DETERMINACY EXERCISES DAY 9

PROBLEM 1. Let X and Y be Polish spaces, and let $A \subseteq X \times Y$ belong to Σ_n^1 for some $n \in \omega$. Show that

$$\exists^X A = \{ y \in Y \mid (\exists x \in X) \langle x, y \rangle \in A \}$$

is in Σ_n^1 as well.

PROBLEM 2. Let X, Y be Polish spaces. Show the following:

- 1. If $f: X \to Y$ is continuous then its graph $\{\langle x, y \rangle \mid f(x) = y\}$ is closed in $X \times Y$.
- 2. If $A \subseteq X$ is Σ_1^1 and $f: X \to Y$ is continuous then f[A] is also Σ_1^1 .
- 3. A set $A \subseteq X$ is Σ_1^1 if and only if f[C] = A for some closed $C \subseteq \omega^{\omega}$ and continuous $f : \omega^{\omega} \to X$.
- 4. A set $A \subseteq X$ is Σ_1^1 if and only if $f[\omega^{\omega}] = A$ for some continuous $f: \omega^{\omega} \to X$.
- PROBLEM 3. Let X, Y be Polish and suppose $f: X \to Y$ is Borel.
- 1. If you haven't already, show that the graph $\{\langle x, y \rangle \mid f(x) = y\}$ is Borel in $X \times Y$. 2. Show that if $A \subseteq X$ is Σ_1^1 , then f[A] is also Σ_1^1 .

PROBLEM 4. Let $I = \{x \in \omega^{\omega} \mid \lim_{n \to \infty} x(n) = \infty\}$. Give an explicit definition of a tree $T \subseteq \omega^{<\omega} \times \omega^{<\omega}$ with $I = \exists^{\omega^{\omega}}[T]$; similarly for $\omega^{\omega} \setminus I$.

DEFINITION. We say a pointclass Γ has the **separation property** if whenever $A, B \in \Gamma$ with $A \cap B = \emptyset$, there exists a set $C \in \Gamma \cap \neg \Gamma$ so that $A \subseteq C$ and $B \cap C = \emptyset$. Γ has the **reduction property** if whenever $A, B \in \Gamma$, we have some $A', B' \in \Gamma$ with $A' \cup B' = A \cup B, A' \subseteq A, B' \subseteq B$, and $A' \cap B' = \emptyset$.

PROBLEM 5. Show that if Γ has the reduction property then $\neg \Gamma$ has the separation property.

PROBLEM 6. In this problem we outline a game argument due to Blackwell to prove a strengthening of Lusin's separation theorem. Let S, T be trees in $\omega^{<\omega} \times \omega^{<\omega}$ so that $A = \exists^{\omega^{\omega}}[S]$ and $B = \exists^{\omega^{\omega}}[T]$. For each $z \in \omega^{\omega}$, define a game G(z) as follows: Player I plays $x \in \omega^{\omega}$ and II plays $y \in \omega^{\omega}$.

Player I wins if for some $n \in \omega$, we have $\langle x \upharpoonright n, z \upharpoonright n \rangle \in S$ and $\langle y \upharpoonright n, z \upharpoonright n \rangle \notin T$; if for some *n* we have $\langle x \upharpoonright n+1, z \upharpoonright n+1 \rangle \notin S$ while $\langle y \upharpoonright n, z \upharpoonright n \rangle \in T$, then Player II wins. If infinitely many moves are made and neither happens, then the play is a draw.

- 1. Explain why, for each $z \in \omega^{\omega}$, at least one of the players has a strategy to win or force a draw.
- 2. Use this to prove the following:

THEOREM (Kuratowski). Suppose $A, B \subseteq \omega^{\omega}$ are Σ_1^1 . Then there are sets A', B', also in Σ_1^1 , so that $A \subseteq A', B \subseteq B', A \cap B = A' \cap B'$, and $A' \cup B' = \omega^{\omega}$.