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Preface

Most mathematicians are at least aware of the Classification of Finite Simple
Groups (CFSG)—a major project involving work by hundreds of researchers. The
work was largly completed by about 1983; though final publication of the “qua-
sithin” part was delayed until 2004. And since the 1980s, the result has had a
huge influence on work in finite group theory, and in very many adjacent fields of
mathematics. This book attempts to survey and sample a number of topics, from
the very large and increasingly active research area of applications of the CFSG.

The book can’t hope to systematically cover all applications. Indeed the par-
ticular applications chosen were mainly provided by contacting colleagues who are
experts in many related areas. So the resulting collection of material might seem
somewhat scattered; however, I’ve tried to present the choices within contexts of
wider areas of applications, and I am grateful to the referee for helpful suggestions
in that direction.

Origin of the book, and structure of the chapters

This book began life as a series of 10 two-hour lectures, which I was invited to
give during the September 2015 Venice Summer School on Finite Groups.

The material in the book has been adapted only fairly lightly from that lecture
format: mainly in order to try to preserve the introductory, and comparatively
informal, tone of the original. The primary difference in the book form has been to
try to bring the cross-references, and the literature citations, up to the more formal
level expected in a published reference book.

I’ll mention briefly one particular feature of the chapters in the book, arising
from the lectures. Each original lecture was divided into two parts: typically, the
first part introduced some basic theory from a particular aspect of the CFSG; and
the second (“applications”) part then demonstrated ways in which that theory can
be put to use. The 10 lectures have now become the 10 chapters in this book
format; and the reader will notice, even from the Table of Contents, that the later
sections of each chapter usually reflect the applications-focus of the second part of
the original lecture.

Some notes on using the book as a course text

For those who wish to use the book as a course text:
The material is intended to be accessible to an audience with basic mathe-

matical training; for example, to beginning graduate students, with at least an
undergraduate course in abstract algebra. But preferably the background should
also include first-year graduate algebra, especially some experience with examples
of the most familiar types of groups; and ideally at least the basics of Lie algebras.

xi



xii PREFACE

It will also be helpful, at times, to have some exposure to various adjacent
areas of mathematics: for example, the fundamentals of algebraic topology and
homological algebra, and possibly also a little combinatorics.

Of course, the original audience for the lectures varied: from early graduate
students through postdoctoral researchers; and this variation led to the inclusion,
during the lectures, of some additional explicit background material and references,
at various levels.

The style of presentation is deliberately fairly informal: for example, state-
ments of some results (and even some definitions) are given with a warning such
as “roughly”. The purpose of course is to to communicate mainly just the overall
flavor of the original. These approximations are normally accompanied by fuller
references to the precise statements; since one main motivation for the survey is
to get the reader interested enough, for at least some of the topics, to pursue the
details—and maybe even look for research problems.

The book has retained the Exercises from the original lectures; typically without
providing solutions. But very often, these exercises come directly after a more
fully worked-out example; and the exercise is then to mimic that work for some
other groups—so that the example in effect provides a “hint” for the exercise.
Furthermore, some of the exercises also provide explicit hints, including reference
to sources where similar material is worked out. Finally, some exercises are detailed
further in appendix Chapter B.

The Appendix also provides some supplementary material to the text. Much
of this was generated during the lectures, in response to student questions—and
was originally provided to the students via pdf files on the Web, as the lectures
progressed.

The Index is intended to be substantial enough to help indicate where the main
ideas (and relevant papers) are used in practice. In particular, the most substantial
applications of many entries are indicated in boldface.

Boldface is also often used in the Index to indicate definitions; but there is
some variation in the level of these definitions: Fairly standard background con-
cepts, likely to be familiar to most readers, may be indicated in-passing in the
text, or recalled via a footnote. Definitions which are fairly brief may be indicated
in a LaTeX equation-environment; while longer definitions appear in a more for-
mal definition-environment. Finally, as noted earlier, definitions which are only
“roughly” approximated in the text should also be accompanied by a reference to
an appropriate source for the full details.

Acknowledgments
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CHAPTER 1

Background: simple groups and their properties

Of course the long-term goal of the CFSG is to be used in subsequent applica-
tions—in the many problems which reduce to simple groups.

For that purpose, we will first need the list of the simple groups in the CFSG;
but equally, we will need various properties of the groups in that list—and indeed
these features provide the main avenue for making those applications. So this initial
chapter gives the list of simple groups, and describes their basic properties.

Our first remark is perhaps obvious, but is important throughout this book:

Remark 1.0.1 (Use of the groups in the CFSG-list—regarded as an applica-
tion). (1) The CFSG proof uses induction on group order: namely for G a coun-
terexample to the CFSG of minimal order, and a proper subgroup H < G, we may
assume by induction that the simple composition factors of H are “known”—that
is, that they are among the conclusion groups in the CFSG-list (see Theorem 1.0.2
below). Such a group H, with known composition factors, is called a K-group in
the literature; where the K refers to that list of known groups.1

Thus we see that intermediate results within the CFSG proof itself can be
regarded as “applications”, at least of the CFSG-list ; and so are analogous with
applications of the proved-CFSG.

(2) And indeed more generally: we will also typically regard as an “applica-
tion” any work which references the groups in the CFSG-list and their properties;
even though that work might not necessary invoke the final statement of the CFSG
itself—namely that the list is complete. ♦

That said, let’s get started—with the fundamental CFSG-list:

Introduction: statement of the CFSG—the list of simple groups

Here is the usual summary-form [ALSS11, Thm 0.1.1] of the CFSG:

Theorem 1.0.2 (CFSG). A nonabelian2 finite simple group G is one of:
i) An alternating group An(n ≥ 5).
ii) A group of Lie type. (“Most” simple groups are of Lie type.)
iii) One of 26 sporadic groups.

1In much of the literature, K stands for the known simple groups. But in the GLS “revision-
ism” series, K also includes their quasisimple covers (cf. [GLS94, 21.2]). To prevent confusion,

here we will avoid using the abbreviation “K”, and instead write “the CFSG-list 1.0.2” for the
known simple groups.

2Warning: Often when I write “simple”, I implicitly mean “nonabelian simple”—of course,
the abelian simple groups are just those of prime order. Ideally this nonabelian-intention will

always be clear from the context.

1



2 1. BACKGROUND: SIMPLE GROUPS AND THEIR PROPERTIES

Note that the three classes in this summary don’t even include the names of the
groups. So in the next three corresponding sections, we expand on the above
summary—not just with their names, but also with a description of some of their
most basic properties.

As a standard source for properties of the simple groups (especially in this chap-
ter), I use “GLS3”—Gorenstein-Lyons-Solomon [GLS98]. But also Wilson’s excel-
lent book [Wil09] will be frequently cited. For elementary group theory, I often use
Aschbacher’s book [Asc00]; as well as GLS2—Gorenstein-Lyons-Solomon [GLS96].

What are some kinds of basic properties of a simple group G that we will be
interested in? To mention a few:
• subgroups (maximal; p-local; elementary abelian; p-rank mp(−); etc)
• extensions; outer automorphisms Out(G); Schur multipliers; etc)
• representations (permutation; linear—characteristics 0, and p; etc.)

This chapter will introduce some of those properties—typically with few details,
but indicating further references. Later chapters will develop various properties
more deeply, as needed.

So now, let’s turn to exploring the various types of simple groups in the CFSG
Theorem 1.0.2.

1.1. Alternating groups

Recall that An consists of the even permutations of n points, and that it is a
normal subgroup of index 2 in the full symmetric group Sn of all permutations.

Most mathematicians encounter these groups early on, typically in Galois the-
ory; and many probably regard them as fairly familiar, and easy to work with. So
we will frequently use An to provide comparatively elementary examples of various
concepts.

More typically, it is often convenient to instead use the full symmetric group Sn,
which is in fact almost-simple, in the sense of later Definition 1.4.7—in effect, this
means a simple group extended only by some outer automorphisms. It is usually
easy enough to adjust observations from larger Sn back to the simple subgroup An.

Remark 1.1.1 (Some properties of An and Sn). For fuller details, see sources
such as [GLS98, Sec 5.2] or [Wil09, Ch 5]. Here we extract here just a few fairly
standard observations;

(1) multiple transitivity—cf. Definition (1.6.1): Sn is n-transitive, and An
is (n−2)-transitive, on the n permuted points. Indeed Sn is transitive on partitions
of n of any fixed type. See later Section 1.6 for more on multiple transitivity.

(2) p-rank: See [GLS98, 5.2.10.a]. For odd p, mp(Sn) = mp(An) = bnp c. This

can be seen by partitioning n into parts of size p, as far as possible.
(3) Maximal subgroups: These are more subtle—see later Section 6.1. Indeed

we’ll give an informal preview of the analysis at the beginning of Chapter 6: The
“obvious” maximals arise as stabilizers of various structures on the n points; for
example, a (k, n− k)-partition is stabilized by a subgroup Sk ×Sn−k. Also, p-local
subgroups can sometimes be maximal. But beyond these, simple groups can also
arise as maximals—in an “unpredictable” way. The maximal subgroups are in fact
described in the O’Nan-Scott Theorem, which we discuss later as Theorem 6.1.1. ♦
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Exercise 1.1.2 (2-rank). How does mp(−) in 1.1.1(2) become more compli-
cated for p = 2? Hint: Consult e.g. [GLS98, 5.2.10.b] and its proof, if needed. ♦

Exercise 1.1.3 (other structures?). As in 1.1.1(3), find (when possible!) some
other structures and stabilizers, in small examples—such as S5, S6, S7, S8, etc.

Hint: There are no others for the prime degress n = 5, 7. But for n = 6,
a partition (2, 2, 2) is stabilized by the wreath product3 S2 o S3. This equal-sizes
partition provides a system of blocks of imprimivity , in the standard language of
later Definition 6.0.1. An exhaustive list of the possible structures can of course be
derived using the O’Nan-Scott Theorem 6.1.1. ♦

1.2. Sporadic groups

In the usual ordering of the simple groups in the CFSG-list 1.0.2, the Lie-type
groups would come next. But we had informally remarked, in that statement, that
“most” simple groups have Lie type; and we will wish to devote a fair amount of
time in this chapter to the very rich structure available in that important model-
case of Lie-type groups. So first, in this section, we will present our much briefer
discussion of the sporadic groups.

The term sporadic here means just: not fitting into any natural infinite family
(such as the alternating groups; or the linear groups; or the orthogonal groups; etc).
That is, we combine the 26 sporadics as one “case” in the CFSG; but in effect, they
give 26 separate exceptional cases.

Hence for reasons of space, we won’t attempt to provide any substantial details
on their individual properties. For fuller reference, we point the reader to standard
sources: we have mainly used [GLS98, Sec 5.3]; but cf. also Wilson [Wil09, Ch 5],
and the Atlas [CCN+85], and Griess [Gri98], and Aschbacher [Asc94].

Here we will instead just select a few sample properties, to try to give some of
the flavor of sporadic groups.

Remark 1.2.1 (Naming conventions). We mention first of all that these groups
are usually just named after their discoverers, and denoted by an abbreviation of
that name; with a subscript in the case of an author discovering several groups: for
example, Co2 for the second Conway group (see below).

But the literature also contains a number of variant-notations; typically given
by adding the name of the researcher who first gave an explicit construction of the
group: For example, the group discovered by Harada is most frequently denoted
by HN—reflecting in addition the construction of the group by Norton.

The convention of this book is usually to use the shorter name—such as J2 for
the second Janko group, rather than HaJ indicating the construction by M. Hall.
The reader moving on to the primary literature can consult basic sources such as
the Atlas [CCN+85] or [GLS94, Table I, pp 8–9] for further variant-notations. ♦

3Recall for B a permutation group of degree d, the wreath product A o B means a direct
product of d copies of A—which are then permuted naturally by B.
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In spite of their individuality, there are connections among various sporadic
groups. In fact, some of them can be viewed as belonging to “families”:

The Mathieu groups: M11 < M12 and M22 < M23 < M24. These arise
as permutation groups, of the degree indicated by the subscript. In the context
of multiple transitivity (1.6.1), they are exceptional in that their action is 3-, 4-,
or 5-transitive. But they can also be instructively viewed in their actions on Steiner
systems S(5, 6, 12) and S(5, 8, 24); and on the (extended) perfect ternary and binary
Golay codes. For these terms and other details, see the discussion of these groups
in e.g. the Atlas [CCN+85].

We mention that the Mathieu groups were discovered in the 1860s; and no more
sporadic groups were found for about a century. All the others, described below,
were discovered in an intense burst of activity during the 1960s and 1970s.

The Conway groups: {Co3, Co2} < Co1. These arise from subgroups of
the automorphism group of the 24-dimensional Leech lattice; for this lattice and
details, again see the discussion of these groups in the Atlas [CCN+85, p 180].
The subgroups Co3 and Co2 in fact arise as stabilizers of vectors in the lattice
with (suitably-normalized) lengths 3,2. Indeed sub-stabilizers inside them give one
possible approach to some further sporadic groups indicated below, namely HS
and McL. Furthermore Co1 also involves as sections4 some more of the sporadic
groups, namely M12, M24, J2, and Suz.

The Fischer groups: Fi22; Fi23 < Fi′24. Here the subscript n in Fn indicates
that Fn contains a 2-local subgroup of structure5 Vn : Mn—where Mn indicates the
Mathieu group M22, M23, or M24; acting on an elementary-abelian 2-subgroup Vn,
which arises as a suitable section of the cocode module. This module is the quotient
of 24-space over F2 by the 12-dimensional subspace given by the Golay code, which
we indicate in our discussion leading up to later Example 3.3.14.

These groups are exceptional in being the only almost-simple groups G, other
than the symmetric groups and some classical matrix groups, to be generated by a
conjugacy class C of:

(1.2.2) 3-transpositions: for x, y ∈ C, xy has order 1, 2, or 3.

Some other sporadic groups also arose via related transposition-like properties.

The Janko groups: J1, J2, J3, J4. These were all discovered by Janko—but
in different contexts, so they are not really inter-related. However, the latter three
are among the fairly many sporadic groups with a large extraspecial subgroup—see
later Definition 8.1.3 and the subsequent discussion, as well as that of the treatment
of branch (3) of the Trichotomy Theorem 2.2.8.

4Recall section means a quotient of a subgroup.
5The colon in an expression A : B indicates a semidirect product: having a normal sub-

group A, with A ∩B = 1; but B may act nontrivially on A.
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The Monster series: In the Atlas [CCN+85, p 231], these groups are de-
noted by F5, F3, F2, F1. They arise from automorphisms of the 196884-dimensional
Griess algebra; for this algebra see the discussion of the Monster F1 in e.g. the At-
las [CCN+85, p 228]. The subscript n in Fn indicates that Fn is involved in the
centralizer in F1 of a suitable element of order n. In fact the earlier, and still more
customary, names and notation for the groups are: the Harada-Norton group HN ,
the Thompson group Th, the Baby Monster BM discovered by Fischer, and the
Monster M discovered by Fischer and Griess. It turns out that 20 of the 26 sporadic
groups are involved as sections of the Monster.

The others: There are 7 more sporadic groups, mostly independent of the rest:
the Held groupHe; the Higman-Sims groupHS; the Lyons group Ly; the McLaugh-
lin group McL; the O’Nan group O′N , the Rudvalis group Ru; and the Suzuki spo-
radic group Suz. There are only occasional inter-relations among these, e.g.: Some
arise as rank-3 permutation groups—see later Definition 4.3.1 and the subsequent
discussion; some appear in the Leech-lattice context indicated above; etc.

As promised, we now turn to a more extensive discussion of the “model case” for
simple groups:

1.3. Groups of Lie type

We had commented, in stating the CFSG-list 1.0.2, that “most” simple groups
are of Lie type. For example, we’ll see in Remark 1.3.18 that this class contains 16
infinite families of groups. Indeed, since the development of the theory of Lie-
type groups in the 1950s, their role in finite group theory has become more and
more central; certainly students beginning in group theory will want to build up
a comfortable familiarity with these groups. Hence in this section, we will try to
present a somewhat fuller introduction to the Lie-type groups, than we did for the
alternating and sporadic classes in the previous two sections.

The material below can be found in many standard sources; indeed because of
space limitations, we’ll often just give terminology and statements, without fully
detailed definitions—so the reader may wish, for fuller reference, to continue to the
relevant literature.

For example: I often tend to refer to Carter’s book [Car89],6 which approaches
the material via the Chevalley construction of the groups; we will sketch the con-
struction later in this section. Some prefer Carter’s later book [Car93], which ap-
proaches the groups via fixed points of automorphisms of infinite algebraic groups—
a viewpoint we will touch on more briefly, toward the end of the section. A further
traditional source is given by the lecture notes of Steinberg [Ste68]; and a great
deal of useful information is conveniently collected in Chapters 1–4 of the more
recent [GLS98].

Prior to sketching the fully general Lie-theoretic context, we first explore various
features, in the more familiar explicit examples given by:

6(Note to students:) mainly because it’s the one I learned from—as a postdoc, in the Caltech
group theory seminar around 1974.
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The classical matrix groups. These are the usual linear, unitary, symplec-
tic, and orthogonal groups—defined over finite fields.

Here are some additional sources for classical groups: a traditional reference
is Artin [Art88b]; but see also the more recent treatments of Taylor [Tay92] or
Wilson [Wil09, Ch 3,4].

The linear groups. We had commented before Remark 1.1.1 that the symmetric
group Sn, consisting of all permutations of n points, is perhaps the most accessible
example of a permutation group—though this almost-simple group is slightly larger
than simple An.

Analogously, the full linear group GLn(q) of dimension n, consisting of all
invertible matrices, is (though again it’s not quite simple) the most natural and
accessible example among the classical groups—and indeed among all the Lie-type
groups. In particular, using it allows us to demonstrate many concepts, just by
drawing pictures of square matrices. We collect some basic features of the group:

Remark 1.3.1 (The linear group GLn(q)—as Standard Example). We recall
that the general linear group GLn(q), for a power q = pa of a prime p, is the group
of all n× n invertible matrices over the field Fq. We refer to the charactistic p—of
the field—also as the characteristic of the group GLn(q).

Largely in analogy with our earlier comparison of Sn to An: The general linear
group GLn(q)—when considered modulo the central subgroup of scalar matrices,
as PGLn(q)—becomes almost-simple as in Definition 1.4.7. In fact, its commutator
subgroup is given by the special linear group SLn(q), namely the determinant-1
matrices—which usually7 is just quasisimple.8 And then the quotient modulo the
central scalars, namely the projective special linear group Ln(q) := PSLn(q), is
the corresponding simple group. Nonetheless, again much like Sn, using GLn(q) is
“close enough” for most expository purposes—since it is typically easy enough to
transfer properties of interest over to its simple section Ln(q).

Usually we realize GLn(q) via its natural action: by multiplication from the
right, on row-vectors of an n-dimensional vector space over Fq—which we typically
denote by V ; we call V the natural module for the group. ♦

As we proceed, we will encounter many more analogies between Sn and GLn(q).
One reason for the relationship is that Sn is the Lie-theoretic Weyl group ofGLn(q)—
cf. later 1.3.20.

In introducing properties of the linear group, we start with the vector-space
analogue of the multiple- and partition-transitivity of Sn in 1.1.1(1):

Remark 1.3.2 (Flag-transitivity of GLn(q)). If we fix a choice of dimensions
(adding up to n) for a set of subspaces Vi of V , then GLn(q) is transitive on the set
of direct-sum decompositions of the form V = V1⊕V2⊕ · · · . Similarly the group is
transitive on flags V1 < V2 < · · · in V , again with a fixed choice of dimensions for
the Vi. This latter property is called flag-transitivity . These transitivity statements
are consequences of the usual linear-algebra statement about existence of a linear
self-map transforming one basis to any other; in more group-theoretic language,
that statement just expresses the conjugacy of bases under GLn(q).

7That is, away from some small dimensions, and small fields—see later 1.3.17.
8Recall L quasisimple means that L/Z(L) is simple, and L is perfect (L = [L,L]).
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Later at 1.3.5 and 1.3.20(7), we will get analogous notions of flag-transitivity
for other classical groups, and indeed for all Lie-type groups; suitable analogues
even also hold for certain sporadic groups. This property of flag-transitivity is very
heavily used in applications. ♦

There are also analogies between certain subgroups of Sn and GLn(q), including
some maximal subgroups. For example, for Sn consider the partition stabilizers,
including the maximal subgroups indicated in 1.1.1(3). These correspond with
certain subgroups of GLn(q), which we now explore in a fairly concrete setting:

Later in the section at 1.3.20, we will be describing these subgroups more ab-
stractly as parabolic subgroups. But before working in that abstract setting, we will
first approach these subgroups from the more elementary, but equally important,
viewpoint of p-local subgroups: that is, as the normalizers of non-trivial p-subgroups.
Here for the prime p, we are focusing just on the characteristic prime p of GLn(pa).
As promised earlier, we can begin to use matrix-pictures to illustrate the concepts:

Example 1.3.3 (The Sylow normalizer etc of GL3(q)). For convenience, we
use the small dimension n = 3; larger dimensions yield similar pictures. Consider
the subgroup B of lower-triangular matrices. We can express B as a semi-direct
product U : H, where:

U :=

 1
∗ 1
∗ ∗ 1

 , H :=

 ∗ ∗
∗


Here the lower-unitriangular subgroup U is a p-group—it is even a Sylow p-subgroup
of GLn(q). So is the transpose U− of U , the upper-unitriangular group; and one
finds that 〈U,U−〉 = SLn(q)—that is, they generate most of GLn(q).

We also find that B is the Sylow normalizer: namely NG(U) = UH = B,
using the above subgroup H of diagonal matrices. Furthermore the monomial
matrices, corresponding to linear transformations which just permute the members
of the standard basis, are given by HW , where W is the subgroup of permutation
matrices. Indeed usually HW = NG(H)—except when q = 2 so that H = 1. (For
a general Lie-type group, the monomial subgroup “N” with N/H ∼= W arises as
an apartment stabilizer, in the language around later (7.2.7).)

The experienced reader will of course notice that our notation here is chosen for
consistency with the conventions of general Lie-type groups, later in the section—
notably Remark 1.3.20. ♦

We note that B above is the stabilizer of a maximal (or full) flag V1 < V2,
consisting of 1- and 2- dimensional subspaces of V .

Similarly for a full decomposition V = X1 ⊕X2 ⊕X3 into 1-dimensional sub-
spaces Xi: we see first that H above is the stabilizer of the individual subspaces;
while its three diagonal positions are in turn permuted by the permutation ma-
trices W ∼= S3. This decomposition is the analogue in the 3-dimensional vector
space V of the trivial (1, 1, 1)-partition of the 3 points for the symmetric group; the
latter has trivial blockwise stabilizer, and blocks permuted by the full S3. Thus
the subgroup B of the linear group corresponds with a partition stabilizer in the
symmetric group—in this case, given by the full S3.
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Now we may as well turn from the small case n = 3 back to general n. Then
corresponding to the stabilizer in Sn of a k-set—or equivalently of the stabilizer of
the (k, n− k)-partition in 1.1.1(3)—we have:

Example 1.3.4 (The k-subspace stabilizer in GLn(q)). We examine the sub-
group of GLn(q) stabilizing the k-subspace Vk—generated by the first k basis vec-
tors. In the literature, this is sometimes denoted just by Pk; but for consistency
with our later notation for parabolic subgroups in Remark 1.3.20(4) (and its im-
plementation for the present group in Example 1.3.21), we instead write Pk̂. Then
we find that Pk̂ is a product Pk̂ = Uk̂ : Lk̂, where:

Uk̂ :=

(
Ik 0
∗ In−k

)
, Lk̂ :=

(
GLk(q) 0

0 GLn−k(q)

)
Here Uk̂ is also a p-group; with NG(Uk̂) = Uk̂Lk̂ = Pk̂. Further NG(Pk̂) = Pk̂;
indeed Pk̂ is a maximal subgroup of GLn(q).

