DETERMINACY EXERCISES WEEKEND 1

Recall that a set $P \subseteq X$ in a Polish space is **perfect** if it is closed, and every $x \in P$ is a limit point of P.

PROBLEM 1. If P is perfect and non-empty, then $|P| = \mathfrak{c}$.

DEFINITION. A set $A \subseteq X$ has the **perfect set property** if either A is countable, or ${\cal A}$ contains a non-empty perfect subset.

PROBLEM 2 (Cantor-Bendixon). Suppose $K \subseteq X$ is closed, with X a Polish space. Inductively define

• $K_0 = K$,

• $K_{\alpha+1} = K'_{\alpha} = \{x \in K_{\alpha} \mid x \text{ is a limit point of } K_{\alpha}\},$ and

• $K_{\lambda} = \bigcap_{\alpha < \lambda} K_{\alpha}$ for limit ordinals λ .

Show there exists $\alpha < \omega_1$ so that $K_{\alpha+1} = K_{\alpha}$, and that this K_{α} is perfect.

Conclude $K = P \cup C$ with P perfect and C countable. In particular, K has the perfect set property.

PROBLEM 3. Show, using the Axiom of Choice, that there is a set without the perfect set property.

Fix $A \subseteq \omega^{\omega}$. The **perfect set game** $G_{\rm PS}(A)$ is played as follows:

Ι	s_0^0, s_0^1		s_{1}^{0}, s_{1}^{1}		• • •	s_n^0, s_n^1		
Π		i_0		i_1			i_n	

Each $s_n^i \in \omega^{<\omega}$ and $i_n \in \omega$. Here are the rules: Player I plays s_0^0, s_0^1 with $s_0^0 \perp s_0^1$. Player II plays $i_n \in \{0, 1\}$. Having fixed $s_n^{i_n}$, Player I must choose incompatible extensions s_{n+1}^0, s_{n+1}^1 of $s_n^{i_n}$; that is, $s_{n+1}^0, s_{n+1}^1 \supsetneq s_n^{i_n}$, and $s_{n+1}^0 \bot s_{n+1}^1$. A play of this game produces $x = \bigcup_{n \in \omega} s_n^{i_n}$. Player I wins if and only if $x \in A$.

PROBLEM 4. Show Player I has a winning strategy in $G_{PS}(A)$ if and only if A contains a non-empty perfect subset.

PROBLEM 5. Show Player II has a winning strategy in $G_{PS}(A)$ if and only if A is countable.

PROBLEM 6. Show that if Γ is closed under continuous substitution, then Γ -DET implies every $A \in \Gamma(\omega^{\omega})$ has the perfect set property; in particular, AD implies that every set in ω^{ω} has the perfect set property.

PROBLEM 7. Show AD implies there is no injection $f: \omega_1 \to \omega^{\omega}$.

PROBLEM 8. Show (without choice) that AD_{ω_1} is false.