## FORCING EXERCISES DAY 6

PROBLEM 1. Show that any two countable dense linear orders without endpoints are isomorphic.

PROBLEM 2. Let  $\kappa$  be a regular cardinal. Construct a tree of height  $\kappa$  with no cofinal branch.

DEFINITION 1. A tree T is well-pruned if it has a unique  $<_T$ -least element (that is,  $|\text{Lev}_0(T)| = 1$ ) and for all  $\alpha < \beta < \text{ht}(T)$  and for all  $x \in \text{Lev}_\alpha(T)$ , there is a  $y \in \text{Lev}_\beta(T)$  with  $x <_T y$ .

PROBLEM 3. Let  $\kappa$  be a regular cardinal. Construct a well-pruned tree of height  $\kappa$  with no cofinal branch.

PROBLEM 4. Let  $\kappa$  be a regular cardinal. Show that every  $\kappa$ -tree has a wellpruned subtree.

PROBLEM 5 (\*). Recall we said an  $\omega_1$ -tree  $(T, <_T)$  is normal if

- 1. T is well-pruned,
- 2. For every  $x \in T$ , the set of immediate  $<_T$ -successors of x is infinite,
- 3. If  $\lambda < \omega_1$  is a limit ordinal and  $x, y \in \text{Lev}_{\lambda}(T)$  have the same predecessors, then x = y.

Show that if there is a Suslin tree, then there is a normal Suslin tree.

DEFINITION 2. Let  $(T, <_T)$  be a partially ordered set. T is **splitting** if for every  $x \in T$  there are  $y_0, y_1 \in T$  such that  $x <_T y_0, x <_T y_1$ , and there is no  $z \in T$  such that  $y_0, y_1 \leq_T z$ .

PROBLEM 6. Let  $\kappa$  be a regular cardinal. Suppose that T is a well-pruned  $\kappa$ -tree with no cofinal branch. Show that T is splitting.

PROBLEM 7. Show that if T is a special  $\omega_1$ -tree, then T has no cofinal branch.

PROBLEM 8. Show that if T is a special  $\omega_1$ -tree, then T is not Suslin.

PROBLEM 9 (\*). Let  $\kappa$  be an uncountable cardinal. Suppose that T is a tree of height  $\kappa^+$  with levels of size less than  $\kappa$ . Show that T has a cofinal branch.

THEOREM 1 (Finite Ramsey Theorem). For every  $k < \omega$  there is  $n < \omega$  such that for every  $\chi : [n]^2 \to 2$  there is a monochromatic set of size k.

PROBLEM 10. Use the König Infinity Lemma and the infinite Ramsey Theorem to prove the finite Ramsey Theorem.