In this example, note that Uk̂ acts trivially on Vk, and on the quotient V/Vk;
while Lk̂ is the product of the natural GLk on Vk, with the GLn−k on V/Vk. ♦

The classical matrix groups of forms—unitary, symplectic, orthogonal. These
are the subgroups of GLn(q) preserving suitable forms (e.g. bilinear) on V : a
symmetric form, giving the orthogonal group Ωn(q); an anti-symmetric form, giving
the symplectic group Sp2n(q); or a conjugate-symmetric form, giving the unitary
group Un(q).

Again see the recommended sources, for example [Car89, Ch 1], for full defini-
tions and details. Some examples in small dimensions are developed in Section 2.1
of [Smi11]; these may be helpful in some of the Exercises below. Here, we will just
briefly mention a number of analogies of these groups with the linear groups.

First, they similarly provide good examples—since we can still draw pictures
of square matrices.

Next, we get analogues of the flag-transitivity properties in 1.3.2:

Remark 1.3.5 (Witt’s Lemma and flag-transitivity for forms). One property
crucial for our purposes is Witt’s Lemma. See e.g. [GLS98, 2.7.1] for a detailed
statement; very roughly: This gives the vector-space analogue of earlier 1.3.2, which
described GLn(q) on decompositions; namely transitivity of the group on suitable
decompositions of the natural module V . Here, the summand subspaces W should
be appropriately natural for the form: typically nondegenerate—that is, with zero
radical, namely W ∩W⊥ = 0; or contrastingly, totally isotropic—with W ≤W⊥.

Similarly the Lemma gives transitivity on flags of isotropic subspaces; and this
is the appropriate notion of flag-transitivity for the classical groups of forms. ♦

Finally: subject to a choice of basis appropriate to the form, we get ana-
logues of the structural results on p-local subgroups in Examples 1.3.3 and 1.3.4.
For example: the unitriangularity of a Sylow p-subgroup, as well as the product
form B = UH for its normalizer; along with the product form Uk̂Lk̂, as well as
maximality, for the isotropic k-space stabilizers Pk̂.

Exercise 1.3.6 (Practice with forms). In several examples of small-dimensional
groups of forms, verify the above remarks about analogies with the linear case.
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Hint: I have in mind examples like those in [Smi11, 2.1.18—2.1.25]. In partic-
ular: It is customary to decompose the space V via a basis consisting of mutually
orthogonal hyperbolic pairs; namely isotropic vectors a, b with (a, b) = 1. In most
sources, these pairs are taken adjacent, in an ordered basis. However, if you split the
pairs, spacing them at opposite ends of the ordering (that is, hyperbolic pairs v1, vn
and v2, vn−1 etc), then matrices preserving the form will have some symmetry about
the “anti”-diagonal (�). For example, a p-Sylow U will be lower-unitriangular. ♦

This completes our introductory overview, of the more concrete classical matrix
groups. So we now turn to the more abstract context, which unifies all the groups
of Lie type:

A high-speed sketch of the theory of Lie-type groups. The theory of
Lie-type groups was developed around the 1950s: as a single unified context for
many types of simple groups—including the classical matrix groups above. In
quick summary, the idea is to imitate parts of the Lie theory in characteristic 0:
in which simple complex Lie groups arise via connections with simple complex Lie
algebras.

There are in fact two main approaches to the finite groups of Lie type: We’ll
mainly follow the somewhat more concrete Chevalley construction, which produces
a suitable version of classic matrix exponentiation; but we’ll close the section with
some brief remarks on the other approach, via fixed points in infinite algebraic
groups.

Both of these approaches naturally require some background from Lie algebras;
so before discussing exponentiation, we first present a few pages of corresponding
preliminary material:

Some features of simple Lie algebras over C. One standard reference for this
material is the book of Humphreys [Hum78]; and I also like Varadarajan [Var84]—
for the detailed relationship of the Lie algebras with Lie groups over C. As before,
below we will essentially just indicate terminology and results—with occasional
references given for full definitions and details.

The simple Lie algebras G defined over the complex numbers C were classi-
fied by Cartan and Killing in the 1890s; see e.g. [Hum78, 11.4]. In the lengthy
Remark 1.3.7 below, we collect together many features of the standard setup used
for such G; and we will give the classification at subsequent Remark 1.3.11. The
reader not yet familiar with Lie algebras may wish to first skip down to the exam-
ple given as 1.3.10—and read it concurrently with the onslaught of notation now
approaching:

Remark 1.3.7 (Lie algebras and their root systems). The simple Lie algebra G
has a self-normalizing nilpotent9 subalgebra H, called a Cartan subalgebra. It is
abelian: we have [H,H] = 0 in the Lie multiplication [−,−]; and its dimension n
is called the Lie rank of G. The action of g ∈ G by right multiplication [−, g] on G
itself determines the adjoint representation of G. And the representation theory10

of Lie algebras on general modules, when applied to the special case of the adjoint

9Recall this means products [u1, [u2, · · · , [uk−1, uk] · · · ], are 0 for k ≥ some fixed M .
10Cf. aspects of the analogous representation theory for groups, at Remark 5.2.3.
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module G and especially to the action of H on it, leads to the very special properties
of the algebra’s root system, which we now sketch:

First the action of H on G is completely reducible—into irreducible subspaces,
which are in fact 1-dimensional since H is abelian. The eigenvalues of H, on any
such invariant subspaceX of dimension 1, define a linear functional α : H → X ∼= C;
so we may naturally regard α as a member of the dual space H∗ = HomC(H,C).
On a general G-module, α is called a weight , and such an X a weight space; but on
the special case of the adjoint module G, α is called a root (when non-zero) and X
a root space. Using a natural inner product on H called the Killing form, duality
gives a natural isomorphism H∗ ∼= H; so we may also regard weights and roots as
vectors in H. Indeed it turns out that the image of the weights in fact falls into a
Euclidean subspace Rn ⊆ Cn ∼= H. Thus we can regard the weights (including the
roots) as vectors in a real space—with corresponding lengths and angles. And we
get many strong restrictions on the configuration of these root vectors:

We begin with a Cartan decomposition of the algebra, which has form:

(1.3.8) G = U+ ⊕H⊕ U−.

Recall that the Cartan subalgebra H is abelian; so its action determines the zero-
functional—which we do not consider a root. The subalgebra U+ is nilpotent; and
the same holds for the negative analogue U−. We write Φ+ for the roots occurring
on U+, and call them the positive roots; and similarly Φ− for those occurring on U−,
and call them the negative roots. And it turns out that, in our view of the roots
as vectors in Rn, we do in fact have Φ− = −Φ+. We set Φ := Φ+ ∪ Φ−, and
call this union the root system for G. For each root α ∈ Φ, it turns out that the
full subspace Uα affording the functional α is exactly 1-dimensional (on a general
module, that full weight space might conceivably have been larger); Uα is called
the root subspace for α. Thus the dimension of U+ is given by the size |Φ+|, with
similar remarks for U−; this important dimension-value is often abbreviated by N .

We mention an important property of weight and root spaces: If Vλ is the
weight space for λ under H on a module V , then for a root space Uα we have:

(1.3.9) [Vλ,Uα] ⊆ Vλ+α.

For example, nilpotence of U+ follows, using this along with finiteness of Φ+.
The terminology of positive and negative roots is natural in an even stronger

sense: The set Φ+ contains a simple system Π of size n, called the simple roots:
These not only give a basis for Rn, but in fact span the root system Φ, using
integer coefficients: indeed the positive roots Φ+ are determined via nonnegative
integer coefficients; and hence the negative roots Φ− = −Φ+ are determined via
nonpositive integer coefficients.

Also there are only a few possibilities for angles between roots; and there at
most two lengths for roots—if both occur, they are called long and short roots.

Finally there is an associated finite group W of permutations of Φ, called the
Weyl group. The root system Φ, and correspondingly the Weyl group W , can be
axiomatized by means of a Dynkin diagram: a graph in which the vertices are the
simple roots; and the number of edges or “bonds” between any pair encodes the
angle between those simple roots. In particular, the absence of any bonds at all (a
disconnected pair) indicates perpendicularity. ♦
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We will list the possible Dynkin diagrams and root systems below, in Remark 1.3.11.
But first we explore some of these concepts in a small example:

Example 1.3.10 (Some features of the Lie algebra sl3(C)). We mention that
the 3× 3 matrix pictures in the earlier group-Example 1.3.3 will still be suggestive,
in the following algebra-situation:

We consider G := sl3(C), namely the 3 × 3 trace-0 matrices—with the Lie-
algebra multiplication (“bracket”) from the additive commutator [x, y] := xy− yx;
that is, by anti-symmetrizing the usual associative matrix multiplication xy. A
standard linear-algebra fact about the trace, namely Tr(xy) = Tr(yx), shows that
the trace-0 condition is preserved by this Lie bracket.

Here one finds that a Cartan subalgebra H is generated by diagonal matri-
ces hα := diag(1,−1, 0) and hβ = diag(0, 1,−1). Since H has dimension 2, the
algebra G has Lie rank 2. Below we summarize some features, resulting from cal-
culating the action [−,H] on G:

The 8-dimensional algebra G has Cartan decomposition as in (1.3.8), where U±
are the 3-dimensional nilpotent subalgebras given by strictly lower-triangular, and
stricly upper-triangular, matrices.

Now H acts on the 1-subspaces from the obvious bases for these subalgebras:
Namely let ei,j denote the “matrix unit”—with 1 in the (i, j) position and 0 else-
where. We get U+ from the cases with i > j, and U− from i < j. The action
of H on the the three 1-spaces for i > j determines three corresponding linear func-
tionals H → C; and we find they have the linear-dependence relation α, β, α + β;
where α is exhibited on the root space generated by uα := e2,1, and β on uβ := e3,2.
Furthermore we check that [uβ , uα] = e3,1, and we call this latter element uα+β .

Thus α and β are positive roots, arising on the immediately-subdiagonal po-
sitions, and they give a simple system Π; with N = 3 roots in the positive sys-
tem Φ+ = {α, β, α + β}, whose root spaces generate the positive nilpotent sub-
algebra U+. (These matrices look much like the group U in 1.3.3—but with the
diagonal set to 0, since they are nilpotent.) And the negatives of these function-
als arise on the super-diagonal transposes of these matrices; giving the negative
roots Φ− and nilpotent subalgebra U−.

When we work in the R-span of Φ inside H∗, the functionals α and β are at
an angle of 2π

3 ; and this angle corresponds to a single bond in the conventions for
Dynkin diagrams, so that the resulting diagram is of the type called A2 (◦ − ◦) in
the context of Remark 1.3.11 below. All six roots of Φ have the same length.

Finally the Weyl group W ∼= S3 corresponds to the 3×3 permutation matrices;
its natural permutation-module action, on the 3-dimensional diagonal subspace in
the larger algebra gl3(C) of all 3× 3 matrices, induces a “reflection” action on the
subspace of dimension 2 given by our Cartan subalgebra H.

See e.g. [Car89, Sec 3.6(i)] for a more formal description of the A2 root system.
And we mention that some other small examples of root systems (beyond type A2

here) will be featured in later Exercise 1.3.22, and are explored fairly explicitly in
the corresponding appendix Remark B.1.1.

For the above, the actual calculations with 3 × 3 matrices of the underlying
action [−,H] are routine—if tedious; you can easily check them in your favorite
computer-algebra package. But I’m not aware of any source that does such an ex-
plicit example, fully demonstrating such calculations. Ideally a Lie-algebras course



12 1. BACKGROUND: SIMPLE GROUPS AND THEIR PROPERTIES

might do so. However, I believe that you should do such a calculation yourself,
at least once in your life;11 in order to get some more concrete feeling for what is
actually going on in the abstract theory. ♦

In fact the Cartan-Killing classification of the algebras G proceeds by first
classifying the corresponding root systems Φ—via their geometry: Roughly: there
are very strong restrictions on the possible angles between roots (considered as
vectors in Rn); leading to just a few configurations. The final result is usually
presented via the associated Dynkin diagrams, in the following picture—which has
become fundamental across many areas of mathematics:

Remark 1.3.11 (The Dynkin diagrams and root systems). A simple Lie al-
gebra G over C must have a root system Φ corresponding to one of the Dynkin
diagrams in the table below—often called the Lie types. The notation > or < in
the diagram-column indicates which simple roots are long or short.

For later purposes, we have added a final column also listing certain “twisted
types”: In these, a Dynkin diagram is folded on itself, by identifying images under
a diagram automorphism; and then for the twisted type, the order of the auto-
morphism appears as a superscript on the left of the original type. In most cases,
this automorphism is a left-right reflection, and in particular, has order 2; and the
resulting twisted diagram is reasonably clear. (But see [Car89, 13.3.8] for details.)
However, the D4 diagram also admits a rotation of order 3, called triality ; here the
three outer nodes are identified, with a triple bond to the inner node, to produce the
twisted type 3D4. Below there are 7 twisted types, beyond the 9 Lie types—giving
a total of 16 families:

Lie type Dynkin diagram twisted types?
(classical:) An ◦ − ◦ − ◦ − · · · − ◦ − ◦ 2An

Bn ◦ − ◦ − ◦ − · · · − ◦ >= ◦ 2B2

Cn ◦ − ◦ − ◦ − · · · − ◦ <= ◦ (2C2 ' 2B2)
Dn ◦ − ◦ − ◦ − · · · − ◦ <◦◦

2Dn,
3D4

(exceptional:) E6 ◦ − ◦−
◦
p◦ − ◦ −◦ 2E6

E7 ◦ − ◦−
◦
p◦ − ◦ − ◦ −◦

E8 ◦ − ◦−
◦
p◦ − ◦ − ◦ − ◦ −◦

F4 ◦ − ◦ = ◦ − ◦ 2F4

G2 ◦ ≡ ◦ 2G2

The root systems Φ, corresponding to the above Dynkin diagrams, are fully de-
scribed in various sources; see e.g. [Car89, Sec 3.6] for the view in terms of sets
of points in a suitable Euclidean space. We will use these descriptions at various
later points. For example, root systems are used in the construction of parabolic
subgroups—see Remark 1.3.20(4); and correspondingly some such uses are then
explored in Example 1.3.21 and Exercise 1.3.22. ♦

11(Note to students:) I did—indeed, in teaching a Lie-algebras course...long ago.
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The twisted Dynkin diagrams will lead to twisted groups, in a later development
at Remark 1.3.15; that will be a variation on the more fundamental procedure which
we describe next:

From algebras to groups: the Chevalley construction. In classical analysis, one
proceeds from a Lie algebra (for us, over C) to a Lie group, by exponentiating
matrices of the algebra. This makes sense over C, which contains the factorial
denominators in the infinite-sum definition of the exponential.

In fact it’s not even necessary to worry about the convergence of the limit in
that sum: For one can exponentiate elements just from the nilpotent algebras U±
in the Cartan decomposition (1.3.8) above—and then only finite sums arise in the
exponential. These generate our desired group. (We would get infinite sums, if we
exponentiated from the term H in the Cartan decomposition.)

In overview: This results in groups U±, which are characteristic-0 analogues of
the characteristic-p groups U,U− in Example 1.3.3. The elements of these groups
are in fact unipotent ;12 meaning that on subtracting the identity, they become
nilpotent matrices. And again much as in 1.3.3, these unipotent groups in turn
generate as 〈U+, U−〉 the corresponding Lie group G over C.

In the background, we still have the question of denominators in the sums—if
we wish to make a meaningful analogue of this exponentiation for finite groups
in characteristic p. But we postpone that question, to first consider some explicit
examples of classical characteristic-0 exponentiation:

Example 1.3.12 (Exponentiating sl3(C) to SL3(C)). We continue with the
setup and properties in Example 1.3.10.

First naively: we consider G = sl3(C) acting on its natural module V , given
by the vectors of C3. One can directly exponentiate a nilpotent 3 × 3 matrix
like uα = e2,1 in that Example. Indeed since the matrix e2,1 squares to 0, the result
is just the identity plus e2,1—which is indeed an element of the group SL3(C). It is
natural to denote by Uα the root group13 defined by the matrices I + c · e2,1 for the
various scalars c ∈ C. Doing this over all of U+ produces matrices generating the
full unipotent group U+, namely the lower-untriangular matrices. (As mentioned
earlier, we had described the analogous group U , defined over a finite field, via a
matrix picture in Example 1.3.3.) Similarly negative roots lead to U−; and U+, U−

then generate SL3(C).
Now less naively: we consider G in its adjoint-module action; that is, on G

itself. We saw above that U+ is nilpotent, when regarded just as a 3-dimensional
subalgebra, inside G. But we observe now that it is even nilpotent, in its action on
the full algebra 8-dimensional G: This is because the representation-theory prop-
erty (1.3.9), applied in computing the exponential, tells us that for any root γ:

(1.3.13) [uγ , uα] involves higher iγ + jα with i, j > 0 and max(i, j) > 1.

Thus we get nilpotence of U+, since there are only a finite number of choices for
such higher roots in Φ+. Viewed in terms of matrix pictures, this says that the
action of uα in effect pulls strictly “southwest”—that is, down and to-the-left. Con-
sequently the 8×8 matrixM for this action of uα is strictly lower-triangular. NowM

12Of course the analogous U,U− over Fq in Example 1.3.3 are nilpotent as groups; in the

somewhat different terminology of group theory.
13The root groups are examples of “1-parameter subgroups” in classical analysis.
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does not square to 0, as was the case for uα regarded as a 3× 3 matrix above; but
certainly M8 = 0. And exponentiation of M and its analogues for other roots will
produce a copy of SL3(C), indeed embedded in the larger group GL3(C)—but all
are now represented as 8×8 matrices inside GL8(C). As before with Example 1.3.3,
the details of such computations are straightforward-if-tedious to implement. ♦

We now return to the crucial point mentioned earlier: If we want to produce
groups over a field of characteristic p, such as Fpa , then factorial denominators
present a problem for defining exponentiation.

See e.g. [Car89, Ch 4] for precise details on the following material:
We now sketch the Chevalley construction, which finessed this problem. That

is, we can proceed from a simple Lie algebra G over C to a corresponding simple
Chevalley group G(q), defined over the field Fq.

The basic idea is roughly: First, introduce an “integral” Z-form GZ of the al-
gebra. This gives us a notion of non-zero characteristic—for if k is a field say of
characteristic p, then the tensor product G(k) := (GZ ⊗Fp

k) gives a k-form of the
algebra. Second, and more difficult: choose this form in such a way that exponen-
tiation to a group G(k) makes sense; that is, so that the necessary denominators
are already “built in” to the Z-form.

Here is a little background on how that process was actually accomplished:
Chevalley around 1955 made the basic construction: He defined a special

Chevalley basis for GZ; and via some fairly intricate calculations, which in effect
provided the necessary denominators, he could exponentiate the nilpotent elements
of that basis of G(k), to the positive and negative unipotent elements generating
the Chevalley group G(k). To get the finite Chevalley groups, we take k to be a
finite field Fq.

Many standard references, such as [Car89, Ch 4], follow that original Cheval-
ley construction. However, we also now briefly indicate a different viewpoint, which
may be a little more intuitive, at least in our broad overview: One limitation of
the original construction is that it describes the group G(k) only via the adjoint
module—essentially originating from the action of G on itself, via the Lie multiplica-
tion. An important generalization (see e.g. [Cur71, Sec 4] or [Hum78, Sec 27]) was
provided by Kostant,14 who established the existence of a Z-form on any G-module.
This led to the full representation theory of G(k) on such modules. Of course the
restriction of this Kostant Z-form back to the particular adjoint module G in effect
reproduces the original Chevalley construction. But the Kostant viewpoint does
not have an “elementwise” focus on Chevalley basis elements—this is primarily be-
cause the denominator-calculations are basically built in to the associated universal
enveloping algebra U(G), whose Kostant Z-form then leads to those of the various
modules. So when we apply the Z-form to the Cartan decomposition (1.3.8) of G,
the nilpotent subalgebras U±Z , when tensored with k, exponentiate more or less
automatically to full unipotent groups U±(k)—which in turn generate G(k).

Example 1.3.14 (The Chevalley construction for SL3(q)). We build on ele-
ments of the C-case considered in Example 1.3.12 above.

14And independently by Cartier.
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In the naive viewpoint of the natural module, the fact that the nilpotent matri-
ces e2,1 etc there square to 0 means that there are no denominator problems in ex-
ponentiation. So the integer-matrix result there, now tensored with Fq, gives us U±

and SL3(q). Thus the Lie-algebra context has now reproduced the groups U,U−

that we had previous just introduced directly, in earlier Example 1.3.3.
The wonderful accident of squaring to 0 is not available in the less-naive view-

point of the adjoint module. But here is a quick sample of the kind of adjustment
that would be needed: Since we saw that [uβ , uα] = uα+β , just naively exponentiat-
ing the action of uα would put an entry of 1

2 in the matrix for the action of uα—in
the row recording its effect on uβ ; this would be undesirable for characteristic 2.

To avoid this denominator, we might try using say
√

2uα and
√

2uβ in our
basis—so that their commutator would be 2uα+β , which would multiply with the
previously-problematic 1

2 to give 1, in the square-power term of the exponential.
Of course, there is actually a lot more to take care of, in defining a full Cheval-

ley basis. And again, I know no source giving full computational details, in an
explicit example like this one. ♦

The Chevalley groups provided a unified approach to both the classical ma-
trix groups, and the exceptional groups—that is, groups for the algebras of the
exceptional types G2, F4, E6, E7, and E8. And for example, groups which we
can now recognize as being of type G2 had in fact been known to Dickson since
around 1901—but they had not been so explicitly understood via a common theory
with the classical cases.

In a similar vein, the Suzuki groups Sz(22n+1) and Ree groups Ree(3a), dis-
covered around 1960, were directly constructed as matrix groups; and they were
not explicitly covered by the original Chevalley construction. But soon, these and
some further groups were also understood in a uniform fashion, in a variation on
that construction:

Remark 1.3.15 (twisted groups). Steinberg saw how to exploit the situation of
a Dynkin diagram D with an automorphism τ—as in the final column of the table
in 1.3.11; he obtained a twisted group corresponding to the quotient diagram D/τ .
For details see e.g. [Car89, Ch 14]; as usual we only summarize rapidly:

Instead of any process of exponentiation based on D/τ , he worked inside the
“already constructed” Chevalley group of type D: taking certain subgroups U±τ
of its unipotent groups U±, corresponding to products in orbits under τ on roots.
Very roughly: our twisted diagram doesn’t exactly have a root system; but it has
root groups, which are based on root-orbits. These subgroups in turn generate the
desired twisted group for the quotient diagram D/τ .

The twisted types are the 7 cases which we had listed in earlier 1.3.11; namely
types 2An, 2C2, 2E6, 2F4, 2G2, 2Dn, 3D4. The construction in fact covered certain
classical groups, including the unitary groups, and the orthogonal groups of minus
type; as well as recognizing the Suzuki and Ree groups via types 2C2 and 2G2. ♦

We examine the twisted group constructed from our usual example of SL3:

Example 1.3.16 (U3(q) as twisted group). The diagram-reflection for type A2

just switches the two nodes, which correspond to the simple roots α and β in Ex-
ample 1.3.10; the quotient diagram is a single node—so we expect just one positive
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root group. Correspondingly, from SL3(q2) as in Example 1.3.14, we can take a di-
agonal element from the product UαUβ , suitably balancing it under the order-2 field
automorphism in Gal(Fq2/Fq); such elements and their negative-root analogues will
generate a subgroup SU3(q) inside SL3(q2). ♦

We now have the class of simple groups giving the topic of this section:

Definition 1.3.17 (The Lie-type groups). Taken together, the Chevalley groups
and the twisted groups give the finite groups of Lie type, or Lie-type groups. Most
of the groups are simple—away from a few small dimensions, and small primes
(see e.g. [GLS98, 2.2.8]).

The Lie type of such a group G(q) is that of its diagram—including the types for
twisted diagrams, as in 1.3.11. The Lie rank of G(q) is also that of the diagram: for
a Chevalley group, this is just the number of nodes in a standard Dynkin diagram;
but for a twisted group, note that the quotient diagram D/τ has only about half
as many nodes as the Dynkin diagram D of the overlying Chevalley group.

