FORCING EXERCISES DAY 9

DEFINITION 1. A formula in the language of set theory is a Σ_1 -formula if it is of the form $\exists u\psi(u, v)$, where ψ is a Δ_0 -formula. A Π_1 -formula is one of the form $\forall u\psi(u,v)$. We say a formula $\phi(v)$ is a Δ_1 -formula if ZFC $\vdash \forall v(\phi(v) \leftrightarrow \sigma(v))$ and $\operatorname{ZFC} \vdash \forall v(\phi(v) \leftrightarrow \pi(v))$, where σ is Σ_1 and π is Π_1 .

PROBLEM 1. Show Δ_1 -formulas are absolute for transitive models of ZFC.

PROBLEM 2. Show the relations " $rk(x) = \alpha$ ", " σ is a P-name", " $\rho(\sigma) = \alpha$ " are all expressible by Δ_1 -formulas.

PROBLEM 3. Let τ be a signature, and fix a set X with U an ultrafilter on X. Suppose for each $i \in X$ that \mathcal{M}_i is a τ -structure with non-empty domain M_i . We will define a new τ -structure, the **ultraproduct of** $\{\mathcal{M}_i\}_{i \in X}$, as follows.

Let $\Pi_{i \in X} M_i$ be the collection of functions $f: X \to M_i$ such that $f(i) \in M_i$ for all *i*. For $f, g \in \prod_{i \in X} M_i$, define $f =_U g$ if and only if $\{i \in X \mid f(i) = g(i)\} \in U$.

1. Show $=_U$ is an equivalence relation.

- 2. Let $\Pi_U M_i$ be the set of equivalence classes [f] of $=_U$. We make $\Pi_U M_i$ the domain of a τ -structure \mathcal{M} as follows:
 - for constants c of τ , $c^{\mathcal{M}} = [i \mapsto c^{\mathcal{M}_i}];$

 - for function symbols $g, g^{\mathcal{M}}([f_1], \dots, [f_n]) = [i \mapsto g(f_1(i), \dots, f_n(i))];$ for relation symbols $R, R^{\mathcal{M}}([f_1], \dots, [f_n])$ holds if and only if the set $\{i \mid R^{\mathcal{M}_i}(f_1(i), \dots, f_n(i))\} \in U.$

Show the above interpretations are well-defined, and that \mathcal{M} so defined is a τ -structure.

3. Prove, for all formulas ϕ and functions f_1, \ldots, f_n , that

 $\mathcal{M} \models \phi([f_1], \dots, [f_n])$ if and only if $\{i \in X \mid \mathcal{M}_i \models \phi(f_1(i), \dots, f_n(i))\} \in U$.

PROBLEM 4. Use the construction of the previous exercise to prove the Compactness theorem.

For the following problems, let M be a countable transitive model of ZFC, and let $\mathbb{P} \in M$ be a poset.

PROBLEM 5. Suppose \mathbb{P} is non-atomic. Show there are continuum many \mathbb{P} generic filters over M.

PROBLEM 6. Suppose \mathbb{P} is not non-atomic. Show there is an \mathbb{P} -generic filter G in M.

PROBLEM 7. Show G is an M-generic filter if and only if G meets every dense subset of \mathbb{P} in M, is closed upwards, and any two conditions in G are compatible.

PROBLEM 8. Suppose $A \subseteq \mathbb{P}$ is a maximal antichain in M, and that τ_p is a P-name for each $p \in A$. Let $\pi = \{ \langle \tau_p, p \rangle \mid p \in A \}$. What is the cardinality of $\pi[G]?$