FORCING EXERCISES DAY 4

PROBLEM 1. Show that MA implies $\mathfrak{t} = 2^{\omega}$.

PROBLEM 2 (*). Show that MA implies $\mathfrak{s} = 2^{\omega}$.

PROBLEM 3. Suppose that $\{A_n \mid n < \omega\} \subseteq \mathcal{L}$ and for all $n, A_n \subseteq A_{n+1}$. Show that $\mu(\bigcup_{n < \omega} A_n) = \lim_{n < \omega} \mu(A_n)$.

PROBLEM 4. Show there is a dense G_{δ} (equivalently, Π_2^0) set with Lebesgue measure zero.

PROBLEM 5. We define a poset \mathbb{P} . Conditions are subsets of the interval (0, 1) which have positive Lebesgue measure and they are ordered by $p \leq q$ if and only if $p \subseteq q$.

1. Give a characterization of $p \perp q$ for $p, q \in \mathbb{P}$.

2. Show that if $\{p_n \mid n < \omega\}$ is an antichain, then $\mu(\bigcup_{n < \omega} p_n) = \sum_{n < \omega} \mu(p_n)$.

3. Show that \mathbb{P} is ccc.

PROBLEM 6. Do the following.

- 1. Show that every open subset of \mathbb{R} can be written as the union of open intervals with rational endpoints.
- 2. Show that there are exactly 2^{\aleph_0} open sets.

PROBLEM 7. Show that there are exactly 2^{\aleph_0} many Borel sets.

PROBLEM 8. Show that there are Lebesgue measure zero sets which are not Borel. (Hint: Think about the Cantor set.)