Chevalley groups are sometimes called untwisted Lie-type groups. ♦

Next we provide a table, which relates the viewpoint of the Lie types with
earlier standard terminology and notation—e.g. for classical groups:

Remark 1.3.18 (The Lie types—related to other naming conventions). In the
table below, for brevity we usually omit any indication of the particular field, writing
just An for An(q) (etc)—except when only certain fields can arise. And the right-
hand column contains just the most common notation: that is, Ln+1, Un+1, · · · ,
rather than more classical notation such as PSLn+1, PSUn+1, · · ·

Lie type X usual term for X(q) usual notation
(classical matrix types—including two twisted types:)

An linear Ln+1
2An unitary Un+1

Bn orthogonal Ω2n+1

Cn symplectic Sp2n

Dn orthogonal plus-type Ω+
2n

2Dn orthogonal minus-type Ω−2n
(exceptional types:)

G2, F4, E6, E7, E8 (same: G2, · · · ) (same)
(the (non-classical) twisted types—some say also “exceptional”:)
2C2(22n+1) Suzuki groups Sz(22n+1)
3D4 triality D4 (same)
2E6 twisted E6 (same)
2F4(22n+1) twisted F4 (same)
2G2(3a) Ree groups Ree(3a)

Some sources prefer 2B2 to 2C2 for the Suzuki groups.
In practice, we use whichever notation seems best for the current context. ♦

Remark 1.3.19 (Forms of the CFSG-list). We noted in stating our CFSG-list
in Theorem 1.0.2 that it was in fact just a summary of the types of simple groups.
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But now in effect we have given a longer form of that list: Beyond the alternating
groups in Section 1.1, in Section 1.2 we indicated the names of the 26 sporadic
groups; and in Remark 1.3.18 just above, we have indicated the individual families
of Lie-type groups.

During the remainder of the book, in describing works which examine the var-
ious groups in the CFSG-list, we will continue to make reference usually just to
the summary-form in 1.0.2; but the reader should understand that often such an
examination in fact requires the longer form. ♦

Properties of the Lie-type groups. Just as in the previous sections, for
later applications we wish to collect together various properties of this class of
simple groups. Many structural properties of the finite G(q) are of course analogous
to those of the corresponding Lie group GC over C. In particular, notation used
in these properties will mirror the notation we used in our earlier more explicit
classical-group Examples 1.3.3 and 1.3.4.

Remark 1.3.20 (Some structural features of Lie-type groups). See for exam-
ple [Car89, Sec 8.3] for fuller details on this material. Our statements below are
sometimes made just for the easier case given by the Chevalley groups G := G(q);
and then the statements might typically need to be adjusted somewhat, for the
more complicated case of twisted groups.

(1) Sylow structure: The root subspaces Uα of Remark 1.3.7 exponentiate to
root subgroups Uα. Those for positive roots generate a full unipotent subgroup U ; it
is of order qN , where N = |Φ+|, and is Sylow in G. Further U and its negative-root
analogue U− generate the usually-simple group G.

(2) Cartan subgroup: The pair U±α generates a copy of SL2(q) (in the un-
twisted case); inside which, from [Uα, U−α] we can extract a “diagonal” group Hα.
The Hα as α varies generate a Cartan subgroup H—also sometimes called a diag-
onal group; it is an abelian p′-group of order roughly (q − 1)n, where n is the Lie
rank of G. Elements of p′-order are said to be semisimple. In the algebraic-group
viewpoint, H is called a split torus; for non-split tori see later Example 5.2.2.

(3) Sylow normalizer etc: We have NG(U) = UH =: B; this defines the conju-
gacy class of Borel subgroups of G. Furthermore we have a monomial subgroup N ,
with N/H ∼= W—where W is the Weyl group of the Dynkin diagram for G; and
generically N = NG(H)—except when H = 1, as mentioned in Example 1.3.3.
Suitable properties of B and N can be used to define the axioms of a BN -pair ;
which provide an alternative approach to the Chevalley construction of G.

(4) Parabolic subgroups: Subgroups of G containing a Borel subgroup such
as B are called parabolic subgroups; these are important p-local subgroups of G. A
parabolic is determined by a subset J ⊆ Π of the simple roots; and the parabolic
then has a corresponding Levi decomposition of the form PJ = UJLJ , where: the
unipotent radical UJ = Op(PJ) is generated by the root subgroups Uα for positive
roots which are not a linear combination from J ; and the Levi complement LJ
is generated by H and the U±α for the positive α which are linear combinations
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from J .15 We have NG(UJ) = PJ ; and further NG(PJ) = PJ . The parabolics range
between P∅ = B and PΠ = G; for a case with intermediate J , see 1.3.21 below.

(5) The fundamental Borel-Tits Theorem (see e.g. [GLS98, 3.1.3]) states that
any p-local subgroup of G lies in some parabolic subgroup.

(6) Maximal parabolics: The parabolics determined by the maximal subsets J
of Π, namely those of size n − 1, are in fact maximal subgroups of G. Notice
in particular: The number of maximal p-local subgroups over a fixed Borel sub-
group B = NG(U), and hence over a fixed p-Sylow U , is equal to “n”—namely the
Lie rank; this is |J | = |Π| = the number of nodes in the Dynkin diagram. Thus
for G of Lie rank 1, using J = ∅, the Sylow group U lies in a unique maximal sub-
group, namely NG(U) = B = P∅. Similarly: when |Π| > 1, the singleton-subsets
of J determine the minimal parabolics; here, the meaning is “minimal, subject to
properly containing a Borel subgroup”.

(7) Flag-transitivity: For a fixed J , G is transitive on the set of all parabolics
of that type J—this is the relevant notion of flag-transitivity for Lie-type groups. ♦

Example 1.3.21 (The k-space stabilizer revisited). We now express the k-space
stabilizer in earlier Example 1.3.4, as a parabolic PJ in the language of (4) above—
indeed a maximal parabolic as in (6); this will in particular explain the notation Pk̂
of that earlier Example.

We can essentially mimic structures seen in the small case SL3(q), arising from
the Lie algebra sl3 in Example 1.3.10: recall there the two simple roots corresponded
to the two positions just below the diagonal.

Indeed we expand this to a description of the general root system of type An−1,
for SLn(q); for rerefence see e.g. [Car89, Sec 3.6(i)]: The corresponding Dynkin
diagram has the form ◦− ◦− · · · − ◦, with all roots of the same length. The simple
system Π has simple roots denoted by α1, · · · , αn−1. And the positive roots Φ+ can
be characterized as sums of simple roots which are adjacent in the ordering on Π:
namely of form αi + αi+1 + · · ·+ αj−1 + αj .

In Example 1.3.4, we take J to be the complement of the k-th node: so for
the simple root αk for the k-th subdiagonal position, PJ is the k-space stabilizer

in 1.3.4. Indeed if we write k̂ for the complement J = Π \ {k} of {k}, then we
get the notation Pk̂; and we have finally explained why we wrote that form in
Example 1.3.4: For in our present convention, the simpler notation Pk in fact refers

to the k-th minimal parabolic; and the k̂ in Pk̂ emphasizes that root groups for
all the other ±αj generate the typically-large Levi complement Lk̂, as we will see
below:

We now follow 1.3.20(4): For the unipotent radical Uk̂, we need the root groups
for the positive roots that are not combinations from J—namely those involving αk.
Using the characterization of roots above, these are sums of adjacent simple roots
including αk—and as matrices, they turn out to be those to the left of, and/or
below, the subdiagonal position of uαk

= ek+1,k. For the Levi complement Lk̂, we

15So our notational convention has the advantage that the subdiagram for J describes the
structure of LJ . But it also has a disadvantage, already seen in Example 1.3.4: in the later

language of simplex “types” in Remark 7.1.4, a simplex of type J has stabilizer PĴ indexed by

the complement Ĵ . For this reason, some of the literature uses the convention opposite to ours:

namely writing the complement Ĵ = Π \ J wherever we write J .
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need root subgroups which are combinations from (±) J—namely those not involv-
ing αk. These come from combinations of simple roots either before αk (namely αj
for j < k), or after αk (with j > k). As matrices, the corresponding root groups
for ±αj generate first the SLk on Vk, and then the SLn−k on the quotient V/Vk—
the factors of the Levi complement Lk̂, which we had seen in Example 1.3.4. ♦

Exercise 1.3.22 (More practice with root systems and parabolics). Exhibit
the above parabolics Pk̂ in some small cases such as L4(2) and Sp4(2). Hint: Some
details are provided in appendix Remark B.1.1. ♦

Some remarks on the approach via algebraic groups. We conclude the section
with just a brief glimpse of the alternative approach to Lie-type groups, via fixed
points of automorphisms of algebraic groups.

Here the story does not start with a root system Φ; instead Φ emerges only
later, from the process of classifying the semisimple algebraic groups.

That approach is in the context of algebraic geometry. In order to use tools
such as the Hilbert Nullstellensatz, it is necessary to work over an algebraically
closed field k. (For us, k will be the algebraic closure Fp of Fp.) In particular, the
groups of initial interest will all be infinite.

Here an algebraic group over k is defined “intrinsically”—as a group which
is in fact a variety : namely the zero set of a collection of polynomials over k in
suitable coordinates. For example, note that SLn(k) is the zero set of (det− 1)—
where we recall that the determinant is indeed a polynomial in the matrix entries.
Furthermore the group operations of multiplication and inversion are also expressed
via polynomials.

The classification of semisimple16 algebraic groups during the 1950s used tech-
niques of algebraic geometry, to directly produce “abstract” root subgroups (with-
out exponentiating from some Lie algebra). The interrelations of the abstract root
subgroups could then be shown to satisfy the restrictions corresponding to a root
system Φ; so that the Cartan-Killing classification of root systems could be invoked,
to give essentially the same set of answers for algebraic groups as for Lie algebras.

Now taking k to be Fp, we let F denote the field automorphism x 7→ xp; of
course the fixed points in k under F a are just the finite field Fpa . And so with
the algebraic-group theory and classification in place, it is then relatively easy to
obtain the finite Lie-type groups:

Remark 1.3.23 (Finite Lie-type groups via algebraic groups). So the fixed
points of F a in the algebraic group G over Fp give the finite Chevalley group G(pa).
The twisted groups G(pa) arise as the fixed points under the product of F a with a
suitable “graph” automorphism—cf. the discussion after later 1.5.4. ♦

We mention, roughly conversely, that the Chevalley construction, applied to the
algebraic closure Fp rather than to a finite field, reproduces as G(Fp) the algebraic
group—but in a non-intrinsic way, from the viewpoint of algebraic geometry.

16Here semisimple also has an intrinsic definition; but it ends up being product-of-simple.
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Some easy applications of the CFSG-list

The main theme of this book is applications of the CFSG; in practice, this
means: my personal selection (with much help from more knowledgeable colleagues)
of a number of sample applications. So before starting those, let me try to provide
at least a glimpse of the more general context of applications:

First I’ll recommend some extremely valuable general surveys of CFSG appli-
cations, by major experts in the indicated areas:

• permutation groups: Cameron [Cam81];
• representation theory: Tiep [Tie14];
• maximal subgroups: Kleidman-Liebeck [KL88];
• various areas: Kantor [Kan85]; Guralnick [Gur17].

Of course I have used parts of these, in preparing the material for this book.
Now very roughly: The applications in the first five chapters of the book remain

fairly close to aspects of group structure; while in the last five chapters, we consider
applications in various additional areas. And correspondingly, we’ll provide some
further context on those broader areas of application, in later Section 6.4.

The particular theme of the remaining sections of the present chapter is to
provide some “initial” applications: which can ideally be deduced fairly easily from
the list of the simple groups in the CFSG 1.0.2, along with the basic properties of
the three classes of groups recorded in the previous sections.

So we might begin with some fairly naive question like, what does knowing
the CFSG-list immediately buy us?

1.4. Structure of K-groups: via components in F ∗(G)

One place to start might be the inductive situation of the CFSG-proof itself;
we review the application-situation of Remark 1.0.1(1):

In a minimal counterexample—some “unknown” simple G—we may apply
the CFSG-list 1.0.2, by induction, to any proper subgroup H < G. What kind
of description of H does the list give?

The most elementary answer might be to consider a composition series:

1 = H0 / H1 / · · · / Hn−1 / Hn = H

where each successive quotient Hi+1/Hi is simple. So by induction, each such
quotient is either of prime order, or a simple group on the CFSG-list. That is, H
is a K-group, in the standard terminology introduced in 1.0.1(1).

This description of H via composition factors can be sufficient for approaching
some problems. However, it is not really very informative; e.g. it does not deal with
possibly-complicated extension problems among the sections.

Instead, much analysis in finite group theory of such subgroupsH has proceeded
by focusing on the generalized Fitting subgroup F ∗(H). So we wish to discuss how
the CFSG-list can be applied in that viewpoint.

But first, we’ll quickly review the basic theory of F ∗(H); the experienced reader
can of course skip over this background.
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The generalized Fitting subgroup and its properties. The motivat-
ing idea is roughly to analyze a finite group X by focusing on some important
subgroup—which is suitably “crucial”, as opposed to say peripheral, for the overall
structure of X.

The Fitting subgroup. One notion of crucial arose classically, in the theory of
solvable groups. For any group X, we define the Fitting subgroup:

(1.4.1) F (X) := product of all normal nilpotent subgroups of X.

(In this definition, we could replace normality by its transitive extension, namely
subnormality.) As an easy example of the group: F (S4 × S3) ∼= (Z2 × Z2)× Z3.

The “crucial” aspect of F (X) is exhibited by the self-centralizing property (for
example 31.10 in [Asc00, 31.10]):

Theorem 1.4.2 (Fitting’s Theorem). If X is a finite solvable group, then we
have CX

(
F (X)

)
≤ F (X).

For notice that we get the following corollaries:

Remark 1.4.3 (Consequences of the self-centralizing property). Note that if
we had F (X) = 1 for solvable X, then we would obtain from Theorem 1.4.2
that CX(1) ≤ 1; hence X = CX(1) must be trivial. So since in practice we work
with X > 1, we can always expect that also F (X) > 1.

Furthermore it follows from Theorem 1.4.2 that for solvable X:
CX
(
F (X)

)
= Z

(
F (X)

)
.

Hence X/Z
(
F (X)

)
must act faithfully , as automorphisms of F (X); indeed:

X/F (X) must induce outer automorphisms of F (X).
So, roughly: the rest of X can’t just ignore F (X); indeed when Out

(
F (X)

)
is

small, we see that F (X) even constitutes “most of” X. This gives a reasonable
notion of “crucial”.

These same consequences will in fact hold for general X, when we instead
use F ∗(X) below in place of F (X)—in view of the analogous self-centralizing prop-
erty (1.4.6). ♦

The generalized Fitting subgroup. Bender, building on ideas of Gorenstein and
Walter, saw how to extend these notions to an arbitrary finite group X. He defined
the generalized Fitting subgroup:

(1.4.4) F ∗(X) := E(X)F (X)

where the new term E(X) is analogous to F (X)—but with respect to nonabelian
simple groups:

(1.4.5) E(X) := product of all subnormal quasisimple subgroups of X.

We will say more about E(X) in a moment. The main result is that we get the
self-centralizing property for any X; see e.g. [Asc00, 31.13]:
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Theorem 1.4.6. CX
(
F ∗(X)

)
≤ F ∗(X).

And so F ∗(X) also has the “crucial” consequences we discussed in Remark 1.4.3.
We mention one standard situation where these properties are used:

Definition 1.4.7 (almost-simple). A group X with F ∗(X) simple (say S) is
called almost-simple. Notice then by 1.4.6 and the discussion in 1.4.3, that X is an
extension of S, by some subgroup of Out(S). ♦

We still need to say a few more things about E(X):
Quasisimple components in E(X). First recall that L is quasisimple if L/Z(L)

is simple, and L is perfect (L = [L,L]). The perfect requirement is essentially a kind
of irreducibility—e.g. to avoid multiple factors, or “inessential” elements in Z(L).

Assuming that L is quasisimple, with central quotient S, we might ask: how
much larger can L be than S? Or equivalently, how large can Z(L) be? As noted
just above, Z(L) is limited by the restriction that L is perfect. The answer to
this question is given by the Schur multiplier of S; and for given S, there are
standard techniques for computing the multiplier. For Schur’s classical theory of
the multiplier, see e.g. [Asc00, Sec 33].

We next recall that a quasisimple group L, which is subnormal in X, is called
a component of X. Thus E(X) is generated by the components of X.

Remark 1.4.8 (Some properties of components). We recall e.g. from 31.5
in [Asc00] that distinct components commute; so that E(X) is in fact a central17

product of the components.
In particular, no component could be diagonally embedded in a product of two

or more components. It follows that elements of X not normalizing components
must in fact permute them intact—rather than conjugating them to “mixed” prod-
ucts. (This is very different from the situation inside nilpotent F (X)—where a
direct product of n copies of Zp might conceivably admit the “mixing” action of
any subgroup of GLn(p).) ♦

With these structures in hand, we can proceed to:

Applying the CFSG to F ∗(H). We return to our earlier inductive setup in
the CFSG proof where H < G; and we indicate some effects that the CFSG-list
has on the structure of F ∗(H).

First, we have in effect an extension of the CFSG-list 1.0.2 from simple to qua-
sisimple groups:

Remark 1.4.9 (Quasisimple CFSG-list). The possible quasisimple covers L of
simple groups in the CFSG-list 1.0.2 (here we implicitly mean the longer-form list
of Remark 1.3.19) are known. So the possible components L in E(H) are known. ♦

For of course, the simple quotient L/Z(L) =: S is known by induction, and
appears in the CFSG-list. And then the possibilities for L are limited by the Schur
multiplier of S.

17Recall this means that commuting components L,M satsify L ∩M ≤ Z
(
E(X)

)
.
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And those Schur multipliers are also known: Indeed as the various simple
groups (especially sporadics) were discovered, typically the discoverer would also
determine the Schur multiplier. In fact the multipliers are mostly quite small. A
number of other authors also contributed to this process; finally Griess in [Gri72]
completed the remaining problems. Hence his list served for a long time as a
standard reference. Cf. also more recent discussions, such as [GLS98, 5.1,6.1].

Hence the possible extensions L of S can also be (and indeed have been) con-
structed; so that they are also known.

Second, we observe just informally that:
The action of H/F ∗(H) on E(H) is very restricted:

For we already saw in Remark 1.4.8 that elements of H not normalizing components
can only permute them (indeed, in sets of isomorphic components). This reduces
much of the corresponding analysis to questions about subgroups of the symmetric
group Sn for suitable n.

So we turn to elements of H normalizing a component L. Since L is known
via the quasisimple CFSG-list 1.4.9 above, inner automorphisms of L are known.
Any other nontrivial action must induce an outer automorphism of L, and hence
of the simple quotient S. And for Out(S), the situation is similar to that for
Schur multipliers in the discussion following 1.4.9: namely the outer automorphism
groups of the simple S in the CFSG-list had already been determined. Indeed we’ll
return to outer automorphism groups in the next section, and see that they are
solvable—and indeed small compared to the size of S.

This more explicit view of H via F ∗(H) is typically more useful than just a
composition series.

1.5. Outer automorphisms of simple groups

It had been observed early on that the outer automorphism groups of the
simple groups are rather small, and of uncomplicated structure. Schreier in 1926
conjectured that they must be solvable.

And as we observed in the previous section, when new simple groups were
discovered, their discoverers usually also determined their automorphism groups—
in particular, verifying the conjecture in the new cases.

Indeed researchers became increasingly convinced of the truth of the conjecture;
and sometimes assumed it, to deduce significant consequences. Furthermore it was
used inductively, in certain parts of the CFSG itself.

Thus when the CFSG was finally proved, the work on the automorphisms had
already been done—so that the Schreier Conjecture became an “instant” theorem.
As did the various known consequences mentioned in the previous paragraph. So
as one important application of the CFSG, we get:

Theorem 1.5.1 (Schreier Conjecture). For simple S, Out(S) is solvable.

For our present purposes of presenting applications of the CFSG-list, it will actually
be comparatively easy to outline the verification of the Conjecture for the three
usual classes of simple groups:

Outer automorphisms of alternating groups. It is a classical result that
automorphisms of the alternating group mostly come from the symmetric group—
see e.g. [GLS98, 5.2.1] for:
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(1.5.2) Out(An) ∼= Z2—except Z2 × Z2 for n = 6.

These groups are certainly solvable; even elementary abelian 2-groups.

Outer automorphisms of sporadic groups. The results, from various au-
thors, are tabulated in e.g. [GLS98, Table 5.3.a–z]; we summarize them as:

(1.5.3) For G sporadic, |Out(G)| = 2 in 12 of the 26 cases; = 1 otherwise.

Again the groups are solvable, and indeed elementary abelian 2-groups. But this
doesn’t hold for all simple groups; indeed:

Outer automorphisms of Lie-type groups. This final case has somewhat
more interesting structure; the results arise naturally from the Lie context that we
sketched in earlier Section 1.3. See e.g. [GLS98, 2.5.12,1.15.7] for the result which
we summarize as:

Theorem 1.5.4 (The “diagonal-field-graph” theorem). For simple G of Lie
type, Out(G) has a normal subgroup D, with quotient F × Γ; where:

D induces diagonal automorphisms;
F induces field automorphisms; and
Γ induces graph automorphisms.

Each of the groups D,F,Γ is abelian; so Out(G) is solvable.

We next quickly indicate some features of these automorphisms; they demonstrate
what intuitively could be an automorphism of a matrix group. We mention that as
before, we’ll give statements for the easier case of Chevalley groups; adjustments
are sometimes required for the case of twisted groups.

The diagonal automorphisms D roughly extend, outside simple G, the Cartan
subgroup H in Remark 1.3.20(2). For example: consider any non-scalar diagonal
matrices from GLn(q) \ SLn(q). The order |D| is at most that of the fundamental
group (cf. [Car89, p 99]) of G—this value is at most 4, except for a cyclic group
of order n in the case of linear Ln(q) (or unitary Un(q)).

The field automorphisms F for G(pa) are determined by the Galois group
of Fpa over Fp; so this group is cyclic of order a. It is induced by applying the
field automorphism to the matrix entries of the groups G(pa) from the Chevalley
construction in the discussion prior to Example 1.3.14.

The graph automorphisms Γ are determined by the Dynkin-diagram automor-
phisms which we indicated in Remark 1.3.11; this group is cyclic of order at most 3
(or S3, for type D4). For example, the inverse-transpose automorphism of the linear
group arises from a graph automorphism.

Exercise 1.5.5 (Practice with automorphisms). Explore the various automor-
phism types above—in some small-dimensional linear and other classical cases.

Hint: some of these can be compared and contrasted, using certain stan-
dard isomorphisms among small simple groups—see for example [ALSS11, p 261]
and [Wil09, 3.11,3.12] and [GLS98, 2.2.10] and [GLS94, Table II, p 10]. Here are
some small cases to explore:
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(1) Transpositions in S5 exhibit Out(A5).
But A5 can also be regarded as the Lie-type group L2(4), or L2(5).

When viewed as L2(4), the outer automorphism has field type.
Whereas when viewed as L2(5), it has diagonal type. (Explain...)

Similarly transpositions in S8 exhibit Out(A8).
But for A8 viewed as Lie-type L4(2), the automorphism has graph type.

(2) Transpositions in S6 give one automorphism in Out(A6).
For A6 viewed as M ′10,18 from M10 \M ′10 we get more outer automorphisms.

But A6 can viewed as Lie-type L2(9); or as Sp4(2)′, proper in Lie-type Sp4(2).
When viewed as L2(9), outer automorphisms have diagonal and field types.
When viewed as Sp4(2)′, they come from graph type and Sp4(2). (Explain.) ♦

Quite a few applications of the CFSG in fact only quote it in the “mild” form
of the Schreier Conjecture 1.5.1. Indeed we’d mentioned that various such applica-
tions were made before the CFSG, on the assumption that the classification would
eventually be available. So we close the chapter with a quick mention of some of
these—as well as problems that involved closer consideration of the explicit groups
in the CFSG-list.

