FORCING EXERCISES
 FOR THE SECOND WEEKEND

Problem 1. Suppose $p \Vdash \phi$ and ZFC $\vdash(\phi \rightarrow \psi)$. Then $p \Vdash \psi$. (You can assume $M[G]$ is a model of ZFC).

Problem 2. Do the following:

1. Show that for any formulas ϕ and ψ and $\tau_{1}, \ldots, \tau_{n} \in M^{\mathbb{P}}$ and $\sigma_{1}, \ldots, \sigma_{m} \in$ $M^{\mathbb{P}}$ we have that $p \Vdash \phi\left(\tau_{1}, \ldots, \tau_{n}\right) \wedge \psi\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ if and only if both $p \Vdash \phi\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $p \Vdash \psi\left(\tau_{1}, \ldots, \tau_{m}\right)$.
2. Show that for any formula ϕ and $\tau_{1}, \ldots, \tau_{n} \in M^{\mathbb{P}}, p \Vdash \neg \phi\left(\tau_{1}, \ldots, \tau_{n}\right)$ if and only if there is no $q \leq p$ such that $q \Vdash \phi$.
Problem 3. Suppose X is a proper elementary substructure of some H_{θ}, where $\theta>\omega_{1}$ is regular. Let M be the transitive collapse of X, with $\pi: M \rightarrow$ $X \prec H_{\theta}$ the inverse of the collapse map. The least ordinal α so that $\pi(\alpha) \neq \alpha$ is called the critical point of $\pi, \operatorname{crit}(\pi)$. Let κ be the image of the critical point, $\kappa=\pi(\operatorname{crit}(\pi))$.
3. Show κ is a regular cardinal.
4. Suppose $C \in X$ is a club in κ. Show $X \cap \kappa \in C$.
5. Suppose $\kappa>\omega_{1}$. Show there is a stationary $S \in X$ with $X \cap \kappa \notin S$.

Definition 1. Let \mathcal{M} be a structure, and fix an ultrafilter \mathcal{U} on a set X. We define the ultrapower of \mathcal{M} by $\mathcal{U}, \operatorname{Ult}(\mathcal{M}, \mathcal{U})$, to be the ultraproduct of $\left\{\mathcal{M}_{i}\right\}_{i \in \mathcal{U}}$, where every \mathcal{M}_{i} is \mathcal{M}. The ultrapower embedding is the map $j_{\mathcal{U}}: \mathcal{M} \rightarrow \operatorname{Ult}(\mathcal{M}, \mathcal{U})$ that takes an element $a \in M$ to the constant function with value $a, j_{\mathcal{U}}(a)=[i \mapsto a]$.

Problem 4. Show $j_{\mathcal{U}}$ is an elementary embedding.
Problem 5. Suppose that V_{δ} is a model of ZFC, and that $\mathcal{U} \in V_{\delta}$ is a nonprincipal countably complete ultrafilter; that is, if $\left\{A_{i}\right\}_{i \in \omega}$ is a collection of sets in \mathcal{U}, then $\bigcap_{i \in \omega} A_{i} \in \mathcal{U}$.

1. Show that \in as interpreted in $\operatorname{Ult}\left(V_{\delta}, \mathcal{U}\right)$ is a well-founded relation.

In light of this, we identify $\operatorname{Ult}\left(V_{\delta}, \mathcal{U}\right)$ with its transitive collapse, so that $j_{\mathcal{U}}: V_{\delta} \rightarrow \operatorname{Ult}\left(V_{\delta}, \mathcal{U}\right)$ is a map between transitive sets.
2. Show there is an ordinal $\kappa<\delta$ so that $j_{\mathcal{U}}(\kappa) \neq \kappa$. Prove the least such, $\operatorname{crit}\left(j_{\mathcal{U}}\right)$, is a strongly inaccessible cardinal.
3. $\left(^{*}\right)$ Show V_{δ} and $\operatorname{Ult}\left(V_{\delta}, \mathcal{U}\right)$ have the same ordinals, but are not the same set.
4. $\left(^{*}\right)$ Show there is a nonprincipal normal ultrafilter μ on $\kappa=\operatorname{crit}\left(j_{\mathcal{U}}\right)$. Further show that $\operatorname{crit}\left(j_{\mu}\right)=\kappa=[\mathrm{id}]_{\mu} \in \operatorname{Ult}\left(V_{\delta}, \mu\right)$, where id : $\kappa \rightarrow \kappa$ is the identity.
A cardinal bearing a normal ultrafilter is said to be measurable.

