DETERMINACY EXERCISES DAY 12

DEFINITION. Recall \mathcal{D}_T is the collection of Turing degrees. A set $A \subseteq \omega^{\omega}$ is called Turing invariant if it is a union of Turing degrees. Turing determinacy is the statement that whenever $A \subseteq \omega^{\omega}$ is Turing invariant, the game G(A) is determined.

PROBLEM 1 (Martin). Assume Turing determinacy. Show every set of Turing degrees either contains, or is disjoint from, a cone.

PROBLEM 2 (Erdös-Rado). (Uses choice.) Let κ be an infinite cardinal. Show there is a coloring $c: [\kappa]^{\omega} \to 2$ of the collection of countably infinite subsets of κ so that there is no infinite *c*-homogeneous subset of κ .

PROBLEM 3. In this exercise we use a determinacy argument to show that Σ_1^1 sets have the perfect set property. Let $F \subseteq \omega^{\omega} \times \omega^{\omega}$ and let $A = \exists^{\omega^{\omega}} F$. The **unfolded perfect set game** $G^*_{PS}(F)$ is played as follows:

Each $x(n) \in \omega$, $s_n^i \in \omega^{<\omega}$, and $i_n \in \{0,1\}$. The rules: Player I plays $x(0) \in \omega$ and s_0^0, s_0^1 with $s_0^0 \perp s_0^1$. Player II plays $i_n \in \{0,1\}$. Having fixed $s_n^{i_n}$, Player I must choose incompatible extensions s_{n+1}^0, s_{n+1}^1 of $s_n^{i_n}$; that is, $s_{n+1}^0, s_{n+1}^1 \supsetneq s_n^{i_n}$, and $s_{n+1}^0 \perp s_{n+1}^1$. After infinitely many rounds, set $y = \bigcup_{n \in \omega} s_n^{i_n}$. Then Player I wins if and only if

 $\langle x, y \rangle \in F$. (In particular, if Player I wins then $y \in A$.)

- 1. Show that if Player I has a winning strategy in $G^*_{PS}(F)$, then A contains a nonempty perfect set. (The converse can fail!)
- 2. Prove that Player II has a winning strategy in $G^*_{PS}(F)$ if and only if A is countable.
- 3. Deduce that if Γ is a pointclass closed under continuous substitution and Γ -DET holds, then every set in $\exists^{\omega} \Gamma$ has the perfect set property. In particular, by the Gale-Stewart theorem, all Σ_1^1 sets have the perfect set property; and if there is a measurable cardinal, then all Σ_2^1 sets have the perfect set property.

PROBLEM 4. Show that all Σ_1^1 subsets of ω^{ω} have the Baire property.

PROBLEM 5. Let $S^1 \subset \mathbb{R}^2$ be the unit circle, and fix an irrational number γ . Let D be the orbit of (1,0) under iterated rotation of S^1 by $\gamma \pi$; that is,

$$D = \{ (\cos(k\gamma\pi), \sin(k\gamma\pi)) \in S^1 \mid k \in \mathbb{Z} \}.$$

Show D is dense in S^1 .

PROBLEM 6. Let $S_{\infty} = \{ f \in \omega^{\omega} \mid f \text{ is a bijection} \}$. Recall S_{∞} is a group with multiplication given by function composition.

- 1. Show S_{∞} with the subspace topology inherited from ω^{ω} is a Polish space.
- 2. Show there is a sequence $\langle g_n \rangle_{n \in \omega}$ in S_{∞} so that $\{g_n\}_{n \in \omega}$ is a dense subset of S_{∞} , and generates a free subgroup of S_{∞} .