1.6. Further CFSG-consequences: e.g. doubly-transitive groups

Various early applications of the CFSG arose in the area of permutation groups;
we had mentioned Cameron [Cam81] as a standard reference for these. We will
next extract from Cameron’s discussion a very rapid overview of the solution of one
major classical problem:

The classification of doubly-transitive groups. First we review some
standard background; as usual, the experienced reader can skip ahead.

Multiple transitivity. Recall we say a subgroup of Sn is:

(1.6.1) k-transitive, if it is transitive on the set of ordered k-subsets.

For example, it is standard (1.1.1(1)) that Sn is n-transitive, and the simple sub-
group An is still (n− 2)-transitive.

Of course single transitivity is ubiquitous, since a group is transitive on the set
of cosets of any subgroup. But double transitivity is already comparatively rare;
so, long ago, permutation-group theorists proposed:

Problem 1.6.2. Classify doubly-transitive groups.

There are a fair number of examples: e.g. rank-1 Lie-type groups are doubly (some-
times triply) transitive on the set of their Borel subgroups (recall 1.3.20(3)). But the
condition of 4-transitivity and higher is quite rare: Aside from the standard sym-
metric and alternating groups as above, only certain sporadic examples were known,
namely those we had mentioned in Section 1.2: 4-transitivity for M11 and M23,
along with 5-transitivity for M12 and M24. So a solution of Problem 1.6.2 above
would include a solution of the sub-problem:

18Recall M10 is the point stabilizer in M11—cf. [CCN+85, p 4].
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Problem 1.6.3. Classify multiply-transitive groups. (In particular, having 6-
transitivity should imply action only of Sn or An.)

In fact, pre-CFSG work of Wielandt, Nagao, and O’Nan had solved the sub-
problem 1.6.3—modulo assuming the Schreier Conjecture 1.5.1. However, the main
Problem would require the CFSG-list in fuller detail.

The 2-transitive classification. For the main Problem 1.6.2, around 1905 Burn-
side had given a basic reduction [Cam81, 5.2]:

Theorem 1.6.4. A 2-transitive group H has a unique minimal normal sub-
group N—which must be either an elementary abelian p-group, or a nonabelian
simple group.

Of course the latter case of simple N provided one strong motivation for the CFSG.

But first we will summarize the treatment of the former case, in which N is
an elementary abelian p-group—say of rank r: Here N must act regularly (in par-
ticular, transitively) on the points. Now an elementary argument (see later 3.0.1),
going back at least to Frattini in 1885, shows that a transitive subgroup is supple-
mented by a point stabilizer; thus we have H = NHα, for the stabilizer Hα of a
point α. The case of solvable Hα was handled by Huppert. Hering then showed that
nonsolvable Hα (which must be a subgroup of GLr(p)) has a unique nonabelian
simple composition factor S. So here also the CFSG-list (again in the longer-form
of 1.3.19) could be applied, to examine each S—and this was done by Hering and
others; see for example [Lie87a, Appendix] for details.

The case of simple N was handled—of course using the CFSG-list to examine
each N—by work of Maillet, Howlett, and Curtis-Kantor-Seitz.

And that completed the solution of the 2-transitive Problem 1.6.2; which of course
also covered the multiply-transitive sub-problem 1.6.3.

We’ll now give a rough summary of which groups can arise in the case above of
simple N . Here N is called the socle of H, in the language of later Remark 6.0.4.
For the detailed statement of the result, see [Cam81, 5.3].

Theorem 1.6.5 (simple-socle 2-transitive groups). For 2-transitive H, the pos-
sibilities for a simple socle N are as follows; several groups have two distinct doubly-
transitive representations:

(alternating:)
An, on the points of the natural permutation representation;
A7, two representations on 15 points (arising from A7 < A8 ' L4(2));

(Lie type:)

Ln(V ), two representations of degree qn−1
q−1 : on points, or hyperplanes,

of the projective space 7.0.1 of V ;
G(q) of Lie rank 1,19 on Borel subgroups (points of the projective line);
Sp2n(2), two representations on orthogonal forms in 2d-space

(of plus-type, or minus-type);
L2(11), two representations on 11 points

(i.e. not the usual 12 points of its projective line).

(sporadic:)
M11, M12, M22, M23, M24; Co3, on 276 points; HS, two on 176 points.

19These rank-1 groups are L2(q), U3(q), Sz(q), and Ree(q).
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Remark 1.6.6 (The successive-lists aspect). In addition to the list of the CFSG
appearing as input to Theorem 1.6.5, the reader will have observed that the output
of the Theorem is also a longish list—indeed, a refined sub-list of the input. And of
course, applications of the Theorem could result in still-further lists. This aspect
of successive lists might seem unexpected to the reader new to the area; but it is a
very standard practice in finite group theory. ♦

Some other consequences of the Schreier Conjecture. A further instant
consequence of the CFSG was the Hall-Higman reduction for the restricted Burnside
problem—since the work of [HH56] had assumed the Schreier Conjecture 1.5.1.

The Hall-Higman reduction (and hence the CFSG via the Schreier Conjecture)
was in turn used by Zelmanov [Zel91], in his celebrated solution of the restricted
Burnside problem—work which was soon recognized by the award of a Fields Medal.





CHAPTER 2

Outline of the proof of the CFSG: some main ideas

The first half of this chapter is a selection of some of the material appearing in
Chapters 0–2 of Aschbacher-Lyons-Smith-Solomon [ALSS11]—outlining the main
case divisions of the CFSG, and the eventual treatment of those cases.

Before starting, we provide some context on that particular outline:

Some history of the CFSG outline. Why did the authors of the outline
in [ALSS11] decide to give such an extensive exposition?

Now that the participants in the great CFSG project are starting to retire, or
at least to age (indeed a number have died), one important motivation was to make
the CFSG proof more accessible for future generations—while our memories are
still available.

For example, the 2005 AMS Notices article [Dav05] of Brian Davies, on the
general topic of long proofs in mathematics, had suggested this problem of aging
memory; in particular, he quoted Aschbacher to the effect that there was at that
time “no published outline” of the CFSG proof.

An outline had in fact been begun by Gorenstein in 1982: he published an
introduction [Gor82], and an extensive overview of the Odd Case [Gor83]); but
he couldn’t really finish his outline—since the final treatment of quasithin groups
in the Even Case didn’t appear until later [AS04b].

Thus the authors of [ALSS11] were in particular bringing Gorenstein’s earlier
outline project to completion; indeed the later Chapters 3–8 of that work provide
an extensive overview of the treatment of the Even Case (now including of course
the quasithin groups).

However, Chapters 0–2 of [ALSS11] provide a much briefer, introductory out-
line of the CFSG proof. And this chapter of the present work similarly has the goal
of giving an expository overview of the main case divisions of the CFSG; along
with a few important concepts in the eventual treatment of those cases.

We mention that the outline about to be presented refers to the “original”
proof of the CFSG. Readers may be aware that there are more recent approaches
being developed, towards improving and innovating the proof. We’ll say a little
more about these, in our Afterword in Section 2.3.

2.0. A start: proving the Odd/Even Dichotomy Theorem

To begin on our outline, we provide some historical background—from which
the initial case division, of Odd vs Even Cases, will begin to emerge:

Prelude: approaching the CFSG via involution centralizers. Our men-
tion of Odd and Even Cases has implicitly suggested a special role for p = 2.

29
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This distinction was already clear, long before the CFSG. Indeed perhaps the
most famous result from the “pre-history” of the CFSG is given by the Odd Order
Theorem [ALSS11, 1.2.1] of Feit and Thompson:

(2.0.1) A group of odd order is solvable.

Thus a nonabelian simple group G contains some t of order 2—an involution.
Hence a natural subgroup to consider is the involution centralizer CG(t). This

group is not simple, because it has t in its center; so as G is simple, it is a proper
subgroup: CG(t) < G.

Since we would expect to work with G a minimal counterexample to the CFSG,
we might then wish to apply induction to CG(t). This suggests:

Remark 2.0.2 (A naive centralizer-approach to the CFSG). We could hope to
proceed along the following lines:
• determine, using induction, all possible H with a central involution t;
• then for each H, determine all simple G with CG(t) ∼= H. ♦

Indeed there is a classical result showing that this approach might be feasible,
namely the Brauer-Fowler Theorem [BF55]—which shows that given such a groupH
with t central, only finitely many simple G can have CG(t) ∼= H.

And in fact the simple-minded approach in Remark 2.0.2, admittedly rendered
less naive by substantial adjustments, is basically how the CFSG was eventually
proved. As we will soon be seeing.

The fundamental odd/even distinction will be exhibited even more dramati-
cally, when we next explore centralizers CG(t) in some typical examples of simple
groups G.

Motivation: some examples of the notions of Odd and Even Cases.
What should “typical”Gmean? We had commented, in the statement of the CFSG-
list 1.0.2, that most simple groups are of Lie type. Indeed for our present expos-
itory purposes, it will even suffice to explore inside the group GLn(q), which is
just almost-simple modulo its center; and within GLn(q), we will be able to draw
suggestive matrix pictures.

Example 2.0.3 (Odd Case Example). Take G := GLn(pa). And assume here
that p is odd . For a typical involution, take t diagonal, with say k entries of −1
(we have −1 6= 1 since p is odd!):

t :=

(
−Ik 0

0 In−k

)
By elementary linear algebra, matrices commuting with t must preserve its (±1)-
eigenspaces. So in the centralizer we get block-partitioned matrices, as in the
following picture:

CG(t) =

(
GLk(q) 0

0 GLn−k(q)

)
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Now the SLr in each GLr is usually1 quasisimple; so since these SLr are also nor-
mal in CG(t), they are in fact components of CG(t) (in the language of 1.4.8). ♦

This last feature of our Odd Case Example suggests how to abstractly define our
general Odd Case:

Definition 2.0.4 (component type). We say X is of component type, if for
some involution t ∈ X, the quotient CX(t)/O2′

(
CX(t)

)
has a component. Or, we

can use the alternative terminology that CX(t) has a 2-component . ♦

We mention that the “core” above, namely the largest normal 2′-subgroup denoted
by O2′

(
CX(t)

)
, is typically trivial—or at worst central in CX(t). And indeed the

reason for working here modulo O2′
(
CX(t)

)
will emerge later, in the proof of the

Dichotomy Theorem 2.0.9; where we have a situation in which we can even prove
that this core must be trivial.

We get this same feature of component type also in the other Lie-type groups
over fields of odd characteristic; and indeed in (large-enough) alternating groups,
as well as in some sporadic groups.

Exercise 2.0.5 (More examples of component type). Find some similar com-
ponents of involution centralizers in some smallish (but large-enough) groups G of
the other types mentioned just above. For example, the centralizer in A9 of the
involution (1, 2)(3, 4) has a component A5. ♦

The pictures will look very different from the Odd Case Example 2.0.3, when we
instead take p = 2:

Example 2.0.6 (Even Case Example). Now take p = 2; so that G := GLn(2a).
In our field of characteristic 2, the element −1 is now the same as 1. So our
diagonal t from the Odd Case Example 2.0.3 would here be just the identity—
rather than an involution.

Instead, we will now obtain an involution t via the smallest Jordan-form matrix
of order 2: it has all its Jordan blocks, which are for the eigenvalue 1, of size 1×1—
except for a single 2× 2 block. In fact to get a more symmetric form for some later
matrices, we can conjugate in G so as to move the subdiagonal entry from that 2×2
block down to the lower-left position of the full matrix; so that our t becomes:

t :=


1 0 0

0 In−2 0

1 0 1


Then a little more linear-algebraic computation determines that:

1usually: Away from some small dimensions, and small fields—recall 1.3.17.
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Ct := CG(t) =


∗ 0 0

∗ GLn−2(2a) 0

∗ ∗ ∗


In fact Ct is a semi-direct product UL,2 where:

U :=


1 0 0

∗ In−2 0

∗ ∗ 1

 , L :=


∗ 0 0

0 GLn−2(2a) 0

0 0 ∗


Here U is a 2-group—in fact the largest normal 2-subgroup O2(Ct). And again we
have a nearly-simple subgroup GLn−2; but, in strong contrast to the situation in
the Odd Case Example 2.0.3, this subgroup is not normal in Ct: Just note that con-
jugating L by elements of U results in nonzero entries in the sub-diagonal blocks—
hence elements not in L. Indeed here the 2-subgroup U is roughly the “only”
normal subgroup: For we can check that Ct does not have any subnormal qua-
sisimple subgroups; or even any normal odd-order subgroups—work if necessary in
the quotient modulo any central scalar matrices. This property is usually expressed
in the language (1.4.4) of the generalized Fitting subgroup, as: F ∗(Ct) = O2(Ct). ♦

This suggests how to abstractly define our Even Case:

Definition 2.0.7 (Characteristic 2 type). We say a group X is of character-
istic 2 type, if F ∗(N) = O2(N) for all 2-local subgroups N . Indeed it suffices
(e.g. [ALSS11, B.1.6]) to have F ∗ = O2 for all involution centralizers CX(t). ♦

The property of characteristic 2 type can be verified in the other Lie-type groups
over a field of characteristic 2; as well as in a few sporadic groups.

Exercise 2.0.8 (More examples of characteristic 2 type). Check this feature,
in some Lie-type groups in characteristic 2, other than linear groups; say classical
groups—symplectic, unitary, orthogonal. (E.g. in Sp4(2)—which can also be re-
garded as S6, as in Exercise 1.5.5(2).) ♦

We’ve now seen that our notions of Odd and Even Cases cover the actual
examples of simple groups in the CFSG-list 1.0.2. But how might we abstractly
show that some “unknown” simple G should be either of component type, or of
characteristic 2 type? We now move on to the actual mathematics of this process:

2In the Lie-type language of Remark 1.3.20(4), this is the Levi decomposition for the parabolic
subgroup Ct.
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Result: the Odd/Even Dichotomy Theorem. We need one further piece
of historical background:

In the earliest days of the CFSG, it was natural for researchers to begin with
classes of groups which could be considered “small” by some measure.

One such measure is the 2-rank m2(G), the largest rank of an elementary
abelian 2-subgroup of G. And the simple groups in the small case m2(G) ≤ 2 had
been classified by about 1972—in work of Alperin-Brauer-Gorenstein, Lyons, and
Walter; see e.g. [ALSS11, 1.4.6].

In fact the case m2(G) ≤ 2 had an independent importance: for the “generic”
case, in which we have m2(G) ≥ 3, is required in order to use signalizer functor
methods. We will be briefly indicating these, in outlining the proof (for fuller
details, see 0.3.10 or B.3.5 in [ALSS11]) of the following result—which establishes
the main case division that we have been leading up to:

Theorem 2.0.9 ((Odd/Even) Dichotomy Theorem). Assume that G is simple,
with m2(G) ≥ 3. Then G is of component type, or G is of characteristic 2 type.

The proof is not difficult, and is comparatively short, for finite group theory—
around 4 pages,3 in the treatment presented in the latter part of Section 0.3
of [ALSS11]. Furthermore, a number of the ideas involved in the proof were
re-used repeatedly, in many other places in the CFSG. So in the remainder of the
Section, we will present a roughly-summarized form of that treatment in [ALSS11].

Sketch: proof of the Dichotomy Theorem. We begin by assuming:

(2.0.10) G does not have component type.

Hence: we must end by showing that G has characteristic 2 type.

Now the initial assumption (2.0.10)—the denial of component type—means,
using Definition 2.0.4, that for each involution t of G, there are no 2-components
in Ct := CG(t). That is, when we pass to the quotient Ct := Ct/O2′(Ct), there are
no components; so that E(Ct) = 1. On the other hand, we have O2′(Ct) = 1, since
we have already quotiented out any odd-order normal subgroups. In particular,
there are no odd-order normal subgroups in the Fitting group F (Ct); so we have:

(2.0.11) F ∗(Ct) = E(Ct)F (Ct) = O2(Ct) for all involutions t.

We saw above that we must end up with characteristic 2-type; so:

(2.0.12) It will suffice to show that O2′(Ct) = 1 for all t.

For then Ct = Ct, so that (2.0.11) gives F ∗(Ct) = O2(Ct)—as required for charac-
teristic 2 type in Definition 2.0.7.

So we define θ(t) := O2′
(
Ct
)
; and we set out to show that the values of the

function θ must be trivial.

3However (as we’ll see), that proof does assume two basic results, also fairly elementary,
which were considered standard by the early 1970s when the result was formulated.
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Balance and signalizer functors. Since m2(G) ≥ 3, G contains some elemen-
tary 2-subgroup A of rank ≥ 3. Though later we will vary over such A, for the
moment we fix A: so that in the next few paragraphs, elements and subgroups such
as t, u,B below are implicitly assumed to lie inside this particular A.

Using the property of “no 2-components” from our denial of component type
in (2.0.10), it is a fairly elementary exercise, mainly using the properties of the
generalized Fitting subgroup, to establish the symmetry property:

(2.0.13) balance: For commuting t, u ∈ A, we have θ(t) ∩ Cu = θ(u) ∩ Ct.

Gorenstein, building on balance and other ideas of Thompson going back to the
Odd Order paper, developed the notions of a signalizer functor; and this was sub-
sequently refined by Goldschmidt. We approximate the definition as:

(2.0.14) signalizer functor : roughly, a 2′-valued function (on A) with balance.

The rationale for this terminology will emerge a little farther down. Since here we
are working under the hypothesis that m2(G) ≥ 3 (so that we have such an A), and
we observed in (2.0.13) that we have balance, our present choice of θ as O2′

(
CG(−)

)
is then a signalizer functor in the sense of (2.0.14).

The methods now proceed by making an extension of our function θ to larger
elementary abelian 2-subgroups, in a fairly obvious way: Namely for B := 〈t, u〉
with commuting t, u, set θ(B) := 〈θ(v) : v ∈ B#〉; and so on, for higher-rank
groups. And now the goal is to show that this larger-θ can take only trivial values;
which will imply the same desired property for our original θ defined just on t.

In particular, this construction shows why we can refer to the extended func-
tion θ as a functor : For we can consider the poset (i.e. partially ordered set) of
nontrivial elementary 2-subgroups as the objects of a category—with morphisms
given by the inclusions≤, and theG-conjugations. Then the above definition via the
group-span show that B ≤ C leads to θ(B) ≤ θ(C); while we have θ(Bg) = θ(B)g

for our particular choice of θ(−) as O2′
(
CG(−)

)
. (The literature considers many

other choices for θ(−).)

Signalizer-values and completeness. Now we invoke the standard, and compar-
atively elementary, Signalizer Functor Theorem—for a full statement, see e.g. 0.3.14
in [ALSS11]. The proof requires m2(G) ≥ 3.

One of the conclusions of that result now helps explains the terminology of
“signalizer”: Namely it shows that for any elementary 2-subgroup C, the CG(C)-
invariant value θ(C) is still a 2′-group—this is not automatic, just from the defini-
tion of the extended-θ via the group-span. Thus the functor θ has values which are
in fact “2-signalizers” in the language of Thompson.

A further important consequence of the Signalizer Functor Theorem is that θ
is complete; roughly, it is “globally determined” by our fixed A of rank ≥ 3:

For t ∈ A#, θ(t) = θ(A) ∩ Ct.
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Notice that this in particular implies the balance condition (2.0.13). Thus we could
regard the various detailed conclusions of the Signalizer Functor Theorem, includ-
ing the signalizer-valued and functorial properties above, as more or less logically
equivalent to the definition of a signalizer functor just via balance in (2.0.14).

In practice we typically focus on the following corollary of completeness:

(2.0.15) completeness gives: θ(A) = θ(B), for all B of rank ≥ 2 in A.

The rank-3 graph, and the cases for connectivity. At this point, we allow our
previously-fixed A to vary—now over all elementary 2-subgroups of G of rank 3.

Notice that if A,A′ are distinct such groups intersecting in B of rank 2, then
completeness (2.0.15) shows that θ(A) = θ(B) = θ(A′). Thus the separate def-
initions of extended-θ for subgroups of A, and of A′, are compatible on their
intersection—so that extended-θ is naturally defined on the union of those subgroup-
posets. And so on.

Indeed this further suggests that we should consider a graph Γ: where vertices
are the elementary 2-subgroups A of rank 3; and A,A′ define an edge whenever
we have A ∩ A′ = B of rank 2. Then the observation in the previous paragraph
extends to:

The value of θ(−) is constant on any connected component of Γ.
We then have two obvious cases: Γ is either disconnected or connected.

Suppose first that Γ is disconnected:
Here it follows, with some further work, that G has a subgroup M which is:

(2.0.16) strongly embedded : |M | is even, but |M ∩Mg| is odd ∀g 6∈M .

Here we may quote the very-standard Strongly Embedded Theorem (for exam-
ple [ALSS11, 0.2.3]) of Bender and Suzuki; which states that:

Theorem 2.0.17 ((Bender-Suzuki) Strongly Embedded Theorem). A simple
group G with a strongly embedded subgroup is L2(q), U3(q), or Sz(q), with q = 2a.

These conclusion-groups are often called the Bender groups. Note that they are
the rank-1 groups of Lie type—in characteristic 2. In particular, they satisfy char-
acteristic 2 type (including θ ≡ 1); and so our proof is done in this case.

So we turn to the remaining case, where Γ is connected:
Here in particular the G-conjugacy class of A is connected; so by our earlier

remark, the value of θ(A) is constant on this class. However, G permutes that
conjugacy class, and hence permutes the corresponding values of θ over that class;
so since these values are constant, G must normalize θ(A). Now by simplicity of G,
we conclude that θ(A) = 1. Finally, every involution t must lie in some A of rank 3;
see e.g. the proof of 0.3.22 in [ALSS11]. It follows that θ(t) = 1—as we wanted
in (2.0.12), to in fact establish characteristic 2 type.

This completes our sketch of the proof of the Dichotomy Theorem. �

We comment that the proof actually has a trichotomy structure; namely:
{ component type, disconnected, connected }.
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And it happened—for our situation here with p = 2—that the latter two branches
led to the same conclusion, of characteristic 2 type. But when we later adapt these
arguments, for odd p when we are in the Even Case, the disconnected branch will
remain distinct—giving our trichotomy.

Indeed the above notions related to balance and signalizer functors—including
completeness and connectedness, leading to a trichotomy—were adjusted and re-
used in many different situations, throughout the CFSG.

The basic Grid of subcases for the CFSG proof. The Dichotomy Theo-
rem has given us a basic Odd/Even case division for the CFSG. But to close the Sec-
tion, we further subdivide cases—by giving some more detail on the small/generic
distinction that we had made, prior to stating that Theorem.

Historically, the treatment of m2(G) ≤ 2 was regarded as a part of the Odd
Case—namely as the Small Odd Subcase. Correspondingly, the union of m2(G) ≤ 2
and component type is called “Gorenstein-Walter type” (GW) in [ALSS11].

In order to re-use, for odd primes p in the Even Case, the signalizer-functor
arguments underlying the Dichotomy Theorem proof, a different small/generic case
subdivision was used. For recall that characteristic 2 type focuses on 2-local sub-
groups; so we consider odd p-ranks—inside 2-locals:

Define m2,p(G) := max{mp(H) : H is a 2-local subgroup of G}.
The following parameter had already been of importance in Thompson’s early work
on N -groups [Tho68]:

(2.0.18) e(G) := maxp m2,p(G).

And the Small Even Subcase is correspondingly given by e(G) ≤ 2 (the quasithin
condition, which we abbreviate by QT).

Thus the original CFSG treats a “grid” of four subcases:

Remark 2.0.19 (The CFSG Grid). The basic subcases for the CFSG are:

(Odd Case) (Even Case)
GW type characteristic 2 type

small m2(G) ≤ 2 e(G) ≤ 2 (quasithin)
generic component type e(G) ≥ 3

♦

So we now turn to summarizing how these various subcases were handled.

2.1. Treating the Odd Case: via standard form

Just as in the discussion before the Dichotomy Theorem 2.0.9, we continue to
omit the treatment of the Small Odd Subcase m2(G) ≤ 2; instead referring the
reader to [ALSS11, 1.4.6] for details.

Thus we assume thatm2(G) ≥ 3; and that we are in the component-type branch
of the Dichotomy Theorem—that is, the Generic Odd Subcase of the Grid 2.0.19.

