DETERMINACY EXERCISES DAY 12

Definition. Recall \mathcal{D}_{T} is the collection of Turing degrees. A set $A \subseteq \omega^{\omega}$ is called Turing invariant if it is a union of Turing degrees. Turing determinacy is the statement that whenever $A \subseteq \omega^{\omega}$ is Turing invariant, the game $G(A)$ is determined.

Problem 1 (Martin). Assume Turing determinacy. Show every set of Turing degrees either contains, or is disjoint from, a cone.

Problem 2 (Erdös-Rado). (Uses choice.) Let κ be an infinite cardinal. Show there is a coloring $c:[\kappa]^{\omega} \rightarrow 2$ of the collection of countably infinite subsets of κ so that there is no infinite c-homogeneous subset of κ.

Problem 3. In this exercise we use a determinacy argument to show that $\boldsymbol{\Sigma}_{1}^{1}$ sets have the perfect set property. Let $F \subseteq \omega^{\omega} \times \omega^{\omega}$ and let $A=\exists^{\omega \omega} F$. The unfolded perfect set game $G_{\mathrm{PS}}^{*}(F)$ is played as follows:

$$
\begin{array}{l|llllll}
\text { I } & x(0), s_{0}^{0}, s_{0}^{1} & & x(1), s_{1}^{0}, s_{1}^{1}, & & \ldots & x(n), s_{n}^{0}, s_{n}^{1} \\
& & \ldots \\
\hline \text { II } & i_{0} & i_{1} & \ldots & & i_{n} & \ldots
\end{array}
$$

Each $x(n) \in \omega, s_{n}^{i} \in \omega^{<\omega}$, and $i_{n} \in\{0,1\}$. The rules: Player I plays $x(0) \in \omega$ and s_{0}^{0}, s_{0}^{1} with $s_{0}^{0} \perp s_{0}^{1}$. Player II plays $i_{n} \in\{0,1\}$. Having fixed $s_{n}^{i_{n}}$, Player I must choose incompatible extensions s_{n+1}^{0}, s_{n+1}^{1} of $s_{n}^{i_{n}}$; that is, $s_{n+1}^{0}, s_{n+1}^{1} \supsetneq s_{n}^{i_{n}}$, and $s_{n+1}^{0} \perp s_{n+1}^{1}$.

After infinitely many rounds, set $y=\bigcup_{n \in \omega} s_{n}^{i_{n}}$. Then Player I wins if and only if $\langle x, y\rangle \in F$. (In particular, if Player I wins then $y \in A$.)

1. Show that if Player I has a winning strategy in $G_{\mathrm{PS}}^{*}(F)$, then A contains a nonempty perfect set. (The converse can fail!)
2. Prove that Player II has a winning strategy in $G_{\mathrm{PS}}^{*}(F)$ if and only if A is countable.
3. Deduce that if $\boldsymbol{\Gamma}$ is a pointclass closed under continuous substitution and $\boldsymbol{\Gamma}$-DET holds, then every set in $\exists^{\omega^{\omega}} \boldsymbol{\Gamma}$ has the perfect set property. In particular, by the Gale-Stewart theorem, all $\boldsymbol{\Sigma}_{1}^{1}$ sets have the perfect set property; and if there is a measurable cardinal, then all $\boldsymbol{\Sigma}_{2}^{1}$ sets have the perfect set property.
Problem 4. Show that all $\boldsymbol{\Sigma}_{1}^{1}$ subsets of ω^{ω} have the Baire property.
Problem 5. Let $S^{1} \subset \mathbb{R}^{2}$ be the unit circle, and fix an irrational number γ. Let D be the orbit of $(1,0)$ under iterated rotation of S^{1} by $\gamma \pi$; that is,

$$
D=\left\{(\cos (k \gamma \pi), \sin (k \gamma \pi)) \in S^{1} \mid k \in \mathbb{Z}\right\}
$$

Show D is dense in S^{1}.
Problem 6. Let $S_{\infty}=\left\{f \in \omega^{\omega} \mid f\right.$ is a bijection $\}$. Recall S_{∞} is a group with multiplication given by function composition.

1. Show S_{∞} with the subspace topology inherited from ω^{ω} is a Polish space.
2. Show there is a sequence $\left\langle g_{n}\right\rangle_{n \in \omega}$ in S_{∞} so that $\left\{g_{n}\right\}_{n \in \omega}$ is a dense subset of S_{∞}, and generates a free subgroup of S_{∞}.
