FORCING EXERCISES DAY 13

DEFINITION 1. A map $\pi : \mathbb{P} \to \mathbb{Q}$ is a **projection** if

1.
$$\pi(\mathbb{1}_{\mathbb{P}}) = \mathbb{1}_{\mathbb{Q}},$$

2. for all $p_1, p_2 \in \mathbb{P}$, $p_1 \leq p_2$ implies that $\pi(p_1) \leq \pi(p_2)$ and

3. for all $p \in \mathbb{P}$ and all $q \leq \pi(p)$, there is $p' \in \mathbb{P}$ such that $p' \leq p$ and $\pi(p') \leq q$.

Let $\pi : \mathbb{P} \to \mathbb{Q}$ be a projection.

PROBLEM 1. If G is \mathbb{P} -generic, then the upwards closure of $\{\pi(p) \mid p \in G\}$ is \mathbb{Q} -generic.

DEFINITION 2. Let κ be a regular cardinal. \mathbb{P} has the κ -chain condition (κ -cc) if every antichain of \mathbb{P} has size less than κ .

PROBLEM 2. If \mathbb{P} is κ -cc, then \mathbb{Q} is κ -cc.

PROBLEM 3. Let H be \mathbb{Q} -generic. In M[H] define a poset \mathbb{P}/H whose underlying set is $\{p \in \mathbb{P} \mid \pi(p) \in H\}$ and is ordered as a suborder of \mathbb{P} . (Note that M[H] is a perfectly good transitive model of ZFC, so we can force over it.) Let G be \mathbb{P}/H -generic over M[H]. Show that G is a \mathbb{P} -generic filter over M.

PROBLEM 4. Let \mathbb{C} be Cohen forcing. Define $\pi : \mathbb{C} \to \mathbb{C}$ by $\pi(p)(n) = p(2n)$ whenever 2n is in the domain of p. Show that π is a projection. (Notice that this solves Problem 5 part 2 from Day 11.)

PROBLEM 5. Let G be \mathbb{C} -generic. In M[G] define \mathbb{C}/G as above using π as in the previous problem. What is this poset? Can you give a concrete characterization?

PROBLEM 6. Let \mathbb{P} be countably closed forcing and let T be a tree of height ω_1 with no cofinal branch. Show that for all M-generic G, T has no cofinal branch in M[G].

PROBLEM 7. Let \mathbb{P} be countably closed forcing and $2^{\omega} = \omega_2$. Suppose that T is an ω_2 -tree. Show that if $b \in M[G]$ is a cofinal branch through T, then $b \in M$.

PROBLEM 8. Let \mathbb{P} be ω_1 -Knaster. Show that if T is a tree of height ω_1 with no cofinal branch, then for all M-generic G, T has no cofinal branch in M[G].

PROBLEM 9 (*). Suppose c is a Cohen real over M. Show in M[c] there exists a Suslin tree.