FORCING EXERCISES DAY 3

PROBLEM 1. Give an example of a poset for which the antichains are exactly the almost disjoint families of subsets of ω .

PROBLEM 2. Recall the definition of *open* in a poset. Show that $MA(\kappa)$ is equivalent to the same statement where the word 'dense' is replaced with the words 'dense open'.

PROBLEM 3. An antichain is *maximal* if it is maximal under containment. Show that $MA(\kappa)$ is equivalent to the formulation where 'dense sets' is replaced with 'maximal antichains'.

DEFINITION 1. Let \mathbb{P} be a poset.

- 1. \mathbb{P} is σ -centered if there is a partition of into set P_i for $i < \omega$ such the for all i and all $p, q \in P_i$, p and q are compatible.
- 2. \mathbb{P} is \aleph_1 -Knaster if for every sequence $\langle p_\alpha \mid \alpha < \omega_1 \rangle$ of elements of \mathbb{P} , there is an unbounded $I \subseteq \omega_1$ such that for all $\alpha, \beta \in I$, p_α is compatible with p_β .

PROBLEM 4. Show that for a poset \mathbb{P} , σ -centered implies \aleph_1 -Knaster implies ccc.

PROBLEM 5. Let \mathbb{P} be as in the proof that MA implies $\mathfrak{b} = 2^{\aleph_0}$.

1. Give an explicit example of a maximal antichain in \mathbb{P} .

2. For each $k \in \omega$, show that $\{(p, A) \mid k \in \operatorname{range}(p)\}$ is not dense.

PROBLEM 6. Prove Theorem 4.3 from the notes. (There are hints in the notes.)