So for some t ∈ G, the centralizer Ct := CG(t) has a 2-component L; that is, a
component in Ct/O2′(Ct).
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Fundamental contributions of Gorenstein-Walter and Aschbacher led to the
notion of standard form, and the following idealized strategy—which is a further-
simplified form of [ALSS11, 1.1.1]:

Remark 2.1.1 (Standard-form strategy). We try ideally to proceed as follows:
(1) Show that some such L is in fact quasisimple. (That is, we want to move

from a 2-component to an actual component. This is roughly the content of Thomp-
son’s fundamental B-conjecture—indicated below.)

(2) Show that some suitably-maximal L has certain very strong “standard
form” properties. (These properties will also be described below.)

(3) Show that any simple G is (usually) a larger group of the same general
type as L. (E.g. recall in the Odd Case Example 2.0.3 that linear components SLk
and SLn−k of Ct arise in the linear group G = SLn.) ♦

The actual path followed was more complicated; but the over-simplification above
should suffice for our present expository purposes. So we’ll now summarize, with
only a few details, how that idealized strategy was implemented:

Obtaining components in standard form. For (1) in the strategy 2.1.1:
The general form of Thompson’s B-Conjecture [ALSS11, 1.6.1] states roughly that
any 2-components of a local subgroup of X lie inside those of X. It has the corollary,
in our situation where in particular O2′(G) = 1, that the 2-components of Ct must
in fact be components.

No direct proof of the B-Conjecture has been found. Instead, it was established
indirectly, as a consequence of the Unbalanced Group Theorem—using a version of
standard form below, adapted for 2-components. The interested reader is directed
to [ALSS11, Sec 1.6–1.8] for details of this nontrivial process.

Thus we now assume the resulting B-Theorem, which was established by that
process: so that our 2-component L is now in fact a component—i.e. quasisimple.
And we turn to step (2) in the strategy 2.1.1.

Here is Aschbacher’s characterization [ALSS11, 1.6.1] of the fundamental prop-
erties that a component L should have—on being taken maximal in a suitable sense:

Definition 2.1.2 (standard form). Set H := CG(L). The component L is
standard in G, or in standard form, if:
• L commutes with none of its distinct G-conjugates; and
• H ∩Hg has odd order for all g ∈ G \NG(L). (So NG(L) = NG(H).)

The latter condition says that H is tightly embedded in G. This definition due to
Aschbacher uses a condition resembling that for strongly-embedded in (2.0.16); but
it definitely differs, since here H < NG(H). ♦

Example 2.1.3. In the Odd Case Example 2.0.3, work in SLn(q) with even n.
So if we take k = 2, then in effect we maximize the component L ∼= SLn−2(q).
To observe standard form: As a typical example of Lg, take the diagonal entries
of −1 in the bottom two positions. Then as long as n ≥ 4: H ∩Hg = 1; and the
nontrivial subgroup L∩Lg is not centralized by L or Lg, so that [L,Lg] 6= 1. (With
some work, this example could be made into an actual proof.) ♦
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Exercise 2.1.4. Revisit some other component-type groups, for example from
Exercise 2.0.5; again these should not be too small. Choose a component which
seems likely to be maximal; and verify the standard-form property—at least infor-
mally, as in the Example above. ♦

The definitive verification that standard form should usually hold was provided
by Aschbacher’s Standard Component Theorem [ALSS11, 1.8.12]. That result
was proved before the B-Conjecture, and so assumed that conjecture as part of its
hypothesis; this restriction was of course released, after the proof of the B-Theorem.
The conclusion was that: either G is one of a few explicit small classical groups in
odd characteristic—and hence among the conclusions of the Odd Case; or G has
an involution-centralizer component in standard form.

So we may assume that our L is standard in G; and we turn to step (3) in the
strategy 2.1.1:

Treating the standard-form problems. At this point, we see that the com-
pletion of our Odd Case has been reduced to:
• considering each quasisimple L, namely a covering of some simple S; and
• determining which simple G can have that L in standard form.

The former is in fact covered by what we had earlier called the quasisimple-form of
the CFSG-list 1.4.9. So we are reduced for each L to the latter, which is called the
standard-form problem for L.

We had observed in 2.1.1(3) that the answer G in the standard-form problem
for L should usually be a larger group of the same general type as L. But there are
enough exceptions to complicate the problem. For example, L2(5) is standard in
almost-simple PGL3(5); but we also recall4 that L2(5) ∼= A5—and we had observed
in 2.0.5 that A5 is standard in A9. For a more nontrivial example: A11 is similarly
standard in A15; but its double cover 2A11 turns out to be standard in the Lyons
group Ly.

By around 1979, the various standard-form problems had been handled—in
papers by more than 20 different authors; see [ALSS11, Secs 1.9–1.10] for the list
of authors, with a fuller description of the results.

Those results completed the treatment of the Odd Case of the CFSG. �

So we turn to the Even Case: where, roughly speaking, we will adapt essentially
the same ideas as for involution centralizers in the Odd Case—but now instead for
application to centralizers of elements of odd order, in the Even Case.

2.2. Treating the Even Case: via trichotomy and standard type

Now we assume that we are in the Even Case, so that our simple G has charac-
teristic 2 type. And of course we can also assume that m2(G) ≥ 3—since m2(G) ≤ 2
was covered as the Small Odd Subcase (in the language of the Grid 2.0.19).

Thus from Definition 2.0.7, we have F ∗(N) = O2(N) for each 2-local sub-
group N . So this holds for N given by the centralizer Ct := CG(t) of each involu-
tion t of G.

4E.g. from 1.5.5(1).
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The groups expected in the conclusion of the Even Case should primarily be
groups of Lie type in characteristic 2 (as well as a few sporadic groups).

The Small Even Subcase. We will begin with just a brief indication of the
Small Even Subcase, given by e(G) ≤ 2—the quasithin groups.

We observe first that Thompson’s parameter e(G) in (2.0.18), when applied
to G of Lie type in characteristic 2, provides a good approximation of the Lie rank:

Example 2.2.1 (e(G) and characteristic-2 Lie rank). In GLn(q) in our Even
Case Example 2.0.6, we recall by the Borel-Tits Theorem 1.3.20(5) that 2-locals
are contained in parabolic subgroups. A typical parabolic is in fact provided by the
centralizer Ct in that Example. Its widest odd-order subgroup is the full diagonal
subgroup H; this is a Cartan subgroup, which has rank n—and that is also the
Lie rank of GLn(q). For the determinant-1 subgroup SLn(q), these ranks are both
given by (n− 1). ♦

Exercise 2.2.2. In some other even Lie-type cases, say those in Exercises 1.5.5
and 2.0.8, check the agreement of these ranks. ♦

Thus the expected conclusions in the Small Even Subcase are the given by the
characteristic-2 Lie-type groups, of Lie rank ≤ 2.

Unfortunately, there are enough further examples of quasithin groups, to greatly
complicate the classification problem. Even more difficult to deal with, than these
extra conclusions, are the very many borderline cases: “shadows” which are not
quasithin groups, but have e.g. local subgroups whose commutator subgroups are
quasithin—these can be very hard to eliminate by purely local methods.

Around 1981, a substantial work on quasithin groups was left unfinished by
Mason. Eventually a classification of quasithin groups was published, in a lengthy
work of Aschbacher-Smith [AS04b]; a statement of the result appears as 3.0.1
in [ALSS11]. We mention that this quasithin classification was proved under a
more general hypothesis of:

Definition 2.2.3 (even characteristic). The condition of even characteristic
weakens characteristic 2 type, by requiring F ∗(N) = O2(N) only for 2-locals N
containing a Sylow 2-subgroup of G. ♦

One useful feature of this extra generality is that the quasithin result can be used
also in the “revisionism” program of Gorenstein-Lyons-Solomon—which we will
indicate briefly as the new-approach (2) to the CFSG, in our afterword-Section 2.3.
More precisely: using instead the revisionism-hypothesis of “even type” indicated
there, a corollary of the Aschbacher-Smith result shows that the only additional
quasithin group that arises under even type, beyond those of even characteristic,
is the Janko group J1. We’ll say a little more about this result, in the quasithin-
application subsection of later Section 8.3.

So for the rest of the section, we assume the Generic Even Subcase: e(G) ≥ 3.
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Odd signalizer functors and trichotomies. The material in this subsection
is a much-oversimplified summary of the approach taken in Sections 2.2 and 2.3
of [ALSS11]. For full definitions and details, the reader should consult that source,
or its underlying references.

From e(G) ≥ 3 we get an odd prime p, with mp(N) ≥ 3 for a 2-local subgroup N .
In particular, we have mp(G) ≥ 3. And recalling that m2(G) ≥ 3 was required

for the use of signalizer functors in the proof of the Dichotomy Theorem 2.0.9,
we might well ask here if we can employ a suitable odd-p version of those fairly
elementary arguments in signalizer functor theory.

We observe first that in the Odd Case, we had an involution t—of order 2,
coprime to the odd characteristic of the Lie-type groups expected in the Odd Case
conclusions. This suggests that in the Even Case, where we are expecting conclusion
groups in characteristic 2, we should examine an element u of odd prime order p,
and its centralizer Cu := CG(u). Let’s see how this works in an example:

Example 2.2.4 (Centralizers of odd-order elements). We mimic the develop-
ment in the Odd Case Example 2.0.3: But this time our linear group G := GLn(2a)
is now of characteristic 2; and we replace the earlier diagonal involution t, which
had k entries of −1, by a p-element u—which instead uses k copies of a primi-
tive p-th root ω of unity. Then the same linear-algebra argument as before leads to
block-matrix form for Cu; which again has components SLk and SLn−k.

Similarly we can mimic the development in the Even Case Example 2.0.6: We
work inside the linear group G := GLn(pa), which now is of odd characteristic;
for u of order p, we can use a Jordan-matrix analogous to the one in that Example.
And we obtain centralizer matrix forms analogous to the ones there, leading now
to F ∗(Cu) = Op(Cu). ♦

Thus we make the exact p-analogues of the earlier definitions:

Definition 2.2.5 (p-component type and characteristic p type). We say that G
has p-component type, if there is some element u of order p, with Cu := CG(u),
such that F ∗

(
Cu/Op′(Cu)

)
has a component.

And G has characteristic p type if F ∗(N) = Op(N) for all p-locals N . (Again
it suffices to have this condition just for all the centralizers Cu.) ♦

Exercise 2.2.6 (more odd components). Find p-components in Cu similar to
the above, in other even Lie-type cases; say those in Exercises 1.5.5 and 2.0.8. ♦

With the above notions in hand, it is now straightforward to reproduce the methods
of signalizer functors: including balance, completeness, and the graph Γ on rank-3
elementary p-groups. In particular, the same elementary arguments used in prov-
ing the Dichotomy Theorem 2.0.9 (plus now a much less elementary Non-solvable
Signalizer Functor Theorem) now lead instead to a trichotomy—since this time,
the case of Γ-disconnected in the proof remains distinct for odd p. These re-used
arguments (cf. [ALSS11, 2.2.1]) result in:
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Theorem 2.2.7 (Weak Trichotomy). Assume that G is simple and of charac-
teristic 2 type; and that e(G) ≥ 3. Then there is an odd p with m2,p(G) ≥ 3, such
that one of the following holds:

(1) G is of p-component type;
(2) Γ is disconnected;
(3) Γ is connected—and then G has characteristic p type (as well as character-

istic 2 type by hypothesis).

As the “Weak” in the name suggests, for odd p these cases are not necessarily an
ideal starting point for the final classification in the Even Case. Indeed Gorenstein
and Lyons, and Aschbacher, and probably others, saw that it would be advan-
tageous to refine this trichotomy—by suitably strengthening these three cases, in
order to provide substantially more information.

This resulted in the stronger Trichotomy Theorem 2.2.8 below. For our present
expository purposes, we will not provide here the full technical definitions of its
three cases; for those details, see [ALSS11, Sec 2.2]. Instead, we will try to give
some background on each adjusted-case, including just a brief approximation to its
definition.

A main goal was to strengthen case (1), so as to already contain various prop-
erties like those coming from Aschbacher’s notion of standard form. The result was
called standard type; very roughly, it includes properties of components, and their
“neighbors”—defined when they intersect in a suitably-large subcomponent. And
then this adjusted case (1) should in fact lead to most of the Even-Case conclusion-
groups—that is, the groups of Lie type in characteristic 2.

Case (2), with Γ disconnected, is not really adjusted at all: it just provides
the information that the stabilizer of a connected component of the graph Γ on p-
groups is contained in some 2-local subgroup N . Now this should turn out to be
impossible, since N “should” instead be a p-local. But leading this case to a final
contradiction is tricky; we’ll just sketch what should be a desirable path: One im-
mediate difficulty is that for odd p, in contrast to the situation for p = 2 in the proof
of the Dichotomy Theorem 2.0.9, this does not force N to be a strongly p-embedded
subgroup—in the straighforward p-analogue 8.6.1 of strongly embedded in (2.0.16).
So an eventual goal is to establish that N should be strongly p-embedded. In that
situation, “uniqueness methods” show that many p-locals lie in this unique max-
imal subgroup N ; for example, this property holds for rank-1 Lie-type groups in
characteristic p, using 1.3.20(6). So that is basically what we will later call the
Uniqueness Case. Correspondingly, the earlier starting-point in case (2) was called
the p-preuniqueness type case.

Case (3), in the original un-adjusted form stated above, is already eliminated:
For Klinger and Mason [ALSS11, B.9.1] showed that characteristic {2, p} type
forces m2,p(G) ≤ 2, contrary to m2,p(G) ≥ 3 as assumed in the statement of
the Weak Trichotomy Theorem 2.2.7. However, their methods suggested a way
of expanding case (3) to have a very natural content: Notably their early re-
sult [ALSS11, B.9.2] showed that characteristic {2, p} type with m2,p(G) ≥ 2 leads
to the already well-known condition of GF (2) type. We’ll examine that definition
and its consequences later at 8.1.2; for the moment, we’ll just say that it abstracts
some structure which is visible in many Lie-type groups defined over the smallest
field F2—and also in a fair number of sporadic groups. Since these Even Case
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conclusion-groups could be complicated to treat from the standard-type viewpoint
of (1), it was convenient to expect them instead to arise under adjusted-case (3)—
now re-defined as GF (2) type.

This stronger-trichotomy program, with the three cases adjusted as in the
discussion just above, was implemented by Gorenstein and Lyons, in a lengthy
work [GL83]—in fact assuming e(G) ≥ 4. The groups with e(G) = 3 were handled
by Aschbacher [Asc81a, Asc83a]—indeed all the way to the final classification
of such groups. (Aschbacher did not state an explicit trichotomy; but it can be
gleaned from the logic sequence of his proof.) We state the result [ALSS11, 2.3.9]
in this simplified-for-exposition form:

Theorem 2.2.8 ((Strong) Trichotomy Theorem). Assume G is simple of char-
acteristic 2 type; and e(G) ≥ 3. Then one of the following holds:

(1) G is of standard type for some p;
(2) G is of p-preuniqueness type, for all relevant p with m2,p(G) ≥ 3;
(3) G is of GF (2) type.

We mention that for e(G) = 3, Aschbacher in fact allowed in (3) the more gen-
eral GF (2n) type. We’ll give that definition later at 8.1.5; it is roughly an analogue
of GF (2) type, made for any F2n .

And the remainder of the CFSG then proceeded via these three subcases.

The treatment of the three subcases of the Even Case. Since our pri-
mary purpose was to introduce some of the ideas above, here we’ll give only a brief
indication of how these subcases were later handled.

The treatment of standard type. We recall from our discussion before the Tri-
chotomy Theorem 2.2.8 that this case (1) was designed to contain most of the
conclusion groups in the Even Case, namely G of Lie type in characteristic 2.

In striking contrast to the Odd Case—where the standard form problems were
handled by many different authors—in the Even Case, all the standard-type prob-
lems were handled in a single paper: namely Gilman-Griess [GG83].

This was made possible essentially by the strong properties included in the
definition of standard type for case 2.2.8(1). See e.g. [ALSS11, Ch 6] for details;
here is a very rough summary: For our standard-type component L, Gorenstein
and Lyons provide a theory of neighbors, defined by such components sharing a
“standard subcomponent”—with strong information about that intersection.

Next recall as in Example 2.2.4 that in the desired conclusion-groups of Lie
type in characteristic 2, the component L should roughly be a Levi complement
of a maximal parabolic; hence standard subcomponents should be similar Levi
subgroups inside them.

In rough outline, Gilman and Griess proceed by first determining the full Weyl
group W , as in a conclusion-group G; and then identifying G as 〈L,W 〉—more or
less as follows: They can obtain neighbors from suitable conjugates of L under W ;
and then the sub-components from the intersections do have the structure of Levi
subgroups, as expected from the Dynkin diagram of the desired G. In particular,
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since they assume e(G) ≥ 4,5 so that typically L has Lie rank ≥ 3 as in Exam-
ple 2.2.1, Levi subgroups corresponding to rank-2 subdiagrams should be contained
in components such as L (or others constructed via subcomponents), and so have
the desired structure. Finally this information on rank-2 Levi subgroups, along
with the desired Dynkin diagram, is the input to the standard Curtis-Tits relations
(or more simply the Steinberg relations)—appearing in their results 2.27 and 2.30,
and which we indicate at later Theorem 4.2.1. The presentation corresponding to
these relations allows them to identify their group 〈L,W 〉 as the desired Lie-type
group G in characteristic 2.

The treatment of GF (2) type. We recall next that the case 2.2.8(3) was designed
to cover the sporadic groups in the conclusion of the Even Case, and also many of
the Lie-type groups defined over the small field F2.

One advantage of this case is that GF (2) type had in fact already been han-
dled by 1978—well before the Trichotomy Theorem 2.2.8 was published. A fuller
description of that work is provided in [ALSS11, Ch 7]; with the GF (2) type
classification stated at [ALSS11, 7.0.1].

We will just summarize a few points:
The work took place during the middle 1970s, and was not necessarily regarded

(at least originally) as part of the overall plan for the CFSG: it does not use an
overall induction, and in particular, no K-group hypotheses are needed.

Various authors participated: notably Aschbacher (e.g. [Asc76]) early on; and
Timmesfeld, who reduced the problem to a finite number of local configurations;
and Smith and others, who finished off those remaining configurations.

The more general GF (2n) type classification proceeded along similar lines, with
contributions also by Stroth; see [ALSS11, 7.5.2] for a statement.

Some aspects of this treatment are discussed in an application-subsection of
later Section 8.1.

The treatment of the pre-uniqueness case. Finally we recall that case (2) of 2.2.8
was intended to be eliminated—for the final contradiction of the CFSG.

See [ALSS11, Ch 8] for a fuller discussion of this work. As usual we provide
just a summary:

Recall that this is the pre-uniqueness case: where the stabilizer of a connected
component of Γ is contained in some 2-local subgroup. The first goal was to then
proceed to the “full” Uniqueness Case: meaning roughly that some 2-local is “al-
most” strongly p-embedded—a condition which allows for a few further possibili-
ties, beyond the strongly p-embedded condition 8.6.1 mentioned in our earlier pre-
liminary discussion. This step was implemented by Aschbacher-Gorenstein-Lyons
in [AGL81]. Indeed this advance was assumed in the final statement of Trichotomy
by Gorenstein-Lyons in [GL83]: that is, replace the pre-uniqueness case (2) of 2.2.8
above with the full Uniqueness Case.

Then, the Uniqueness Case itself was eliminated by Aschbacher; this deep and
difficult work appears in [Asc83b, Asc83c]. We mention that proceeding from

5As mentioned above before 2.2.8, Aschbacher handled the cases with e(G) = 3; in his
standard-type situation, he used various recognition theorems, including the Curtis-Tits approach

as in Gilman-Griess.
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almost strongly p-embedded to strongly p-embedded does not complete the analy-
sis: for there is no independent odd-p analogue known of the Strongly Embedded
Theorem 2.0.17. (Indeed the classification of the analogous strongly p-embedded
subgroups was only completed using the full power of the finished CFSG; we will
say more about that treatment in later Section 8.6.)

This contradiction completed the Even Case; and hence the CFSG. �

2.3. Afterword: comparison with later CFSG approaches

The CFSG outline in the sections of this chapter so far have been concerned with:

(1) The “original” CFSG.

In the remainder of this section, we’ll comment briefly on some later, alternative
routes to classifying the finite simple groups:

(2) The “revisionism” program of Gorenstein-Lyons-Solomon (GLS)—see the
volume [GLS94] and its successors:

This approach is intended to organize and improve the original CFSG proof; with
the particular goal of being self-contained: namely collecting together essentially
all the material, in one series of monographs.

One new feature is the replacement of characteristic 2 type with even type:
which now allows 2-components of characteristic 2 in involution centralizers. (So
in effect, the vertical partition in the Grid 2.0.19 is shifted somewhat to the left.)

So far, 6 of the planned 10 volumes have appeared; with the seventh submitted,
and detailed drafts prepared for most of the rest. As we had mentioned earlier, the
quasithin treatment for the GLS project will quote Aschbacher-Smith [AS04b].
It is also likely that the Uniqueness Case for the GLS project will appear in an
anticipated volume by Stroth (a 2009 preprint can be found at his website).

(3) Meierfrankenfeld-Stellmacher-Stroth—characteristic-p methods:

An overview of this project appears in [MSS03]; for the current status, refer to
Meierfrankenfeld’s website.

The approach is intended to exploit the features of characteristic p type, for
each p: That is, conclusion groups, notably those of Lie type in characteristic p,
should be identified by the structure of p-local subgroups—such as parabolics. This
differs from approaches (1) and (2), where for a group in characteristic p, compo-
nents are produced in the centralizer of a p′-element.

The approach would classify groups of characteristic p-type, for any p; and so in
particular would replace the Even Case (characteristic 2 type) of the original CFSG.
But it would not replace the entire CFSG, which also covers the case of groups which
are not of characteristic p type for any p (such as most alternating groups).

However, with that restriction: for the groups it treats, the approach would
remove any vertical partition from the Grid 2.0.19. But there is still a horizontal
partition—that is, small vs generic cases.

(4) Aschbacher’s approach via fusion systems:

For an overview, see for example [Asc15]. This approach works in the context of
fusion systems—the modern topological framework axiomatizing the p-local prop-
erties of finite groups: Namely given a prime p, along witha p-group P , the fusion
system is roughly the category whose objects are the subgroups of P , and whose
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morphisms are suitable natural mappings among those subgroups. The motivating
case comes from P taken as a Sylow p-subgroup of G; with the mappings given
by the G-conjugations inside P—the p-fusion. (We return to the topic of fusion at
later Definition (3.5.1); and to fusion systems thereafter.)

Thus the plan would be to first classify the abstract simple fusion systems; and
then for each such simple system, identify the simple groups G having that system.

The approach seems most promising for groups of p-component type: since the
fusion system is not affected by normal p′-subgroups, it is not necessary to avert Op′

problems via signalizer-functor/connectivity arguments. Furthermore the approach
may only be really feasible for p = 2; since for odd p, there are many exotic fusion
systems not corresponding to finite groups G.

Applying the CFSG toward Quillen’s Conjecture on Sp(G)

In the remainder of the chapter, we turn again to applications—this time with a
more topological flavor: namely “subgroup complexes”, in particular the geometries
afforded by the p-subgroup structure of a finite group.

As a reference for this area, I’ll primarily use my book [Smi11] on subgroup
complexes; the reader can also find there references to many further sources.

The treatment below will assume some basics of algebraic topology, notably:
simplicial complexes, including the join construction; their homological algebra,
including e.g. cycles, boundaries, and homology groups; and homotopy equiva-
lences and contractibility. The reader needing a review of such material can con-
sult [Smi11] and the sources it references; we mention that a particularly good
topological resource for the subgroup-complexes viewpoint is Munkres [Mun84].

2.4. Introduction: the poset Sp(G) and the contractibility conjecture

Starting in the mid-1970s, topological work of Brown, Quillen, and Webb fo-
cused attention on the partially ordered set (poset) consisting of all nontrivial p-
subgroups of a finite group G.

