DETERMINACY EXERCISES DAY 11

PROBLEM 1. Prove Tarski's ultrafilter lemma: A filter $\mathcal{F} \subseteq \mathcal{P}(X)$ is an ultrafilter if and only if it is \subseteq -maximal among filters on X.

PROBLEM 2. Assume AD. Show there is no non-principal ultrafilter on ω .

DEFINITION. Let $x, y \in \omega^{\omega}$. We say x is **Turing reducible** to y, written $x \leq_T y$, if there is a program that computes the values of x when calls to y as an oracle are permitted; equivalently, there are total recursive functions $f, g : \omega \to \omega$ so that $x(n) = f(\lceil \langle n \rangle \cap y \restriction g(n) \rceil)$ for all n (where $s \mapsto \lceil s \rceil \in \omega$ is some fixed recursive coding of finite sequences).

Reals x, y are **Turing equivalent**, written $x =_T y$, if $x \leq_T y$ and $y \leq_T x$. The equivalence classes under Turing equivalence are the **Turing degrees**, $[x]_T$. The set of Turing degrees is denoted \mathcal{D}_T .

We say a set X of Turing degrees is a **cone** if there is some $x \in \omega^{\omega}$ so that whenever $x \leq_T y$, we have $[y]_T \in X$.

PROBLEM 3. Let $M_T = \{X \subseteq \mathcal{D}_T \mid X \text{ contains a cone}\}$. Show M_T is a countably complete filter.

PROBLEM 4. Let \mathcal{U} be a non-principal κ -complete ultrafilter on κ . Show \mathcal{U} is a normal measure if and only if \mathcal{U} is closed under diagonal intersections.

PROBLEM 5. Show that if \mathcal{U} is a normal measure on κ , then \mathcal{U} extends the club filter. That is, if $C \subseteq \kappa$ is a club, we have $C \in \mathcal{U}$.

PROBLEM 6. (Assuming choice.) Suppose \mathcal{U} is a normal measure on κ . Show

1. κ is a strong limit cardinal, that is, $|2^{\lambda}| < \kappa$ for all $\lambda < \kappa$.

2. Show the set $\{\alpha < \kappa \mid \alpha \text{ is a strongly inaccessible cardinal}\}$ is in \mathcal{U} .

PROBLEM 7. (Assuming choice.) Let κ be a regular cardinal. Recall a set $S \subseteq \kappa$ is **stationary** if $S \cap C \neq \emptyset$ for every club C in κ . Show there exist stationary sets $S, T \subseteq \kappa$ that are disjoint.

PROBLEM 8. Let \mathcal{F} be a filter on ω . For a sequence $\langle a_n \rangle_{n \in \omega}$ of real numbers, we say $\lim_{\mathcal{F}} a_n = L$ if for all $\varepsilon > 0$, the set $\{n \in \omega \mid |a_n - L| < \varepsilon\}$ belongs to \mathcal{F} ; we say L is the \mathcal{F} -limit of the sequence $\langle a_n \rangle_{n \in \omega}$.

- 1. Show that if the \mathcal{F} -limit of $\langle a_n \rangle_{n \in \omega}$ exists, then it is unique.
- 2. Is there a filter so that the notion of \mathcal{F} -limit coincides with the usual notion?
- 3. Show that if \mathcal{U} is an ultrafilter, then every bounded sequence has a \mathcal{U} -limit.
- 4. Show that if every bounded sequence has a $\mathcal U\text{-limit},$ then $\mathcal U$ is an ultrafilter.

PROBLEM 9. (Assuming Choice.) The **Stone-Čech compactification** of ω is the space $\beta \omega$ of ultrafilters on ω , with basis of sets $U_A = \{ \mathcal{F} \in \beta \omega \mid A \in \mathcal{F} \}$, for $A \subseteq \omega$.

Show $\beta \omega$ is a compact separable topological space, but is not metrizable (and therefore not Polish).