DETERMINACY EXERCISES
 DAY 9

Problem 1. Let X and Y be Polish spaces, and let $A \subseteq X \times Y$ belong to $\boldsymbol{\Sigma}_{n}^{1}$ for some $n \in \omega$. Show that

$$
\exists^{X} A=\{y \in Y \mid(\exists x \in X)\langle x, y\rangle \in A\}
$$

is in $\boldsymbol{\Sigma}_{n}^{1}$ as well.
Problem 2. Let X, Y be Polish spaces. Show the following:

1. If $f: X \rightarrow Y$ is continuous then its graph $\{\langle x, y\rangle \mid f(x)=y\}$ is closed in $X \times Y$.
2. If $A \subseteq X$ is $\boldsymbol{\Sigma}_{1}^{1}$ and $f: X \rightarrow Y$ is continuous then $f[A]$ is also $\boldsymbol{\Sigma}_{1}^{1}$.
3. A set $A \subseteq X$ is $\boldsymbol{\Sigma}_{1}^{1}$ if and only if $f[C]=A$ for some closed $C \subseteq \omega^{\omega}$ and continuous $f: \omega^{\omega} \rightarrow X$.
4. A set $A \subseteq X$ is $\boldsymbol{\Sigma}_{1}^{1}$ if and only if $f\left[\omega^{\omega}\right]=A$ for some continuous $f: \omega^{\omega} \rightarrow X$.

Problem 3. Let X, Y be Polish and suppose $f: X \rightarrow Y$ is Borel.

1. If you haven't already, show that the graph $\{\langle x, y\rangle \mid f(x)=y\}$ is Borel in $X \times Y$.
2. Show that if $A \subseteq X$ is $\boldsymbol{\Sigma}_{1}^{1}$, then $f[A]$ is also $\boldsymbol{\Sigma}_{1}^{1}$.

Problem 4. Let $I=\left\{x \in \omega^{\omega} \mid \lim _{n \rightarrow \infty} x(n)=\infty\right\}$. Give an explicit definition of a tree $T \subseteq \omega^{<\omega} \times \omega^{<\omega}$ with $I=\exists^{\omega}[T]$; similarly for $\omega^{\omega} \backslash I$.

Definition. We say a pointclass $\boldsymbol{\Gamma}$ has the separation property if whenever $A, B \in$ $\boldsymbol{\Gamma}$ with $A \cap B=\varnothing$, there exists a set $C \in \boldsymbol{\Gamma} \cap \neg \boldsymbol{\Gamma}$ so that $A \subseteq C$ and $B \cap C=\varnothing$. $\boldsymbol{\Gamma}$ has the reduction property if whenever $A, B \in \boldsymbol{\Gamma}$, we have some $A^{\prime}, B^{\prime} \in \boldsymbol{\Gamma}$ with $A^{\prime} \cup B^{\prime}=A \cup B, A^{\prime} \subseteq A, B^{\prime} \subseteq B$, and $A^{\prime} \cap B^{\prime}=\varnothing$.

Problem 5. Show that if $\boldsymbol{\Gamma}$ has the reduction property then $\neg \boldsymbol{\Gamma}$ has the separation property.

Problem 6. In this problem we outline a game argument due to Blackwell to prove a strengthening of Lusin's separation theorem. Let S, T be trees in $\omega^{<\omega} \times \omega^{<\omega}$ so that $A=\exists^{\omega}[S]$ and $B=\exists^{\omega}[T]$. For each $z \in \omega^{\omega}$, define a game $G(z)$ as follows: Player I plays $x \in \omega^{\omega}$ and II plays $y \in \omega^{\omega}$.

$$
\begin{array}{l|ccccccc}
\mathrm{I} & x(0) & & x(1) & \ldots & x(n) & \ldots \\
\hline \mathrm{II} & & y(0) & & y(1) & \ldots & & y(n) \\
\ldots
\end{array}
$$

Player I wins if for some $n \in \omega$, we have $\langle x \upharpoonright n, z \upharpoonright n\rangle \in S$ and $\langle y \upharpoonright n, z \upharpoonright n\rangle \notin T$; if for some n we have $\langle x \upharpoonright n+1, z \upharpoonright n+1\rangle \notin S$ while $\langle y \upharpoonright n, z \upharpoonright n\rangle \in T$, then Player II wins. If infinitely many moves are made and neither happens, then the play is a draw.

1. Explain why, for each $z \in \omega^{\omega}$, at least one of the players has a strategy to win or force a draw.
2. Use this to prove the following:

ThEOREM (Kuratowski). Suppose $A, B \subseteq \omega^{\omega}$ are $\boldsymbol{\Sigma}_{1}^{1}$. Then there are sets A^{\prime}, B^{\prime}, also in $\boldsymbol{\Sigma}_{1}^{1}$, so that $A \subseteq A^{\prime}, B \subseteq B^{\prime}, A \cap B=A^{\prime} \cap B^{\prime}$, and $A^{\prime} \cup B^{\prime}=\omega^{\omega}$.