The original interest for topologists was in the group cohomology H∗(X) for a
finite group X; and indeed more specifically its p-part H∗(X)p, when p divides the
order of X. But soon, a wide range of other applications led to research of common
interest across (at least):
• algebraic topology,
• finite group theory, and
• combinatorics.

For the general setup: Let C be some set of subgroups of a finite group G; and
let |C| denote the set of inclusion-chains from C. Since a subset of a chain is still a
chain, we see that |C| is in fact a simplicial complex; namely:

(2.4.1) The order complex |C| of a poset C is its set of inclusion-chains.

This setup may seem very abstract—but you can draw pictures, at least in smallish
posets. For brevity, usually we will now usually write just C—both for the poset,
and for the resulting complex |C|; only making the notational distinction when
really needed.
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Normally we take C to be closed under conjugacy, so that the poset (and com-
plex) admit a G-action. We also usually consider a poset which does not include 1
or G; this avoids having the poset be contractible for an essentially trivial reason—
namely a unique minimal or maximal element.

The p-subgroups poset Sp(G). For the study of the p-structure of G, Brown
around 1975 was led to consider the poset:

(2.4.2) Sp(G) := { all non-trivial p-subgroups of G}.
In particular, he established his “homological Sylow theorem” [Smi11, 0.0.1]; with
the number of Sylows replaced by the Euler characteristic6 χ of the complex:

(2.4.3) χ
(
Sp(G)

)
≡ 1 (mod |G|p)

Subsequently Quillen’s influential paper [Qui78] made an extensive further study
of the topological properties of the complex; and his dramatic results stimulated
considerable research activity.

To take one example: Note that subtracting 1 from both sides of (2.4.3) shows
that |G|p divides the reduced Euler characteristic χ̃

(
Sp(G)

)
. And this is a prop-

erty (see later 5.0.1) of the dimension of a projective G-module. Furthermore an
important module related to the complex is its Lefschetz module L

(
Sp(G)

)
: given

by the alternating sum of the homology groups Hi(−) of the complex, with coeffi-
cient (−1)i in dimension i. Because of the alternating signs ±, it is actually virtual
module, well-defined in the appropriate Grothendieck group; and its dimension is
just the Euler characteristic χ(−). Then subtracting a trivial module in formal

dimension −1 gives the reduced Lefschetz module L̃(−), corresponding to reduced

homology groups H̃i(−); and this has dimension given by the reduced Euler char-
acteristic χ̃(−). So this is the dimension divisible by |G|p resulting from (2.4.3);
and correspondingly Quillen, extending earlier arguments of Brown, showed (see
for example 6.2.1 in [Smi11]) that:

(2.4.4) The generalized Steinberg module L̃
(
Sp(G)

)
is projective.

This terminology for an arbitrary finite group G indicates an analogy with the pro-
jective Steinberg module for a Lie-type group—we will discuss that actual Steinberg
module at later Definition 5.2.8.

Webb and others pursued the area further; his survey [Web87] indicates the
status of developments through about 1985.

Quillen’s conjecture and the Aschbacher-Smith result. Quillen also
showed, via a fairly easy argument, that (cf. [Smi11, 3.3.5]):

(2.4.5) If Op(G) > 1, then Sp(G) is contractible.

And then he conjectured (very boldly, in my view) the far more difficult converse
(cf. [Smi11, 3.3.8]):

Conjecture 2.4.6 (Quillen Conjecture). If Op(G) = 1, then Sp(G) is not
contractible.

6Recall this is the alternating sum of the dimensions of homology groups Hi(−).
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In fact Quillen himself established the conjecture for G solvable; we will discuss this
in a moment as Theorem 2.5.7. Indeed he obtained a number of other important
special cases, notably G of Lie type in the same characteristic p; some further cases
are described in [Smi11, 8.4.2].

Later authors established various other special cases; notably Aschbacher and
Kleidman in [AK90] explored the groups in the CFSG-list to obtain (cf. 8.4.3
in [Smi11]):

(2.4.7) The Conjecture holds for simple G in the CFSG-list 1.0.2.

The most general result so far is that of Aschbacher-Smith [AS93], which we state
here in a form simplified from [Smi11, 8.4.4]:

Theorem 2.4.8. For p > 5, the Conjecture holds—unless E(G) has certain
unitary components.

A main theme in the Aschbacher-Smith work is to exploit the central-product
structure of E(G): this gives the topological join of the complexes for the fac-
tors of E(G)—that is, for the components of G. The goal is to exhibit nonzero
reduced homology (more specifically than in Aschbacher-Kleidman (2.4.7) above)
for the possible components in the quasisimple form 1.4.9 of the CFSG-list—and
try to show that these must lead to nonzero reduced homology for G.

The implementation of this approach is discussed in [Smi11, Ch 8]; and in
the remainder of this chapter, we will sketch some of the exposition there which
involves using the quasisimple CFSG-list.

2.5. Quillen-dimension and the solvable case

But before we consider material involving applications of the CFSG, it will be
useful to review some background from Quillen’s solvable case. (For fuller details,
see [Smi11, Sec 8.2].)

As suggested just above, to establish non-contractibility of Sp(G), it will suffice

to exhibit nonzero reduced homology H̃∗.
But where should we find that homology? More precisely, in what dimension

should we find it? An answer will be suggested, in the process of examining Quillen’s
proof for the solvable case:

The subposet Ap(G) and Quillen-dimension. We note first that Quillen in fact
works with a subposet of Sp(G):

(2.5.1) Ap(G) := { all elementary abelian p-subgroups (> 1) of G };
This suffices, since one of his fundamental results was (cf. [Smi11, 4.2.4]):

(2.5.2) Ap(G) is homotopy-equivalent to Sp(G).

Furthermore, this implies that homology of Sp(G) vanishes in all dimensions greater
than that of the subcomplex Ap(G). And for d := mp(G), namely the full p-rank
of G, we see that any inclusion-chain of elementary p-subgroups has length ≤ d−1—
which gives the dimension of Ap(G).

Now often we can find nonzero homology in exactly that dimension; motivating:
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Definition 2.5.3 (Quillen-dimension). We sayG has Quillen-dimension (at p),

if we have nonzero homology H̃mp(G)−1

(
Ap(G)

)
6= 0; that is, in the top dimension

of the complex Ap(G). ♦

Using Quillen-dimension is crucial for the Aschbacher-Smith approach.

Cycles from spheres. Next: How might we find—indeed construct—nonzero
homology? More precisely, what group-structures can we use to exhibit H̃d−1 6= 0?

We emphasize some crucial features of Quillen-dimension: First, (d− 1) is the
top dimension of the complex Ap(G), so that the only (d−1)-boundary is 0—hence

the (d − 1)-cycles in fact give the homology classes H̃d−1

(
Ap(G)

)
. Second, also

by top dimension, we can even reduce to subgroups: because such a cycle for a
subgroup H is also a cycle for G.

Now the simplest kind of d − 1-cycle would be a sphere Sd−1. And recalling
that the 0-sphere S0 is just two disconnected vertices ({• •}), the simplest way to
construct the sphere Sd−1 is as the join of d copies of S0 (roughly, a join of two
terms makes all possible connections between them).

An easy example of a group-structure involving such spheres is given by tak-
ing p = 2, and considering the direct product of d dihedral groups D2qi for various
odd orders qi. For note that each dihedral group has its A2 given by qi ≥ 3 dis-
connected vertices—so there are multiple copies of S0. And then it is standard (for
example [Smi11, 8.1.2]) that Ap of a direct product is the join of Ap of the factors;
so via this join-factorization we get (many) copies of Sd−1.

Exercise 2.5.4. For general p, observe similar spheres in the direct product of
nonabelian groups of order pq, where p divides q − 1. ♦

Indeed such products arise naturally in a well-known minimal-faithful situation of
Thompson given in [ALSS11, B.1.7]:

Theorem 2.5.5 (Thompson Dihedral Theorem). Assume that A is an ele-
mentary 2-group of rank d, acting faithfully on a (solvable) 2′-group L. Then LA
contains a direct product of d dihedral groups AiLi ∼= D2qi , where A is the product
of the Ai of order 2, and Li ≤ L.

Of course the solvability of L is automatic, from the Odd Order Theorem (2.0.1); but
the elementary proof uses only the assumption of solvability (rather than quoting
the CFSG).

The theme of such a product LA—with faithful action of A (of maximal rank d)
on some L—will be prominent in the discussion that follows.

Quillen’s minimal solvable case—and the solvable extension. To treat solvable
groups, Quillen reduces to such an LA-situation; namely he first establishes nonzero
homology [Smi11, 8.2.9] for:

Theorem 2.5.6. Assume A is an elementary abelian p-group of rank s, acting
faithfully on a solvable p′-group L. Then H̃s−1

(
Ap(LA)

)
6= 0.

Thus in the post-Quillen terminology we have introduced, LA has Quillen-dimension.
We mention that Quillen’s proof is topological in flavor; however Alperin’s later
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method, given at [Smi11, 8.2.9], essentially does proceed by means of the elemen-
tary join-spheres above.

Quillen then deduces the solvable case [Smi11, 8.2.5]) of his Conjecture:

Theorem 2.5.7 (Solvable Quillen Conjecture). Assume that G is solvable,

with Op(G) = 1, and d := mp(G). Then H̃d−1

(
Ap(G)

)
6= 0.

Proof. Here is the actual process of reduction to a suitable LA: We may
choose A elementary of rank d. Since G is solvable, the generalized Fitting subgroup
is just the Fitting group F (G) =: L. By hypothesis we have Op(G) = 1, so that L is
a p′-group—and solvable, by that hypothesis on G. By Fitting’s Theorem 1.4.2, we
have CG(L) ≤ L; so as L is a p′-group, CA(L) = 1—that is, A is faithful on L. So

by Quillen’s minimal-case Theorem 2.5.6, we get H̃d−1

(
Ap(LA)

)
6= 0. Since (d−1)

is the top dimension of Ap(G), as we noted earlier, these cycles for LA also give
cycles for G—as required. �

And again we see that, in our later language, G has Quillen-dimension.

It turns out that a similar reduction, though requiring a rather mild application
of the CFSG, works for the p-solvable7 case.

2.6. The reduction of the p-solvable case to the solvable case

Again see [Smi11, Sec 8.2] for a fuller exposition than the summary below.
Quillen mentioned that the proof for the solvable case in Theorem 2.5.7 could be

immediately extended to the p-solvable case—if the “solvable” restriction could be
removed from L in Theorem 2.5.6. Indeed, now assume we have p-solvable instead
of solvable in that proof: so using the generalized Fitting subgroup L := F ∗(G), the
hypothesis Op(G) = 1 again leads to a p′-group—though now L is only p-solvable.
And use of the self-centralizing property (1.4.6) similarly leads to A faithful on L.

So in effect, what is needed to generalize 2.5.6 is a reduction from L given
by any p′-group, to a suitable A-invariant solvable subgroup L0 ≤ L (with A still
faithful on L0).

And here for p odd, L can have p′-group components from E(G) which are
definitely not solvable:

Example 2.6.1 (simple 3′-groups). The Suzuki twisted groups Sz(2a) are sim-
ple 3′-groups—indeed the only simple 3′-groups, using a result of Glauberman
(see [Gor82, 4.174]).

By the early 1990s, experts were aware that such a reduction could be obtained
fairly easily—using the CFSG-list. But seemingly no one had explicitly claimed
the result for the p-solvable case. It is quoted in [AS93, 0.5] as well-known, with
a proof indicated via 1.6 (using 0.10) there. But the reduction to a solvable L0

was, inadvertently, omitted in 0.10; later a full argument was supplied in 8.2.12
of [Smi11].

Since it provides an easy example of applying the CFSG inside the Aschbacher-
Smith work [AS93] on the Quillen Conjecture, in this section we give a sketch of
that reduction.

7Recall this means the terms of a composition series are either p-groups or p′-groups.
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Notice first that the above reduction shows that we may as well assume that we
have L = F ∗(L) = F (L)E(L): where F (L) is a p′-group—which is nilpotent, and
so certainly solvable; while E(L) is the central product of quasisimple components,
which are also p′-groups.

Coprime outer automorphisms. We now separate off the part of the argu-
ment that invokes the CFSG-list; this feature of the simple groups seems to be of
independent interest, so we reproduce it from [Smi11, p 270]:

Corollary 2.6.2 (Coprime outer automorphisms). Assume S is a simple p′-
group, with P a nontrivial p-subgroup of Out(S). Then p is odd, S is of Lie type,
and P consists of field automorphisms; so in particular, P is cyclic.

Proof. Note first that p is odd: for simple S has even order by the Odd
Order Theorem (2.0.1). We will now need only very basic facts from our discussion
of Out(S) in Section 1.5:

Recall we saw there that for S alternating or sporadic, Out(S) is either trivial
or a 2-group. But we saw in the previous paragraph that p 6= 2; hence S must be
of Lie type.

So we recall the diagonal-field-graph Theorem 1.5.4. Now diagonal automor-
phisms are eliminated: since their orders are among those of the elements of the
diagonal subgroup H. Similarly graph automorphisms are eliminated: those of or-
der 2 by p 6= 2 above; while graph automorphisms of order 3 could occur only in
types D4 or 3D4—whereas we saw in Example 2.6.1 that the only simple 3′-groups
are the Suzuki groups Sz(2a), which instead have type 2C2.

Thus P consists of field automorphisms—and so is cyclic. �

The remaining argument mainly uses standard elementary facts about the “co-
prime action” of the p-group A on the p′-group L; see e.g. [ALSS11, Sec B.1] for
further details.

The reduction to solvable L0. The main point of the exposition in this area
is to demonstrate how we work into a position to apply the CFSG via 2.6.2 above.

Reduction to quasisimple groups Li. Recall we have L = F (L)E(L). Let Li
(for i ∈ I) denote the components—that is, the quasisimple factors in the central
product E(L). Also recall from Remark 1.4.8 that the elements of A must permute
the Li, as they are the components of LA.

We will wish to define our subgroup L0 as follows; set:

L0 := F (L)
(

Πi∈I ( Πb∈A/NA(Li) S
b
i )
)
,

where for each i, Si will be an NA(Li)-invariant Sylow pi-subgroup of Li (for some
prime pi), with:

(2.6.3) CA(Si) ≤ CA(Li).

We quickly check that this construction will satisfy what we need: Notice that L0

is nilpotent, hence in particular solvable. Furthermore A normalizes the product
of the |A : NA(Li)| conjugates of Si under A; so that A normalizes L0. Finally
to check faithful action: assume that a ∈ CA(L0). Such an a centralizes F (L)
by definition of L0; and also for each i, a centralizes Si, and hence centralizes Li
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by (2.6.3). Since L = F (L)E(L), and E(L) is the product of the Li, we see
that a ∈ CA(L)—but CA(L) = 1 as A is faithful on L. Hence A is also faithful
on L0.

Thus it remains, for each i, to exhibit an NA(Li)-invariant Si with the above
condition (2.6.3).

Choice of suitable Si. To move toward such a choice, we first get a general
overview of all possible Sylow groups—using standard coprime-action methods:

Consider any prime q dividing the order of Li; and then consider some Sylow q-
subgroup denoted by Q. Now NA(Li) must permute the set of Sylow pi-subgroups
of Li; and the number of these is |Li : NLi

(Si)|. Since L is a p′-group, this index
is coprime to p; so there must be some choice of the Sylow q-group Q which is
normalized by NA(Li)—and we now make that choice, for each q. Furthermore,
note that Li is the set-product of these Sylow groups Q, as we vary q.

Furthermore since elements of A must permute the Li, NA(Q) ≤ NA(Li); so
as Q is NA(Li)-invariant, we conclude that NA(Li) = NA(Q).

Now we can finally begin to further refine the possible Sylow choices:
Assume first that NA(Li) = CA(Li). We may take any q,Q above in the roles

of “pi, Si”: Then we have CA(Si) ≤ NA(Si) = NA(Q) = NA(Li) using the previous
paragraph; and here NA(Li) is just CA(Li) by our present assumption. That is,
this choice of pi and NA(Li)-invariant Sylow Si satisfies (2.6.3).

We turn to the remaining, more interesting case, with NA(Li) > CA(Li).
We adopt the notation NA(Li)

∗ := NA(Li)/CA(Li); this gives a nontrivial sub-
group of Out(Li). It is a standard feature (e.g. [Gor80, 5.3.5]) of coprime action
that NA(Li)

∗ ≤ Out(L) must in fact be determined in Out(S), where S is the sim-
ple quotient L/Z(L). And this is where we can apply the CFSG, via Corollary 2.6.2:
Namely S is of Lie type, with NA(Li)

∗ cyclic; indeed since A is elementary abelian,
we conclude that the nontrivial group NA(Li)

∗ must be of order exactly p.
Now we saw earlier that Li is the product of the NA(Li)-invariant Q over all q;

so NA(Li)
∗ cannot centralize all these Q. Thus we can now restrict our choice of

prime pi to one of those q for which NA(Li)
∗ is nontrivial on Q; and correspondingly

take Si to be that Q. So we have NA(Li)
∗ > CNA(Li)∗(Si); and since NA(Li)

∗ is of
order exactly p by the previous paragraph, we must have CNA(Li)∗(Si) = 1. This
means that CA(Si) = CNA(Li)(Si) ≤ CA(Li). Thus again (2.6.3) holds—completing
the proof. �

Remark 2.6.4. We could actually be more specific about the final choice
of pi, Si above: For once the simple quotient S is of Lie type, and NA(Li)

∗ is given
by a field automorphism, we can take pi to be the characteristic prime of S—and
then the full unipotent group U , over the larger field (and covered by the Sylow Si
of Li), is not centralized by the field automorphism. ♦

Remark 2.6.5 (The upshot). We pause to recall what has been accomplished
by the argument in this section: Namely Theorem 2.5.6 holds with the “solvable”
restriction on the p′-group L removed. And then it follows, by straightforward
adapation of its proof, that the Solvable Quillen Conjecture Theorem 2.5.7 can be
extended to p-solvable G with Op(G) = 1. ♦
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2.7. Other uses of the CFSG in the Aschbacher-Smith proof

In this final section of the chapter, we give a briefer indication of how the CFSG
is used elsewhere in the argument, in terms of certain main features in [AS93]. A
fuller exposition is given in [Smi11, Sec 8.2–8.4].

So consider the Quillen Conjecture for general G; we start with Op(G) = 1.
A certain amount of argument, using induction and the p-solvable case of the

previous section, leads to Op′(G) = 1. It follows that F (G) = 1, so Z
(
E(G)

)
= 1.

Thus F ∗(G) = E(G)—which is then the direct product of simple components.

This suggests the main overall approach; roughly:
• In E(G), find nonzero product homology—using the CFSG for the factors.
• Then show that this “propagates” to nonzero homology for G.

It turns out that Quillen-dimension is the key to establishing this propagation. And
we mention that in order to obtain Op = 1 in subgroups for induction, it is necessary
to analyze not just simple groups, but almost-simple groups—via complements in
products LA with outer automorphisms A, in Section 2 of [AS93].

Establishing Quillen-dimension. Consequently Section 3 of [AS93] is devoted
to the fairly painstaking verification of Theorem 3.1 there; which roughly states
(cf. [Smi11, 8.2.15]) that:

“Most” almost-simple groups have Quillen-dimension.8

The major exceptions (that is, not covered by “Most” above) are:
• Lie type groups in the same characteristic p;
• certain unitary groups Un(q) with q ≡ −1 (mod p).

Of course the CFSG, including knowledge of outer automorphsisms, is used for the
list of groups to analyze for this result.

And the main method used for establishing Quillen-dimension is to examine
the detailed subgroup structure, to locate p, q-spheres Sd of the type indicated in
Exercise 2.5.4. The cases are too varied to discuss here; but in general the procedure
is roughly recursive—repeatedly breaking down products into sub-products, until
the final factors are nonabelian with order pr for p dividing (r − 1).

And just a word about the exceptions: For a group G of a fixed Lie type, over
fields Fpa for various a, the root subgroups have rank a, which can be arbitrar-
ily large—hence the value of the Quillen-dimension also becomes arbitrary large;
whereas unfortunately, the known methods for sphere-construction are limited by
the fixed Lie rank of G. The problem is roughly similar for the unitary groups Un(q):
Quillen-dimension requires nonzero homology in dimension roughly (n−1); whereas
the known methods are limited by the Lie rank, which is about half that—recall
the discussion of Lie rank for the twisted groups in Definition 1.3.17.

Using Quillen-dimension. We now sketch the main method in the overall proof;
this is given by [AS93, 1.7], which completes the case where G has a component L,
such that LA has Quillen-dimension—in particular, A is faithful on L, and exhibits
the maximal p-rank mp(LA).

The first step for homology propagation is to adjoin CG(LA): Here the CFSG-
based analysis of outer automorphisms that we mentioned above is used, to arrange
that Op

(
CG(LA)

)
= 1. Then we may assume by induction (in the overall result)

that CG(LA) has nonzero homology—say α 6= 0. And now we form the usual

8Recall that specifying this dimension is stronger than Aschbacher-Kleidman (2.4.7).
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homological product of α, with the nonzero Quillen-dimension homology (say β 6= 0)
for LA which we have by hypothesis. This gives nonzero homology αβ for the
product group CG(LA)LA.

The remaining step in the homology propagation is to proceed to G: If αβ
is in the image of the boundary map from G, the preimage would have to in-
volve some elementary p-group B of G, which in particular properly contains A.
Here the CFSG-based outer-automorphism analysis mentioned above can be used
to force B to even fall into our product CG(LA)LA. And now we use Quillen-
dimension; specifically that A has the maximal rank mp(LA), so that there are no
elementary C > A available in the right-hand factor LA. Indeed we are able to
choose a complement in B to A from the left-hand factor: namely B = CB(LA)×A.
In this situation, we can apply the main technical lemma [AS93, 0.27], which uses
only elementary product homology (the Künneth formula etc), to show that this
would force α to be a boundary—contradicting our choice above of α 6= 0.

Finishing via Robinson subgroups. So from now on, we may assume that each
component L in E(G) is a “non-QD” group; namely one of the exceptions in 8.2.15
of [Smi11]. For these cases, we use a method due to Robinson [Rob88] (essentially
that used for Aschbacher-Kleidman (2.4.7)):

For a q-hyperelementary9 group X, the fixed points under X in fact satisfy:

(2.7.1) χ̃
(
Sp(G)

)
≡ χ̃

(
Sp(G)X

)
(mod q).

Now if we had contractibility of Sp(G), the left side would be zero; so that the
fixed-point count on the right side would be divisible by q.

Thus Section 5 of [AS93] studies the simple groups in CFSG-list, to estab-
lish Theorem 5.3 there—which roughly states that non-QD groups should have a
relevant subgroup Y :

Remark 2.7.2 (Robinson subgroups). For L a non-QD simple group—except
certain unitary groups—we can find a 2-hyperelementary subgroup Y ≤ L, such
that χ̃

(
Sp(L)Y

)
= ±1. We call such a subgroup Y a Robinson subgroup.

In fact, usually Sp(L)Y is empty, so that χ̃ = −1; but occasionally the fixed-
point set is the 0-sphere S0, so that χ̃ = 1. ♦

And now we can finish the main argument:
Recall we are now assuming that E(G) has all non-QD components. And at this

point, we must also make use of our original hypothesis that there is no unitary
component. (In fact the main result of [AS93] actually allows certain unitary
components, which can be shown to have Quillen-dimension.)

Now for each component L of E(G), using Remark 2.7.2 we take a Robinson
subgroup Y . Using the product of the 2-groups from the various Y , and the cyclic
group generated by the product of the generators from the cyclic subgroups in
each Y , we can build a 2-hyperelementary X ≤ E(G). Now the fixed points for G
can be shown to in fact be those for E(G):

Sp(G)X = Sp
(
E(G)

)X
.

9This means cyclic extended by a q-group.
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And for the simple factors of the central product E(G), it is standard that the
reduced Euler characteristic χ̃ is multiplicative on the corresponding join of posets;
so from the values of χ̃ for the Y in Remark 2.7.1, we obtain that χ̃

(
Sp(G)X

)
= ±1.

