FORCING EXERCISES DAY 1

PROBLEM 1. Let κ, λ and μ be cardinals.

1. Show that $(\kappa^{\lambda})^{\mu} = \kappa^{(\lambda \cdot \mu)}$.

2. Show that $\kappa^{\kappa} = 2^{\kappa}$.

PROBLEM 2. Let A be an infinite set of size κ . Show that the set of all bijections from A to A has size 2^{κ} .

PROBLEM 3. Let κ and λ be cardinals with $\lambda \leq \kappa$ and κ infinite. We write $[\kappa]^{\lambda}$ for the collection of all subsets of κ of size λ . Show that the cardinality of $[\kappa]^{\lambda}$ is κ^{λ} .

PROBLEM 4. Show that the union of a set of cardinals is a cardinal.

PROBLEM 5. Suppose that $\langle \alpha_i \mid i < \lambda \rangle$ is an increasing sequence of ordinals cofinal in some cardinal κ . Show that $cf(\kappa) = cf(\lambda)$.

PROBLEM 6 (*). Working in ZF, show the Axiom of Choice is equivalent to the statement that for every ordinal α , $\mathcal{P}(\alpha)$ can be well-ordered.

PROBLEM 7 (*). Let κ be an infinite cardinal. Show there is a family \mathcal{F} of size κ of functions from κ^+ to κ^+ such that for all $\alpha, \beta < \kappa^+$ there is a function $f \in \mathcal{F}$ such that either $f(\alpha) = \beta$ or $f(\beta) = \alpha$.

PROBLEM 8 (*). Show there exists a sequence of functions $\langle f_{\alpha} \rangle_{\alpha < \omega_1}$ such that

• each $f_{\alpha} : \alpha \to \omega$ is one-to-one, and • for all $\alpha < \beta < \omega_1$, the set $\{\xi < \alpha \mid f_{\alpha}(\xi) \neq f_{\beta}(\xi)\}$ is finite.

PROBLEM 9 (*). Let κ be an infinite cardinal and \prec be a well-ordering of κ . Show that there is an $X \subseteq \kappa$ such that $|X| = \kappa$ and \prec and < agree on X.