiv_{\mathcal{L}} \neg A$.

PROBLEM 5. In this problem, we determine which Lipschitz degrees are self-dual in terms of how they appear in the Lipschitz hierarchy. You may assume AD throughout.

DEFINITION. Let a, c be Lipschitz degrees. We say c is the **L-successor** of a if $a <_{\mathrm{L}} c$ and whenever b is a Lipschitz degree with $a <_{\mathrm{L}} b$, we have $c \leq_{\mathrm{L}} b$.

If a is not an L-successor, we say a has **countable cofinality** if there is an ω -sequence $a_0 <_{\mathrm{L}} a_1 <_{\mathrm{L}} a_2 <_{\mathrm{L}} \ldots <_{\mathrm{L}} a$ so that a is the least degree above $\{a_n\}_{n \in \omega}$; otherwise we say a has **uncountable cofinality**.

1. Suppose $a = [A]_{L}$ is a Lipschitz degree with $a \neq \neg a$. Let

 $C = A \oplus \neg A = \{ \langle 0 \rangle^{\frown} x \mid x \in A \} \cup \{ \langle 1 \rangle^{\frown} x \mid x \notin A \}.$

Show $c = [C]_{L}$ is self-dual, and is the L-successor of a.

2. Suppose $a = [A]_{L}$ is a self-dual Lipschitz degree: $a = \neg a$. Let

$$C = A^+ = \{ \langle 0 \rangle^{\frown} x \mid x \in A \}.$$

Show $c = [C]_{L}$ is self-dual, and is the L-successor of a.

- 3. Suppose *a* is a Lipschitz degree, but not an L-successor. Show that if *a* has countable cofinality, then *a* is self-dual.
- 4. Suppose a is a Lipschitz degree, not an L-successor, and a has uncountable cofinality. Show a is not self-dual: $a \neq \neg a$.

PROBLEM 6. Assume DC. Show Θ has uncountable cofinality: that is, there is no map $f: \omega \to \Theta$ with $f[\omega]$ unbounded in Θ .

PROBLEM 7. Collection asserts: Suppose $\{\mathcal{A}_x\}_{x\in\omega^{\omega}}$ is a family with $\emptyset \neq \mathcal{A}_x \subseteq \mathcal{P}(\mathbb{R})$ for all $x \in \omega^{\omega}$. Then there is a function $F : \omega^{\omega} \times \omega^{\omega} \to \mathcal{P}(\mathbb{R})$ such that for all $x \in \omega^{\omega}$, there is $y \in \omega^{\omega}$ with $F(x, y) \in \mathcal{A}_x$. (Note this is weaker than $\mathsf{AC}_{\mathbb{R}}(\mathcal{P}(\mathbb{R}))$; it says that from continuum many non-empty collections \mathcal{A}_x of sets of reals, we can simultaneously narrow down each \mathcal{A}_x to a set of size continuum.)

- 1. Assume Collection and show Θ is regular.
- 2. Assume $AD + DC + "\Theta$ is regular". Prove Collection.