This is odd; so by the congruence mod 2 in (2.7.1), we conclude that Sp(G) has
nonzero reduced homology—and in particular, is not contractible.

This completes the argument of [AS93] toward Quillen’s Conjecture. �



CHAPTER 3

Thompson Factorization—and its failure:
FF-methods

This chapter reviews some methods related to factorization of a group as a prod-
uct of subgroups. The ideas were initially introduced by Thompson, with further
developments by Aschbacher and others. The techniques were applied frequently
throughout the CFSG; and in the latter part of the chapter, we also indicate some
modern applications of the ideas in a topological context.

The exposition in the first four sections roughly summarizes some background
material on the CFSG in [ALSS11], especially Sections B.6–B.8 there. It also
draws from the quasithin work [AS04a, AS04b], especially background material
from Chapters B, C, and E in [AS04a].

Introduction: Some forms of the Frattini factorization

A simple group G is not necessarily likely to admit factorizations via subgroups.
Thus in the next few sections, we will consider factorizations for a more general
group H (typically, a local subgroup).

A factorization setup for module-action. We first indicate a very elemen-
tary factorization, which goes back at least to Frattini around 1885; we had in fact
mentioned it in the discussion after Theorem 1.6.4:

Lemma 3.0.1. Assume H and a subgroup X both act transitively on a set Ω.
Then X is supplemented by a point stabilizer Hα (α ∈ Ω). That is:

H = X ·Hα.

Proof. Let h be any element of H, and suppose (α)h = β. By the transitivity
hypothesis, there is also some x ∈ X satisfying (α)x = β. Then hx−1 is an element
of Hα, say s—so that h = sx. This shows that H = HαX; and equivalently, by
taking inverses, we have H = XHα. �

Example 3.0.2. For a prime p, the symmetric group Sp is the product of tran-
sitive Zp with a point stabilizer Sp−1. And S4 is the product of transitive A4 (or
even O2(A4)) with S3. ♦

In fact Frattini is mainly associated with the special case [ALSS11, A.1.5(2)]:

Corollary 3.0.3 (Frattini Argument). Let N E H, and P ∈ Sylp(N). Then:

H = N ·NH(P ).

55
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Proof. By Sylow’s theorem, N is transitive on Ω := Sylp(N); but H acts on N
by the hypothesis of normality, and hence also on Ω—and is transitive since N is.
Now 3.0.1 gives the indicated factorization. �

Example 3.0.4. Mimic Example 3.0.2: Use p = 3, and note that S4 is the
product of normal A4 with the normalizer S3 of a 3-Sylow of order 3 in A4. ♦

We next further specialize to a “module” subcase; namely we assume from now on:

Hypothesis 3.0.5. H acts (not necessarily faithfully) on some elementary
abelian p-group V .

Typically H might be a p-local of a simple G, and then a very commonly made
choice is V := Ω1( Z

(
Op(H)

)
).1 Since we have V ≤ H in that case, we can then

regard V as an “internal” module for H. (We also comment that much of the
analysis in the early sections of this chapter was originally done just for p = 2, in
the analysis of 2-local subgroups in the CFSG; but most goes through for any p.)
It is standard in the module situation 3.0.5 that CH(V ) E H; so:

Corollary 3.0.6. Assume P ∈ Sylp
(
CH(V )

)
in Hypothesis 3.0.5. Then:

H = CH(V ) ·NH(P ).

Example 3.0.7. Take p = 2, with H = S4 × S3, and V = O2(S4). Here
we see CH(V ) = O2(S4) × S3 has 2-Sylow P ∼= E8;2 and H is the product
of CH(V ) = O2(S4)× S3 with NH(P ) = S4 × Z2. ♦

Some refinements, based on subgroups Z ≤ V and W ≤ P . In the
internal-module subcase of 3.0.6 above, the factors CH(V ) and NH(P ) are p-local
subgroups of H. Sometimes it can be useful to work instead with suitable p-locals
containing those original factors.

Indeed below, we introduce a version of Corollary 3.0.6, in which the new fac-
tors are the analogous centralizer and normalizer—but of suitable subgroups Z,W
of V, P . After that further corollary, we will discuss more explicitly some ways of
usefully choosing such Z,W .

Hypothesis 3.0.8. Assume 3.0.5, with Z ≤ V , and W weakly closed3 in P
with respect to H.

From Z ≤ V we get CH(V ) ≤ CH(Z). Further if h ∈ NH(P ), then Wh ≤ P ,
so that Wh = W ; that is, NH(P ) ≤ NH(W ). Thus from 3.0.6, we get a refined
module-consequence of the Frattini Argument:

Corollary 3.0.9 (A module Frattini factorization (FA)). Assume we have
Hypothesis 3.0.8. Then:

H = CH(Z) ·NH(W ).

This form (FA) of the Frattini Argument arises frequently—especially in the internal-
module subcase—in the analysis of p-local subgroups H of G. So we turn to ex-
ploring how the subgroups Z,W might be productively chosen.

1Recall that Ω1(−) means the subgroup generated by elements of order p.
2We write Epr (or sometimes just pr) for an elementary group of order pr.
3Recall this means: whenever W g ≤ P , we get W g = W . In particular, W E P .
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A typical choice for Z (and indeed V ). We now choose some fixed some
particular Sylow p-subgroup T of H. Take the above P ≤ T , so that P = CT (V ).

For reasons which will be emerging as we proceed through this chapter, it can
be useful to use subgroups Z,W which are “independently” determined in terms
of T—rather than in terms of the particular original choice of V, P . Indeed for Z,W ,
we will typically wish to use not just normal but characteristic4 subgroups of T .

In fact, there is a standard situation within the internal-module setup, for
which there is a natural choice of the module V , determined by a fairly canonical
characteristic subgroup that we can use for Z:

Remark 3.0.10 (The p-reduced context). Assume further that G has charac-
teristic p type; recall from the Definition 2.2.5 that this means that each p-local
subgroup H of G satisfies:

F ∗(H) = Op(H) ; and hence CH
(
Op(H)

)
= Z

(
Op(H)

)
,

using Remark 1.4.3.
Now assume also that H contains a Sylow p-subgroup of G. Thus our Sylow T

of H is in fact Sylow in G. Here it turns out to be natural to use the following5

characteristic subgroup of T :
Z := Ω1

(
Z(T )

)
.

For note that by normality we have Op(H) ≤ T ; and so:
Z ≤ CH(T ) ≤ CH

(
Op(H)

)
= Z

(
Op(H)

)
using the characteristic p type property indicated in the previous paragraph.

Then as our H-module, we take:
V := 〈ZH〉.

For by construction, V is normal in H; and as Z is elementary abelian, and we just
saw that it lies in Z

(
Op(H)

)
, we get V ≤ Ω1Z

(
Op(H)

)
.6 In particular, V is ele-

mentary abelian. Thus we have the module-requirement of 3.0.5; and furthermore
by construction Z ≤ V , as required for 3.0.8.

Indeed, we even get that V is p-reduced : that is, Op
(
H/CH(V )

)
= 1; see for

example [AS04a, B.2.13] for this standard fact. ♦

But we have not yet discussed what might be a natural choice for the weakly-closed
subgroup W of the Sylow P of CH(V ). Here Thompson’s deeper insights will come
into play—leading to Thompson Factorization and many other developments:

3.1. Thompson Factorization: using J(T ) as weakly-closed “W”

We will sketch some aspects of Thompson’s extremely influential analysis.

The Thompson subgroup. Thompson’s study of factorizations—and their
failure—led him to define the following subgroup [ALSS11, B.6.4]:

Definition 3.1.1 (The Thompson subgroup J(−)). For a p-group S, we set:7

J(S) := 〈 all elementary abelian subgroups A of maximal rank in S〉.

4Recall characteristic means invariant under all automorphisms (not just inner) of T .
5Though sometimes we might wish to replace this Z by some further subgroup.
6For brevity we often abbreviate Ω1

(
Z(−)

)
by just Ω1Z(−).

7Originally Thompson used A abelian of maximal order, not necessarily elementary.
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Observe that J(S) is normal, indeed characteristic, in S. Further whenever S ≤ X,
we see J(S) is weakly closed in S with respect to X. ♦

Example 3.1.2. Take p = 2. For dihedral S := D8, note that m2(D8) = 2,
and that D8 has two elementary subgroups E4 of maximal rank 2; so J(D8) = D8.

On the other hand, for quaternion S := Q8, m2(Q8) = 1, and there is a unique
elementary subgroup Z(Q8) of rank 1; thus J(Q8) = Z(Q8). ♦

Exercise 3.1.3 (Practice with the Thompson subgroup J(−)). (1) What is
the generalization of Example 3.1.2 above for dihedral D2n? For the generalized
quaternion group Q2n?

(2) Compute J(S) for some other small (but nonabelian) p-groups S. For ex-
ample, consider S extraspecial (Definition 8.1.3) of order p3; and larger extraspecial
groups; and your favorite p-groups.

(3) Show that Ω1Z(S) ≤ Ω1Z
(
J(S)

)
. Hint: Ω1Z(S) must be in each A by

maximal rank. ♦

We will be interested in J(T ), for T our Sylow p-subgroup of H; indeed we
would like to use it as the weakly-closed “W” in P , in hypothesis 3.0.8. However,
in general it is not even clear that J(T ) should be contained in P .

Thompson Factorization. Nonetheless, this situation J(T ) ≤ P is our “best-
case scenario”; and we get Thompson’s form (cf. [ALSS11, B.6.5]) below, of the
refined Frattini factorization (FA) in 3.0.9:

Theorem 3.1.4 (Thompson Factorization (TF)). Assume 3.0.5 holds, and also
that J(T ) ≤ CH(V ), for T ∈ Sylp(H). Then:

(1) H = CH(V ) ·NH
(
J(T )

)
.

Assume further that we are in the internal-module subcase V ≤ H, and we also
have Ω1Z(T ) ≤ V . (In particular this holds in the p-reduced setup 3.0.10, where V
is constructed as 〈Ω1Z(T )H〉.) Then:

(2) H = CH
(
Ω1Z(T )

)
·NH

(
J(T )

)
.

Proof. Set P := CT (V ), so that J(T ) ≤ P by our hypothesis. Then from
Definition 3.1.1, we see that J(T ) = J(P ); and in particular, J(T ) is weakly closed
in P with respect to H. Thus V, J(T ) can play the roles of “Z,W” in Hypothe-
sis 3.0.8; and then from (FA) in 3.0.9 we get the fundamental factorization (1). Now
suppose further that Ω1Z(T ) ≤ V ≤ H; then the more specialized factorization (2)
follows from (1). Alternatively, we can take Ω1Z(T ) for “Z” in 3.0.8, and get (2)
directly from (FA). �

Example 3.1.5. We actually begin with some non-examples—that is, situ-
ations where the above conditions fail; we will follow this direction in the sub-
sequent Section 3.2. First consider H := S4 and V := O2(S4). Here we have
that T ∼= D8, and we saw in Example 3.1.2 that J(D8) = D8. Now CH(V ) = V ,
so that J(T ) = D8 � CH(V )—that is, the hypothesis for (TF) in 3.1.4 fails. And
also the factorization-conclusion 3.1.4(1) fails: for we have NH(D8) = D8, so the
product CH(V )NH

(
J(T )

)
= O2(S4)D8 = D8 is proper in S4. A similar argument
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applies to S4 × S4; and indeed to any larger product (S4)n—this situation will
re-appear in later Theorem 3.2.6.

But the hypotheses for 3.1.4 do hold, in a certain subgroup of S4 × S4: For
let V := E4 × E4, and H := V · S3, where this “diagonal” S3 acts on each factor
as in S4 above—namely as L2(2) on its 2-dimensional natural module. Here we see
that m2(H) = 4, and V is the unique elementary 2-subgroup of that maximal rank
in T ; hence we get that J(T ) = V , so that the hypothesis J(T ) ≤ CH(V ) for (TF)
holds. And the product CH(V )NH

(
J(T )

)
is just V H = H, so that the Thomp-

son Factorization (TF) holds—if only in a rather trivial way, by normality in H. ♦

We can ask if there are natural classes of groups H for which, under the as-
sumption that F ∗(H) = Op(H) as in the p-reduced setup 3.0.10, we always get
the conditions for the form 3.1.4(2) of (TF) to hold. In fact Thompson showed
in [Tho66, Thm 1] that this is usually the case for p-solvable H—aside from cer-
tain exceptions like those with (S4)n which we saw in Example 3.1.5:

Theorem 3.1.6. Assume that H is p-solvable, and that F ∗(H) = Op(H). Take
some T ∈ Sylp(H). Then either the form 3.1.4(2) of (TF) holds:

H = CH
(
Ω1Z(T )

)
·NH

(
J(T )

)
;

or p ∈ {2, 3}, and SL2(p) is involved as a section of H.

But Thompson also realized that failure of factorization (typically abbreviated
by FF) will often occur. Roughly:

Remark 3.1.7 (Expecting FF in p-locals). Recall our discussion in Chapter 2
of small versus generic cases, e.g. for the Grid 2.0.19. Generically we expect, for
example in the standard p-reduced situation of 3.0.10, that our simple G will have
a number of different p-locals H containing T , and satisfying F ∗(H) = Op(H)—as
in higher-rank Lie-type groups G in 1.3.20(6).

However, methods of Thompson indicate roughly (cf. [GLS96, 26.12.ii]) that if
all the p-locals H over T satisfy the factorization (TF) as in 3.1.4, then we should
usually expect G to contain a strongly p-embedded subgroup. Of course this last
condition is mainly associated with “narrow” groups, where a Sylow is contained in
a unique maximal p-local subgroup: For example with p = 2, recall the groups of
Lie rank 1 appearing in the Strongly Embedded Theorem 2.0.17; for these groups,
by 1.3.20(6), a Sylow group is in a unique maximal 2-local subgroup. And cf. the
analogous rank-1 groups for p odd in the parallel discussion of strongly p-embedded
in Section 8.6. Of course more usually, we can expect wider situations.

Thus, generically we can expect FF in at least some of the p-locals. ♦

An important part of Thompson’s insight was that the FF-situation is tractable:
indeed, his definition of J(T ) itself provides a tool for FF-analyis:

3.2. Failure of Thompson Factorization: FF-methods

We continue with the H-module setup 3.0.5, but assume that (TF) in 3.1.4(1)
fails; that is, we have FF. Then the hypothesis there must , namely we get:

J(T ) � CH(V ).
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So from the Definition 3.1.1 of J(T ) via maximal-rank elementary subgroups:
Some elementary A of maximal rank in T satisfies A � CH(V ).

In particular, for the faithful-action quotient, we have A := A/CA(V ) > 1.

FF-offenders and FF-modules. We now restrict attention to the internal-
module subcase, namely V ≤ H. Since A is elementary, we see that V · CA(V ) is
also elementary; and now Thompson applies the hypothesis of maximal rank for A,
built in to Definition 3.1.1—to get:

|A| ≥ |V · CA(V )| = |V ||CA(V )|
|CV ∩A(V )|

.

However CV ∩A(V ) ≤ V ∩A ≤ CV (A), as A is abelian; so we obtain:

Definition 3.2.1 (FF-offender and FF-module).

|A|
|CA(V )|

≥ |V |
|CV (A)|

.

This condition defines A as an FF-offender (or just offender) on V . And V is called
an FF-module for H; or, for the faithful quotient H := H/CH(V ). ♦

Roughly, the condition says that the codimension of CV (A) in V is smallish—with
respect to |A|; that is, A must centralize “much” of V .

Example 3.2.2. There are various familiar cases of such (V ,A); for example:
(1) Transvections: Recall (Definition B.1.2) that these are p-elements x central-

izing a hyperplane of V . Thus for A := 〈x〉 of rank 1, we have dim
(
V/CV (A)

)
= 1,

giving the FF-offender condition 3.2.1.
(2) Maximal unipotent radicals of H := GLn(V ): Recall by 1.3.20(6) that the

maximal parabolics are the Pk̂ of Example 1.3.4. So we take the unipotent radical:

A := Uk̂ =

(
Ik 0
∗ In−k

)
This has rank k(n− k), which is ≥ the codimension (n− k) of CV (A) in V , giving
the FF-offender condition 3.2.1. Also the product H := V ·H is a local subgroup
in a larger linear group GLn+1(q); so we have a p-local H exhibiting FF—as we
noted we should expect, in Remark 3.1.7. ♦

Exercise 3.2.3. Test for FF, in some small cases for H,V . Hint: In Exam-
ple 3.1.5, we already saw FF for L2(2) on its natural module V ; note that an
offender A of rank 1 comes from a transvection, as in 3.2.2(1) just above. And in
the internal-module version H = S4, a subgroup E4 not contained in V = O2(S4)
gives a maximal-rank A satisfying the FF-offender condition 3.2.1.

You can see similar behavior, using a full Sylow group A of H = L2(4), in
the action on its natural module V . On the other hand: We can take W to be
the orthogonal module for H, since we have Ω−4 (2) ∼= L2(4) via a standard isomor-
phism (cf. 1.5.5); and now there is no 2-subgroup A which is an offender. (You
can realize W as the 4-subspace given by even-size subsets in the full 5-dimensional
permutation module for A5

∼= Ω−4 (2).) ♦
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We mention that the offenders in Example 3.2.2 in fact exhibit quadratic action:

that is, [V,A,A] = 0. (So the minimal polynomial for a ∈ A#
is quadratic.) An

important result of Thompson [Tho69] shows that an offender without quadratic
action can always be replaced by another that does have the property:

Theorem 3.2.4 (Thompson Replacement). Every offender contains a qua-
dratic offender.

Determining the FF-offenders and FF-modules. Notice that for the
group H = GL(V ) in Example 3.2.2(2), the H-conjugates of the offender A given
there in fact generate SL(V )—which is most ofH. Indeed in studying FF-modules V
for groups H, we typically restrict attention to the subgroup of H generated by of-
fenders. And since the FF-offender restriction 3.2.1 is so strong, we consider:

Problem 3.2.5. Determine (H,V ), with H generated by FF-offenders on V .

For example, Glauberman [AS04a, B.2.16] refined Thompson’s result 3.1.6 on
the p-solvable case of factorization, by explicitly specifying the (H,V ) in Thomp-
son’s FF-exceptions—again they are of the type in Example 3.1.5:

Theorem 3.2.6 (p-solvable FF). Assume that H is p-solvable, and that we
have F ∗(H) = Op(H). If the factorization 3.1.4(2) in (TF) fails, then p ∈ {2, 3},
and H is essentially the commuting product of terms of form Vi · Li—with Vi the
natural module for Li ∼= SL2(p).

In order to treat FF for more general H, it was natural to reduce to consideration
of the components L in E(H); so we now assume H = L is quasisimple.

For p = 2, Cooperstein and Mason (see [Coo78]) listed the relevant pairs (V,L)—
but alas, without proofs. A full proof, for all p, was later given by Guralnick-
Malle [GM02]; roughly:

Theorem 3.2.7 (Quasisimple FF-list). Assume V is an FF-module for qua-
sisimple L. Then the simple quotient L/Z(L) is either of Lie type in characteris-
tic p, or alternating (here p = 2, 3); with V one of certain suitably “small” modules.

The FF-list in 3.2.7, mainly for p = 2, was used to pin down non-factorization
situations, throughout the CFSG. We’ll indicate some of the applications of FF in
our later material: for example, the C(G,T )-Theorem 3.3.8 in the next section;
and the structure of “abstract minimal parabolics” in later 4.4.1.

So we now begin in the C(G,T )-direction, which along the way involves FF-theory:

3.3. Pushing-up: FF-modules in Aschbacher blocks

We continue with at least one theme from the previous section: namely a focus
on subgroups which normalize (or even centralize) various characteristic subgroups
of the Sylow T of H. However, we “digress”, in the sense that we turn from the
chapter-topic of factorizations via such subgroups, to considering instead generation
via such subgroups. Nonetheless, one further theme remains similar to the previous
situation of (TF)-versus-FF: namely if the desirable result of generation fails, we
will still be able to describe the possibilities in that failure-situation.
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The characteristic core C(G,T ) and the condition (CPU). In this sec-
tion, we will often restrict attention to the case of p = 2 used in the CFSG; though
we do indicate some of the development which still goes through for general p.

For overall context, we note that much analysis in the CFSG employs:

Remark 3.3.1 (The Thompson strategy). Given T ∈ Syl2(G), we make an
initial choice of a maximal 2-local M containing T . Next, if possible, we find an
“independent” 2-local H over T—namely with the property that H �M . We can
then exploit the intersection M ∩ H ≥ T ; and hope to describe larger 〈M,H〉—
which, in view of the maximal 2-local choice of M , is likely to be all of G. ♦

The phrase “if possible” above brings us back to an issue that has cropped up
several times in the material up to now—namely the number of maximal 2-local
subgroups above a Sylow T . If this number is ≥ 2, then we are in a position to
employ the Thompson strategy. But if not, we need to:

Problem 3.3.2. Determine the possible G for which T is contained in a unique
maximal 2-local M .

We had mentioned that this property arises in particular for the rank-1 Lie type
groups in characteristic 2, in view of 1.3.20(6). These are of course the Bender
groups, namely the conclusion-groups in the Strongly Embedded Theorem 2.0.17.
Indeed the property arises under the hypothesis (2.0.16) of strongly embedded,
using the later variant-formulation (8.3.2). But Problem 3.3.2 is in fact more general
than the strongly-embedded case.

A related problem is suggested by our continuing focus on characteristic sub-
groups C of T : Observe that it follows from the definition of characteristic sub-
group that NG(T ) ≤ NG(C). Furthermore the behavior of parabolics in Lie-type
groups 1.3.20(6) suggests that for C < T we should usually get NG(T ) < NG(C);
that is, ideally we should be able to then “push up” to a larger 2-local NG(C).
But what if not? That is, what if NG(C) = NG(T ) for all C? We approach this
question by defining:

Definition 3.3.3 (The characteristic core C(G,T )). For a Sylow T of G:
C(G,T ) := 〈NG(C) : C a nontrivial characteristic subgroup of T 〉. ♦

Notice that Ω1Z(C) is characteristic in C, and hence also in T ; and that we also
have NG(C) ≤ NG

(
Ω1Z(C)

)
; so in fact it suffices to consider characteristic C which

are elementary abelian.
And to then describe the corresponding problem-situation, we follow the termi-

nology of (CPU) in [AS04a, C.1.6], for the characteristic-core version of obstruction
to pushing-up:

Remark 3.3.4 (Obstruction (CPU) to pushing-up). We write (CPU) for the
version of obstruction to pushing-up given by C(G,T ) < G; it’s traditional to write
this in the form:

C(G,T ) ≤M < G ,
to allow for a possibly-independent subgroup M in applications. ♦
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Example 3.3.5. An easy example for p = 2 is given by taking G := S4.
Here T ∼= D8 has only Z(T ) as proper characteristic elementary abelian subgroup.
And NG(T ) = T = NG

(
Z(T )

)
; so T = C(G,T ) plays the role of M in (CPU). ♦

We observe that the problem of determining obstructions (CPU) in 3.3.4 in fact
contains Problem 3.3.2 of T in a unique maximal 2-local M : For in the latter, we
see NG(T ) lies in that unique maximal M ; and we saw above that NG(T ) ≤ NG(C)
for all C—so that NG(C) must also lie in M , giving (CPU).

In Example 3.3.5 with S4 above, we see that T is in fact contained in unique
maximal 2-local proper subgroup M = T . However, note that this M is not strongly
embedded as in (2.0.16): for here, elements outside M normalize O2(S4) ≤ M .
And in fact we are interested in (CPU) for non-simple situations such as 2-local
subgroups, not just the context of simple G.

The C(G,T )-Theorem(s). Suppose first we have (CPU) in a 2-local sub-
group H over the Sylow T of G; along with the assumption F ∗(H) = O2(H) of the
standard p-reduced situation 3.0.10. Our assumption of (CPU) in H says that we
have a proper subgroup MH of H such that:

C(H,T ) ≤MH < H.
This is “local failure” to push up in H; and we observe that we also get failure
of factorization FF for H—namely failure of the factorization 3.1.4(2) in (TF):
For a fuller derivation of this, see e.g. [AS04a, C.1.26]; but just intuitively: We
see the two factors in that form of (TF), namely CH

(
Ω1Z(T )

)
and NH

(
J(T )

)
, lie

in C(H,T )—which by (CPU)-in-H above lies in MH . So if H were the product
of those factors, we would get H = C(H,T ) = MH ; contrary to the assumption
that MH < H.

