FORCING EXERCISES DAY 5

PROBLEM 1. Recall we say a set \mathcal{X} generates an ultrafilter on X if the smallest filter containing \mathcal{X} is an ultrafilter. We define the **ultrafilter number u** to be the smallest size of a generating set for a *nonprincipal* ultrafilter on ω .

- Show that $\omega < \mathfrak{u} \leq 2^{\omega}$.
- Show that MA implies $\mathfrak{u} = 2^{\omega}$.

PROBLEM 2. Let \mathcal{F} be a filter on ω and let $\langle a_n \mid n < \omega \rangle$ be a sequence of real numbers. Define $\lim^{\mathcal{F}} a_n = a$ if for every ϵ there is a set $A \in \mathcal{F}$ such that $|a - a_n| < \epsilon$ for all $n \in A$.

- 1. For which filter \mathcal{F} does this notion of convergence coincide with the usual one?
- 2. Suppose that \mathcal{U} is a nonprincipal ultrafilter on ω and that $\langle a_n \mid n < \omega \rangle$ is a bounded sequence of real numbers. Show that there is a unique $a \in \mathbb{R}$ such that $\lim^{\mathcal{U}} a_n = a$.

For the remainder of the problems and definitions κ is a regular cardinal.

DEFINITION 1. A set $C \subseteq \kappa$ is **closed** if for all $\alpha < \kappa$, if $C \cap \alpha$ is unbounded in α , then $\alpha \in C$. A set $C \subseteq \kappa$ is **club** if it is closed and unbounded in κ .

PROBLEM 3. Let C be the collection of subsets of κ that contain a club. Show C is a filter on κ . We call this filter the **club filter** on κ .

DEFINITION 2. Let λ be a regular cardinal. We say that a filter \mathcal{F} is λ complete if it is closed under intersections of size less than λ .

PROBLEM 4. Show that the club filter on κ is κ -complete.

DEFINITION 3. \mathcal{F} be a filter on κ . We say that \mathcal{F} is **normal** if for every sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ of elements of \mathcal{F} , the set

$$\triangle_{\alpha < \kappa} A_{\alpha} = \{ \alpha < \kappa \mid \alpha \in \bigcap_{\beta < \alpha} A_{\beta} \}$$

is in \mathcal{F} . This set is called the **diagonal intersection** of the sets A_{α} .

PROBLEM 5. Show that the club filter on κ is normal.

DEFINITION 4. A set $S \subseteq \kappa$ is stationary if for every club C in $\kappa, S \cap C \neq \emptyset$.

PROBLEM 6. Let S be a stationary subset of κ . Show that for every function $F: S \to \kappa$ such that for all $\alpha \in S F(\alpha) < \alpha$, there is a stationary set $S' \subseteq S$ on which F is constant.

PROBLEM 7 (*). Show that if \mathcal{U} is a Ramsey ultrafilter, then any $\chi : [\omega]^k \to l$ has a monochromatic set in \mathcal{U} .