DETERMINACY EXERCISES **DAY 10**

PROBLEM 1. Fix an enumeration $\{s_i\}_{i\in\omega}$ of $\omega^{<\omega}$. For each $x\in 2^{\omega}$, let $T_x\subseteq \omega^{<\omega}$ be the set $\{s_i \mid x(i) = 1\}$. Locate the following sets in the Borel or projective hierarchies; that is, determine the optimal pointclass to which they belong.

- 1. $\{x \in 2^{\omega} \mid T_x \text{ is a tree}\};$
- 2. $\{x \in 2^{\omega} \mid T_x \text{ is a well-founded tree}\};$ 3. $\{x \in 2^{\omega} \mid T_x \subseteq 2^{<\omega} \text{ is a well-founded tree}\}.$

PROBLEM 2. Let $L \subseteq \omega^{\omega}$ be the set

 $\{x \in (\omega \setminus \{0\})^{\omega} \mid \exists \langle k_n \rangle_{n \in \omega} \text{ increasing, such that for all } n, x(k_n) \text{ divides } x(k_{n+1}) \}.$

Show that L is Σ_1^1 -complete.

PROBLEM 3. Show for each $\gamma < \omega_1$ that $WO_{\gamma} = \{x \in WO \mid ot(x) = \gamma\}$ is Σ_1^1 . Is it $\Delta_1^1?$

PROBLEM 4. As in class, define for $x \in 2^{\omega}$ the binary relation R_x on ω so that $i R_x j$ iff $x(\lceil i, j \rceil) = 1$.

- 1. Let σ be a first order sentence in the language of one binary relation, R. Show $\{x \in 2^{\omega} \mid (\omega, R_x) \models \sigma\}$ is Borel.
- 2. Show the same with T a first order theory.

PROBLEM 5. Let $T \subseteq X^{<\omega} \times Y^{<\omega}$ be a tree; define the **projection**

$$p[T] = \{ y \in Y^{\omega} \mid (\exists x \in X^{\omega}) \mid \langle x, y \rangle \in [T] \}.$$

We say a set $A \subseteq \omega^{\omega}$ is κ -Suslin if there is a tree $T \subseteq \kappa^{\langle \omega \rangle} \times \omega^{\langle \omega \rangle}$ with p[T] = A.

Recall that a tree $T \subseteq \omega^{<\omega}$ has $[T] = \emptyset$ if and only if there is a rank function $\rho: T \to ON.$

- 1. Show that if $T \subseteq \omega^{<\omega}$ has a rank function ρ , then we can assume $\rho: T \to \omega_1$.
- 2. Use this to show that if A is Π_1^1 , then A is ω_1 -Suslin.
- 3. Show that if A is Σ_2^1 , then A is ω_1 -Suslin.