FORCING EXERCISES DAY 12

PROBLEM 1. Let $\mathbb{P} \in M$ be a separative partial order, and \dot{G} the canonical name for the generic filter. Show that $q \Vdash \check{p} \in \dot{G}$ if and only if $q \leq p$.

PROBLEM 2. A poset is **almost homogeneous** if for any $p, q \in \mathbb{P}$ there is an automorphism $i : \mathbb{P} \to \mathbb{P}$ such that i(p) and q are compatible.

1. Show that if I, J are sets with I infinite then the poset

 $\operatorname{Fn}(I, J) = \{p \mid \operatorname{dom}(p) \subset I \text{ is finite and } \operatorname{range}(p) \subseteq J\},\$

ordered by reverse inclusion, is almost homogeneous.

- 2. Suppose that \mathbb{P} is almost homogeneous and G is \mathbb{P} -generic. Let $x_1, \ldots, x_n \in \mathbb{P}$ *M*. Show that if $M[G] \vDash \phi(x_1, \ldots, x_n)$ then in fact $1 \Vdash \phi(\check{x_1}, \ldots, \check{x_n})$.
- 3. Conclude that if \mathbb{P} is almost homogeneous, then for any \mathbb{P} -generic filters G and H, M[G] and M[H] have the same first-order theory (we say M[G], M[H] are elementarily equivalent).

PROBLEM 3. Let \mathbb{P} be a poset, and let \mathbb{Q} be a dense set of \mathbb{P} , viewed as a subposet. Do the following.

- 1. If G is P-generic, then if we set $H = G \cap \mathbb{Q}$, we have that H is Q-generic. Further, $G = \{ p \in \mathbb{P} : (\exists q \in H) q \leq p \}.$
- 2. If H is Q-generic, then if we set $G = \{p \in \mathbb{P} : (\exists q \in H)q \leq p\}$ then G is \mathbb{P} -generic. Further, $H = G \cap \mathbb{Q}$.
- 3. If G and H are taken as in either of the two above, then M[G] = M[H].
- 4. Any Q-name is a P-name, and if $\tau_1, \ldots, \tau_n \in M^{\mathbb{Q}}$ then $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \phi(\tau_1, \ldots, \tau_n)$ if and only if $\mathbb{1}_{\mathbb{Q}} \Vdash_{\mathbb{Q}} \phi(\tau_1, \ldots, \tau_n)$. 5. For any $\tau \in M^{\mathbb{P}}$ there is a $\sigma \in M^{\mathbb{Q}}$ such that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \tau = \sigma$.

PROBLEM 4. Two forcing notions \mathbb{P} and \mathbb{Q} are **forcing equivalent** if for some \mathbb{P} -name σ and \mathbb{Q} -name τ , we have

- (a) $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} "\tau$ is a Q-generic filter."
- (b) $\mathbb{1}_{\mathbb{Q}} \Vdash_{\mathbb{Q}}$ " σ is a \mathbb{P} -generic filter."
- (c) If G is \mathbb{P} -generic then $G = \sigma[\tau[G]]$.
- (d) If H is Q-generic then $H = \tau[\sigma[H]]$.

Do the following:

- 1. Show that if \mathbb{Q} is a dense subset of \mathbb{P} , then the two are forcing equivalent.
- 2. Show that forcing equivalence is an equivalence relation.

PROBLEM 5. Let \mathbb{P} be a separative poset. For antichains $A_1, A_2 \subseteq \mathbb{P}$, we A_1 is a **refinement** of A_2 if for all $a_1 \in A_1$ there is $a_2 \in A_2$ with $a_1 \leq a_2$. Show the following are equivalent, for M a countable transitive model and κ a regular cardinal of M.

1. $M \models$ the intersection of κ -many dense open subsets of \mathbb{P} is dense open.

2. $M \models$ any collection of κ -many maximal antichains of \mathbb{P} has a common refinement.

3. Whenever $f : \kappa \to M$ is a function in M[G], then in fact f belongs to M. Such a poset is called κ -distributive.

PROBLEM 6 (*). Show that if $\mathbb{P} \in M$ is ccc and ω_1 -distributive (in M), then \mathbb{P} is trivial: for any \mathbb{P} -generic G, we have M[G] = M.