FORCING EXERCISES DAY 11

PROBLEM 1. Let $\mathbb{P} \in M$ be a poset, and let $p \in \mathbb{P}$. We say that a set D is **dense below** p if for every $q \leq p$ there is an $r \leq q$ with $r \in D$.

- 1. Show that if G is \mathbb{P} -generic and D is dense below $p \in G$, then $G \cap D \neq \emptyset$.
- 2. Let $\mathbb{P} \in M$ and $p \in \mathbb{P}$. Let ϕ be a formula of the forcing language. Suppose that the set $D = \{q \in \mathbb{P} : q \Vdash \phi\}$ is dense below p. Show that $p \in D$.

PROBLEM 2. Suppose G is \mathbb{P} -generic over M, where \mathbb{P} is countable (in M). Show that if A is an uncountable set of ordinals in M[G], then there is $B \subseteq A$, also uncountable (in M[G]), with $B \in M$.

Recall that a filter G is \mathbb{P} -generic over M if and only if it intersects every maximal antichain of \mathbb{P} that belongs to M. The following fact is very important!

PROBLEM 3 (Maximality of the Forcing Language). Show that whenever $p \Vdash$ $(\exists x)\phi(x,\tau_1,\ldots,\tau_n)$, there is a name $\sigma \in M^{\mathbb{P}}$ such that $p \Vdash \phi(\sigma,\tau_1,\ldots,\tau_n)$.

PROBLEM 4. An **automorphism** of a poset \mathbb{P} is a bijection $i : \mathbb{P} \to \mathbb{P}$ so that $p \leq q$ if and only if $i(p) \leq i(q)$. An *i* of \mathbb{P} in *M* induces a permutation of $M^{\mathbb{P}}$, which we also call *i*, by the following recursive definition for \mathbb{P} -names τ :

$$i(\tau) = \{ \langle i(\sigma), i(p) \rangle : \langle \sigma, p \rangle \in \tau \}.$$

- 1. Show that if $i : \mathbb{P} \to \mathbb{P}$ is an automorphism, then $i(\check{x}) = \check{x}$ for $x \in M$. 2. Let $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$. Prove $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ iff $i(p) \Vdash \phi(i(\tau_1), \ldots, i(\tau_n))$.

PROBLEM 5. The forcing \mathbb{C} of finite partial functions from ω to ω ordered by extension is commonly referred to as Cohen forcing. A Cohen real over Mis a function $c: \omega \to \omega$ such that the corresponding filter $G = \{p \in \mathbb{C} : p \subseteq c\}$ is \mathbb{C} -generic over M.

- 1. Show that if G is a \mathbb{C} -generic filter over M then the function $g = \bigcup G$ is a Cohen real over M. (So Cohen generic filters and Cohen generic reals are essentially the same thing).
- 2. Suppose that c is a Cohen real over M. Show that the function mapping nto c(2n) is also a Cohen real over M.
- 3. More generally suppose that $A \subseteq \omega$ is any infinite subset belonging to M. Let e_A enumerate A in increasing order. Show that the function mapping n to $c(e_A(n))$ is a Cohen real over M.
- 4. Give an example of an infinite $A \subseteq \omega$ belonging to M[c] such that the function mapping n to $c(e_A(n))$ is not a Cohen real over M.

PROBLEM 6. Let \mathbb{B} be the poset of finite partial functions from ω to 2.

- 1. Let G be \mathbb{C} -generic over M. Show that M[G] contains a filter H which is \mathbb{B} -generic over M. (Hint: generic filters are essentially reals).
- 2. Let G be \mathbb{B} -generic over M. Show M[G] contains a Cohen real over M.

FORCING EXERCISES

PROBLEM 7 (*). Let M a countable transitive model. Show there are Cohen reals c, d over M that are not both contained in any generic extension: indeed, so that no transitive $N \supset M \cup \{c, d\}$ with $N \cap \text{On} = M \cap \text{On}$ is a model of ZFC.