FORCING EXERCISES FOR THE SECOND WEEKEND

PROBLEM 1. Suppose $p \Vdash \phi$ and ZFC $\vdash (\phi \to \psi)$. Then $p \Vdash \psi$. (You can assume M[G] is a model of ZFC).

PROBLEM 2. Do the following:

- 1. Show that for any formulas ϕ and ψ and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$ and $\sigma_1, \ldots, \sigma_m \in M^{\mathbb{P}}$ we have that $p \Vdash \phi(\tau_1, \ldots, \tau_n) \land \psi(\sigma_1, \ldots, \sigma_m)$ if and only if both $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ and $p \Vdash \psi(\tau_1, \ldots, \tau_m)$.
- 2. Show that for any formula ϕ and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$, $p \Vdash \neg \phi(\tau_1, \ldots, \tau_n)$ if and only if there is no $q \leq p$ such that $q \Vdash \phi$.

PROBLEM 3. Suppose X is a proper elementary substructure of some H_{θ} , where $\theta > \omega_1$ is regular. Let M be the transitive collapse of X, with $\pi : M \to X \prec H_{\theta}$ the inverse of the collapse map. The least ordinal α so that $\pi(\alpha) \neq \alpha$ is called the **critical point** of π , crit(π). Let κ be the image of the critical point, $\kappa = \pi(\operatorname{crit}(\pi))$.

- 1. Show κ is a regular cardinal.
- 2. Suppose $C \in X$ is a club in κ . Show $X \cap \kappa \in C$.
- 3. Suppose $\kappa > \omega_1$. Show there is a stationary $S \in X$ with $X \cap \kappa \notin S$.

DEFINITION 1. Let \mathcal{M} be a structure, and fix an ultrafilter \mathcal{U} on a set X. We define the **ultrapower of** \mathcal{M} by \mathcal{U} , $\text{Ult}(\mathcal{M}, \mathcal{U})$, to be the ultraproduct of $\{\mathcal{M}_i\}_{i\in\mathcal{U}}$, where every \mathcal{M}_i is \mathcal{M} . The **ultrapower embedding** is the map $j_{\mathcal{U}}: \mathcal{M} \to \text{Ult}(\mathcal{M}, \mathcal{U})$ that takes an element $a \in M$ to the constant function with value $a, j_{\mathcal{U}}(a) = [i \mapsto a]$.

PROBLEM 4. Show $j_{\mathcal{U}}$ is an elementary embedding.

PROBLEM 5. Suppose that V_{δ} is a model of ZFC, and that $\mathcal{U} \in V_{\delta}$ is a nonprincipal **countably complete** ultrafilter; that is, if $\{A_i\}_{i \in \omega}$ is a collection of sets in \mathcal{U} , then $\bigcap_{i \in \omega} A_i \in \mathcal{U}$.

- 1. Show that \in as interpreted in Ult $(V_{\delta}, \mathcal{U})$ is a well-founded relation.
 - In light of this, we identify $\text{Ult}(V_{\delta}, \mathcal{U})$ with its transitive collapse, so that $j_{\mathcal{U}}: V_{\delta} \to \text{Ult}(V_{\delta}, \mathcal{U})$ is a map between transitive sets.
- 2. Show there is an ordinal $\kappa < \delta$ so that $j_{\mathcal{U}}(\kappa) \neq \kappa$. Prove the least such, $\operatorname{crit}(j_{\mathcal{U}})$, is a strongly inaccessible cardinal.
- 3. (*) Show V_{δ} and $\text{Ult}(V_{\delta}, \mathcal{U})$ have the same ordinals, but are not the same set.
- 4. (*) Show there is a nonprincipal normal ultrafilter μ on $\kappa = \operatorname{crit}(j_{\mathcal{U}})$. Further show that $\operatorname{crit}(j_{\mu}) = \kappa = [\operatorname{id}]_{\mu} \in \operatorname{Ult}(V_{\delta}, \mu)$, where $\operatorname{id} : \kappa \to \kappa$ is the identity.

A cardinal bearing a normal ultrafilter is said to be **measurable**.