FORCING EXERCISES DAY 8

PROBLEM 1. Prove Proposition 9.3 from the notes.

PROBLEM 2. The Axiom Scheme of Collection asserts that for any definable property $\phi(u, v)$ and set a, if for every $x \in a$ there is y so that $\phi(x, y)$ holds, then there is a set b so that every $x \in a$ has such a $y \in b$. Formally,

 $\forall a[((\forall x \in a) \exists y \phi(x, y)) \rightarrow \exists b (\forall x \in a) (\exists y \in b) \phi(x, y)].$

(Note that unlike Replacement, we don't assume the y above is unique!) Prove that Collection follows from the axioms of ZF.

PROBLEM 3 (*). Show that "x is a well-founded relation" is absolute for transitive models of ZFC.

PROBLEM 4. Let X be a countable elementary substructure of some H_{θ} where θ is regular and uncountable. Note that X is not transitive!

- a. Suppose that $A \in X$ and $H_{\theta} \models$ "A is countable". Show that then $X \models$ "A is countable" and $A \subseteq X$.
- b. Show that $X \cap \omega_1 \in \omega_1$.
- c. Define a countable set of ordinals that is not a member of X.
- d. Show that $\omega_1 \in X$ if $\theta > \omega_1$.
- e. Define a subset of ω which is not a member of X.

PROBLEM 5. Let $\langle X_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of elementary substructures of H_{θ} for some regular uncountable θ such that $X_{\alpha} \in X_{\alpha+1}$ for all $\alpha < \omega_1$ and $X_{\gamma} = \bigcup_{\alpha < \gamma} X_{\alpha}$ for all limit γ . Show the following:

- a. For all $\alpha < \beta < \omega_1, X_{\alpha} \prec X_{\beta}$.
- b. $\{X_{\alpha} \cap \omega_1 \mid \alpha < \omega_1\}$ is club in ω_1 .
- c. There is a club C in ω_1 such that for all $\gamma \in C$, $X_{\gamma} \cap \omega_1 = \gamma$.

PROBLEM 6. A cardinal is called **inaccessible** if it's a regular limit cardinal; it's **strongly inaccessible** if in addition, $2^{\lambda} < \kappa$, for all $\lambda < \kappa$.

- a. Show that if κ is strongly inaccessible, then $V_{\kappa} \models \text{ZFC}$.
- b. Does $V_{\kappa} \models$ ZFC imply κ is an inaccessible cardinal?
- c. Show ZFC $\not\vdash (\exists \alpha) V_{\alpha} \models$ ZFC.

PROBLEM 7 (*). A theory T is **finitely axiomatizable** if there is a finite $\Sigma \subseteq T$ so that $\Sigma \vdash \phi$, for every sentence $\phi \in T$. Show ZFC is not finitely axiomatizable.

PROBLEM 8 (*). Is there a singular cardinal κ so that H_{κ} satisfies Replacement?