Thus we can apply the FF-list 3.2.7 in describing obstructions in (CPU). In
fact, only a small subset of the cases in that list arise. For full details, see B.7.3
in [ALSS11]; here we just describe the crucial building-blocks via:

Definition 3.3.6 (Aschbacher χ-blocks). A χ-block is (roughly) one of several
very special cases (V,L) of the FF-list 3.2.7: where L ∼= L2(2m), or Am (m odd);
and where V has a unique nontrivial irreducible section—given respectively by the
natural module, or the irreducible permutation module. ♦

Notice that an example of a solvable χ-block is given by S4 in earlier Example 3.3.5:
for V = O2(S4) is the irreducible permutation module for L = S3 (it can also be
regarded as the natural module for L2(2) ∼= S3).

Using this language, Aschbacher’s fundamental [ALSS11, B.7.3] is:

Theorem 3.3.7 (Local C(G,T )-Theorem). Assume that F ∗(H) = O2(H),
and that H satisfies local-(CPU)—that is, that C(H,T ) ≤ MH < H as in 3.3.4.
Then H = C(H,T )L1 · · ·Lt, where the Li are χ-blocks.

Further work of Aschbacher and others then led to [ALSS11, B.7.8] for general G;
which we state very roughly in the form:



64 3. THOMPSON FACTORIZATION—AND ITS FAILURE: FF-METHODS

Theorem 3.3.8 (Global C(G,T )-Theorem). Assume G is simple and of char-
acteristic 2 type, and satisfies “global” (CPU)—i.e., C(G,T ) ≤M < G as in 3.3.4.
Then G is in a certain short list of cases: beyond the rank-1 groups in the Strongly
Embedded Theorem 2.0.17, it contains notably the rank-2 Lie-type groups which
admit a graph automorphism.

Exercise 3.3.9. Verify (CPU), and exhibit χ-blocks in 2-locals, in extensions
of L3(2m) and of Sp4(2m) by a graph automorphsim g.

Hint: The graph automorphism g shows that certain 2-subgroups are not char-
acteristic in T : Consider G = L3(2)〈g〉, with T ∼= D8〈g〉. Here the two sub-
groups E4 in D8 are not characteristic—indeed they are interchanged by the graph
automorphism 〈g〉. Furthermore we had noted in Example 3.3.5 that the only other
characteristic subgroup of D8 is Z(D8), which here also gives Z(T ). And much as
there, we have NG(T ) = T = NG

(
Z(T )

)
; and since we have C(G,T ) = T , here T

plays the role of M in (CPU), for G in the Global C(G,T )-Theorem 3.3.8. Finally,
letting V denote either choice of those E4-subgroups of D8, we see that the 2-local
subgroup H := NG(V ) ∼= S4 exhibits (CPU)-in-H via MH := M ∩H = T ; and H
itself is a χ-block, as needed in the Local C(G,T )-Theorem 3.3.7. ♦

With the Global C(G,T )-Theorem in hand, as noted earlier we in particular have
a solution of Problem 3.3.2: determing cases when T is in a unique maximal 2-local
subgroup. So:

(in the CFSG) after 3.3.8, we may employ the Thompson strategy 3.3.1;

that is, we may assume T lies in at least two maximal 2-locals, say M and H �M .

It follows from the Global C(G,T )-Theorem 3.3.8 that the rank-1 Lie-type
groups L2(2m) appear as L, in χ-blocks which are 2-locals in some rank-2 groups
with (CPU). Correspondingly, the (CPU)-situation in 3.3.4—defined using C(G,T )
for the full Sylow group T—is called rank-1 pushing-up. And as this terminology
suggests, we can in fact generalize pushing-up to situations involving higher-rank L;
where we use subgroups smaller than T to define the relevant (CPU)-variant:

Pushing-up using C(G,R) with R < T . Here we give a briefer sketch: We
want to generalize from our original focus on the Sylow group T , by using instead
a suitable subgroup R ≤ T . Thus (CPU), via the obvious analogous definition, will
take the form:

(3.3.10) R-(CPU): C(G,R) ≤M < G.

And forR to be “suitable”, it turns out to be natural to assume certain restrictions—
which are automatic for T , but must be verified when R < T :
• First, we assume that R is Sylow in 〈RM 〉. This holds e.g. if M = NG(R).
• Second, we assume that R satisfies R = O2

(
NG(R)

)
.

Indeed we recall the standard definition:

Definition 3.3.11 (The p-radical poset Bp(G)). We say a p-subgroup X of a
group G is p-radical if:

X = Op
(
NG(X)

)
.

We write Bp(G) for the poset of all nontrivial p-radical subgroups of G. ♦
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The terminology of “radical” is motivated by the analogous property of unipotent
radicals for Lie type in 1.3.20(4); indeed see later Theorem 5.4.2 for the character-
ization in that case. The p-radical subgroups, and the poset Bp(G), are important
for the topological viewpoint on group theory, especially in representation theory—
see e.g. the later Alperin Weight Conjecture 5.4.3, and other uses in geometric
representation theory in Section 7.5.

Various choices of R < T , lead to analogues of the C(G,T )-Theorems—which
determine obstructions in the R-(CPU) situation of (3.3.10). In analogues of the
Local C(G,T )-Theorem, again the local subgroups H are described by suitable
blocks; which are more general than the χ-blocks in Definition 3.3.6, involving:
• larger groups L; acting on:
• “larger” modules V—that is, with conditions weaker than FF in 3.2.1.

We mention that the work of Guralnick-Malle [GM02] was in fact designed for this
greater generality: indeed it provides a version of the FF-list 3.2.7, which covers
many of these weaker-than-FF situations.

And of course such analogues of the Local C(G,T )-Theorem provide the local
foundation for analogues of the Global C(G,T )-Theorem. We will close the section
by mentioning several:

Rank-2 pushing-up. Meierfrankenfeld and Stellmacher develop results (such
as C.1.32 in [AS04a]) for the following choice of R: Roughly, R is the unipotent
radical of a rank-2 parabolic, in a Sylow T from a rank-3 Lie-type group G. The
more general local-blocks arising from the R-(CPU) condition in (3.3.10), and the
resulting global configurations, have been used applied in various ways in the CFSG.

Pushing-up for the non-quasithin “shadow” Fi23. Now we present a somewhat
more detailed sketch—of a similar local-global situation, which arose in the qua-
sithin work; namely we summarize below the initial treatment of one of the cases
of [AS04b, 8.1.1]:

The Fischer group F := Fi23 is not quasithin; so it can’t be a conclusion-
group G under the QT-hypothesis. However, F does contain a 2-local subgroup of
the form H ∼= 211 : M23, which is quasithin; and ostensibly this subgroup could be
involved in some simple quasithin group G. Thus during the analylsis, we view Fi23

in Bender’s language as a “shadow”, to eventually be ruled out. But such shadows
can be very difficult to eliminate, using purely local methods.

In the present case, we can in fact proceed by turning to other 2-local subgroups—
namely involution centralizers:

We write V for O2(H) ∼= 211. Here V is in fact the 11-dimensional cocode
module for M23, which we had mentioned in our initial introduction of the Fischer
groups in Section 1.2. This module is a section of the full cocode module for M24—
which is the quotient of the 24-dimensional permutation F2-module, modulo the 12-
dimensional Golay-code submodule, generated by the code words; for fuller details,
see for example the Atlas [CCN+85, p 24]. In particular there is x ∈ V fixed by
the point stabilizer M22 in M23; that is, CH(x) ∼= M22. Furthermore CF (x) � H:
indeed we get CF (x)/〈x〉 ∼= Fi22, which is not quasithin; so that CF (x) is a non-
quasithin 2-local subgroup.
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And indeed now pushing-up methods will allow us to exploit the relation of
these local subgroups from the non-quasithin group F—but instead within the
abstract context of a quasithin group G with a 2-local subgroup L “similar” to H:

Our abstract local L might be larger than H; but it is suitably determined
by L ∼= M23, acting on the cocode module V ∼= 211. And an important feature of
“quasithin local theory”, which we will discuss in a bit more detail in Section 4.4,
shows at [AS04b, 3.3.2(1)] that:

(3.3.12) M := NG(L) is the unique maximal 2-local containing LT .

We now set R := O2(LT ). Then for any characteristic subgroup C of R, we get
that LT ≤ NG(C). But now by the uniqueness feature in (3.3.12) above, we
have NG(C) ≤M . So we get:

(3.3.13) C(G,R) ≤M < G ,

which of course is the condition we have been calling R-(CPU) as in (3.3.10).
The goal is then to use (3.3.13), to force CG(x) ≤ M ; this differs from the

situation CF (x) � H in the shadow F = Fi23, and so will provide a start towards
eliminating that shadow. We summarize the result of this analysis:

Example 3.3.14 (Pushing-up applied to the shadow of Fi23). Assume that the
quasithin group G has a 2-local L, determined by L ∼= M23 acting on the cocode
module V ∼= 211. Then for x ∈ V stabilized by M22, we must have CG(x) ≤M . ♦

We give a quick sketch of the logic in the proof:
Assume that CG(x) �M . Because CL(x) ∼= M22 is already “most” of L ∼= M23,

we can show that CG(x) also inherits the R-(CPU) condition of (3.3.13):
C
(
CG(x), R

)
≤ CM (x) < CG(x).

Thus any CG(x) not contained in M should appear in the conclusion-list for a
suitable analogue of the Global C(G,T )-Theorem, corresponding to a local-block
determined by the pair (211,M23). But the proof of that analogue [AS04a, C.2.8]
under the quasithin hypothesis shows that no such larger quasithin groups arise.
(That is, in general we would expect CG(x) to be something like CFi23(x) ∼= 2Fi22—
but that is not quasithin, and so is unavailable under QT.)

This contradiction shows we must have CG(x) ≤M . �

We mention that Example 3.3.14 above will be continued in later Example 3.4.7—to
the final elimination of the shadow Fi23 in the QT analysis.

3.4. Weak-closure factorizations: using other weakly-closed “W”

We now return to our chapter-theme of factorizations. The emphasis will now
revert to sufficient conditions for success of factorizations; though in applications,
treating their failure will remain significant—at least in the background.

Thompson’s early analysis involving J(T ) also included some consideration
of elementary subgroups A of one less than maximal rank. This approach was
extended by Aschbacher; and the resulting weak-closure factorizations were used in
a number of crucial places in the original CFSG.
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In this section, we give an overview of some of that development; as the material
is somewhat technical, our exposition will be just an over-simplified approximation.

Weak closure and candidates for Z,W . Here is a viewpoint providing some
initial motivation: Continue the internal-module setup V ≤ H as above. We might
expect (though this is not always automatic) that V lies in some A of maximal rank
in T—and hence V ≤ J(T ). And then if some conjugate V h should fall into T , we
might also expect that V h ≤ J(T ).

The set of all such conjugates V h then generates the weak closure W (T, V )
of V in T with respect to H: as the name implies, it is by definition weakly
closed in T with respect to H. Thus the situation of the previous paragraph would
give W (T, V ) ≤ J(T ); so that W (T, V ) might be an alternative candidate for the
weakly-closed subgroup “W” in our general factorization setup of (FA) in 3.0.9.
Furthermore if W (T, V ) is strictly smaller that J(T ), then it might be easier to ob-
tain W (T, V ) ≤ CH(V )—in analogy with the condition J(T ) ≤ CH(V ) for success
of Thompson Factorization (TF) in 3.1.4(1).

It was in this context that Aschbacher gave further axiomatic development to
Thompson’s consideration of elementary subgroups of less-than-maximal rank:

Definition 3.4.1 (The subgroups Wi and Ci). Assume the internal-module
subcase V ≤ H of our module-setup 3.0.5. For 0 ≤ i ≤ m(V ) set:

Wi(T, V ) := 〈A : A ≤ T ∩ V h, h ∈ H, with m(V h/A) = i〉 .
Notice that Wi(T, V ) is weakly closed in T with respect to H. Indeed when i = 0,
we see W0(T, V ) is just the usual weak closure W (T, V ) of V in T . Also set:

Ci(T, V ) := CT
(
Wi(T, V )

)
.

We typically use the abbreviations Wi and Ci for these subgroups. ♦

The goal is then to find suitable values j ≥ i, so that we may use Cj and Wi

in the roles of “Z,W”, in factorizations of H in the form (FA) in 3.0.9. In the
discussion below of hypotheses to guarantee such factorizations, for expository pur-
poses I will have to blur many of the details; for a fuller treatment, see e.g. B.8.6
in [ALSS11].

Parameter values to guarantee a weak-closure factorization. For the
remainder of the section, we’ll work in the context of the Thompson strategy 3.3.1:
namely a maximal 2-local M over T in some simple G, and another 2-local H over T
which is not contained in M . In order to follow the conventions in [ALSS11, B.8.6],
we deviate slightly from our notation in the chapter so far: V will now denote an
internal module for M , rather than H; and we will want to develop weak-closure
factorizations for H—in terms of an H-module which we will denote by U . And:

We temporarily let Wi,Ci be defined from H on U (rather than M on V ).

In particular, we will want a value i such that 1 < Wi ≤ CH(U). And this will
require estimating lower bounds on certain parameters related to the groups M,H
and their modules V,U . These are described only roughly in:

Remark 3.4.2 (Weak closure parameters). The definitions are of course ab-
stract; but they are motivated by the usual situation in the Even Case of the CFSG
discussed in earlier Section 2.2, namely of a simple G having characteristic 2 type:
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We might expect M := M/CM (V ) and Ĥ := H/CH(U) to be of Lie-type in char-
acteristic 2; in particular, they should generated by root groups in the Chevalley
construction, as discussed earlier in 1.3.20(1). Hence their modules V,U should be
described via the 2-modular representation theory of the Lie-type groups, discussed
in later Section 5.2. Notably 5.2.3(1) gives the module action in terms of weight
spaces, which we had mentioned for Lie-algebra representations in 1.3.7. Of course
the ranks of the root groups and weight spaces are related to the size of the fields
of definition for M := M/CM (V ) and Ĥ := H/CH(U). And we now summarize
roughly: saying that many weak-closure parameters mentioned in this section are
abstract approximations to the ranks of these root groups and weight spaces.

For example, n(H) approximates the rank of a root group of Ĥ. And the
related parameter a(H,U) approximates the rank of a weight space on U .

Similarly for M : the ranks of a root group, and a weight space on V , are in-
volved in the “local” parameter m := m(M,V )—namely, a lower bound on the
corank in V of CV (t), as t varies over the involutions of M . But the parame-
ter r := r(G,V ) is “global”—a lower bound on the corank in V of a subgroup A,
with CG(A) � M . Roughly, if r becomes larger, then centralizers of smaller and
smaller subgroups of V are forced into M ; and of course these centralizers should
correspondingly be larger. Finally we set s := min(r,m); and we would like to
maximize s—to force as many centralizers as we can into M .

And now continuing to leave aside various technical details: An important point
is that these parameters can often be estimated, during case analysis in a proof.
And a strong-enough set of values may be sufficient to eliminate some less-likely
configurations—just numerically, without a more detailed argument. ♦

In the above language, we can roughly state Aschbacher’s [Asc81b, 6.11.2] for
large-enough s; a weaker version, with generation rather than factorization, is given
at [ALSS11, B.8.6]. We abbreviate the result by (WC):

Theorem 3.4.3 (Weak-closure factorization (WC)). Assume Wi > 1, for some i
satisfying 0 ≤ i < s− n(H). Then Wi ≤ CG(U), and:

H = CH(Ci+n(H))NH(Wi).

We close the section by indicating two CFSG areas where (WC)-methods were used:

Weak closure in the Uniqueness Case. We recall from the discussion at the
end of Section 2.2, on the Even Case, that the final contradiction of the CFSG was
provided by Aschbacher’s elimination in [Asc83b] of the Uniqueness Case—where
the 2-local M ≥ T as above satisfies the condition “almost strongly p-embedded”.
How did that work proceed?

Very many subcases were in fact handled via the following overall approach:
Recall that in the Thompson strategy 3.3.1, we are supplied with a second 2-
local H, with T ≤ H � M . Ideally we should produce a factorization H = H1H2,
with factors Hi given by the local subgroups for (WC) in 3.4.3.

On the other other hand, we can hope to use “uniqueness methods” (cf. our
discussion of the preuniqueness case (2) of the Weak Trichotomy Theorem 2.2.7),
and also methods of determing obstructions to pushing-up such as (CPU) in 3.3.4—
to show that many 2-locals must in fact fall into M . If this suffices to get the Hi

into M , then H = H1H2 ≤M—contradicting H �M in the Thompson strategy.
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This argument is sometimes mostly implicit in [Asc83b]: for since this fac-
torization easily finishes off a case, attention is often focused instead, in the spirit
of FF in earlier Section 3.2, on controlling the relatively restricted situation where
the hypotheses for the factorization in fact fail.

Weak closure in the quasithin classification. We continue in the Thomp-
son strategy 3.3.1, with M on V , and H � M . The preparatory material in
Section E.3 of [AS04a] in effect produces some further automation of the approach
of [Asc83b] described just above. Our focus reverts to action of M on V ; and:

We return to considering Wi defined by M on V (rather than H on U).

For success of factorizations, we would ordinarily expect Wi ≤ CT (V ); so we now
examine “where” this latter condition might begin to fail, focusing on:

(3.4.4) w := smallest i with Wi � CT (V ) .

Now there are natural upper bounds on w. For example, using methods such
as (CPU)-obstruction to pushing-up in 3.3.4, we get [AS04a, E.3.39]; roughly:

(3.4.5) (Certain technical hypotheses) =⇒ ( w ≤ n′(M) ) ,

where this new parameter n′(M) is defined by the condition that F2n′ is the field

generated by an element whose order is that of the largest odd-order subgroup of M
permuting with T . As in 3.4.2, this is a variation on the theme of the rank of a
root group in M .

Thus in order to obtain a contradiction, we also want to maximize lower bounds
on w—until they exceed the upper bound in (3.4.5) above. A useful tool in this
direction is [AS04a, E.3.29]:

Lemma 3.4.6 (Fundamental Weak Closure Inequality (FWCI)). If V is not
an FF-module (i.e. V is not in the FF-list 3.2.7), or w > 0, then:

w ≥ r −m2(M),
where r is the parameter discussed in 3.4.2.

We will demonstrate this approach by returning to an earlier topic, namely the
non-quasithin shadow Fi23:

Example 3.4.7 (Eliminating the shadow Fi23). We continue the setup of ear-
lier Example 3.3.14: Recall V = 211 is the cocode module for L ∼= M23.

We find that a 3-element permutes with a 2-Sylow of M23; so from (3.4.5):
w ≤ n′(M) = 2.

Now V contains a subgroup A of corank 6, containing an element x described
in 3.3.14; and in F := Fi23, we have CF (A) �M—exhibiting the value of r = 6 in
that situation. However for our quasithin G, we showed in 3.3.14 that CG(x) ≤M ,
and hence CG(A) ≤ M ; and this forces the “unlikely” value of r ≥ 7 under QT.
So as the module V for sporadic M23 does not appear in the FF-list 3.2.7, using
the (FWCI) in 3.4.6 we obtain:

w ≥ 7−m2(M23) = 7− 4 = 3.
And of course this contradicts w ≤ 2 above.

This finishes the elimination of L with 211 : M23, as in the shadow Fi23. ♦
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Applications related to the Martino-Priddy Conjecture

The concepts demonstrated so far in this chapter have continued to be produc-
tive in the years after the CFSG—in possibly-unpexpected directions.

In the remainder of the chapter, we indicate some fairly recent applications of
the ideas: to the modern topological approach to finite group theory, via fusion sys-
tems. We will focus on Oliver’s work establishing the Martino-Priddy Conjecture.
I thank Bob Oliver for a number of suggestions in this area.

3.5. The conjecture on classifying spaces and fusion systems

The story starts with a basic concept within local group theory itself:

Background: fusion in group theory and cohomology. For a group G
with Sylow p-subgroup T , the p-fusion means the data:

(3.5.1) { p-fusion: all G-conjugacies among subgroups of T }.

We emphasize this is not limited to conjugacies induced just by NG(T ).

Exercise 3.5.2. Determine the fusion in T ∼= D8 in G = A6; A7; etc. Hint:
The two 4-groups A ∼= 22 in T are not conjugate in G. But each is normalized by
an S3, not lying in NG(T ) = T , which fuses the three involutions of A. These 4-
groups intersect in Z(D8); so we conclude that all 5 involutions in T are conjugate
in G. The two elements of order 4 in T are already conjugate in T itself.

The only possible further fusion would be of the two four-groups; and indeed
this does happen in Aut(A6), though not in G = A6. It also does not happen in A7,
which has the same Sylow T as A6; so A7 has the same fusion pattern as A6. ♦

The fusion information has long been important in group theory; some examples:
In the CFSG itself, determining the 2-fusion was typically an initial goal; but

it was also usually crucial in the final stages, namely identifying a group—the
recognition problem, which we will be discussing in the subsequent Chapter 4.

An important tool in fusion anlysis is provided by the Alperin Fusion The-
orem [ALSS11, B.2.6]—which shows that although p-fusion need not take place
in NG(T ), it does occur via a sequence of “local” conjugations. Roughly stated:

Theorem 3.5.3 (Alperin Fusion Theorem). A Sylow p-group T of a finite
group G admits a conjugation family: a set of nontrivial subgroups Si of T , with
the property that: whenever A,B ⊆ T with Ag = B for g ∈ G, there is a sequence
of elements ni (i = 1, . . . , k for some k), with ni ∈ NG(Si), such that An1···nk = B
(and An1···nr ⊆ T for all r ≤ k).

More immediately relevant to the topological focus of these sections is: The
information on p-fusion provides a standard route for computing the p-part H∗(G)p
of group cohomology: namely as the “stable” elements in the restriction of H∗

from G to P ; see e.g. [AM04, II.6.6].
In fact different groups can have the same cohomology: this happens at p for

example if the groups have the same p-fusion pattern—we saw an example of the
latter in Exercise 3.5.2 above.
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Indeed, in the background here is the idea that p-cohomology should be equiv-
alent to p-fusion. And topologists in particular have sought natural ways of making
this equivalence precise—as we will see in the Martino-Priddy Conjecture below.

The category viewpoint: fusion systems. The classical topological ap-
proach to group cohomology is via a topological space, namely the classifying
space BG. Indeed for the p-part H∗(G)p, they use the p-completed classifying

space BG
∧

p .
Also since about the 1950s, algebraic topologists have largely replaced the clas-

sical viewpoint of topological spaces (based on cell complexes) with the viewpoint
of simplicial spaces—this is based on the language of category theory. The equiva-
lence of the two viewpoints was established by Quillen; For more on this background
material, see e.g. [BS08a, Sec 3.6].

Thus it is natural to ask whether we can also approach the group-theoretic
fusion information by means of a suitable category. The idea and basic definitions
are due to Puig—starting with his thesis published in the 1970s, and developed over
the subsequent years, culminating in [Pui06]. For a modern survey of the area
now called fusion systems, see e.g. the overview in Aschbacher-Oliver [AO16].
Earlier literature often references the survey in [BLO03]; there are also newer
books [AKO11] and [Cra11].

We had in fact mentioned Aschbacher’s project on classifying simple fusion
systems, as new-approach (4) to the CFSG, in our afterword-Section 2.3. Below we
will give a little more detail on general fusion systems, than we did at that earlier
point; while still referring the reader to sources such as [AO16] for fuller details.

A fusion system F on a p-group T is roughly a category based on:

• objects: the subgroups (P , Q, ...) of T ,
• morphisms: suitable injections P → Q (e.g. inner automorphisms of T );

with several further natural axioms, which roughly correspond to abstracting cer-
tain consequences of the Sylow theorems.

Of course, the standard example comes from a finite group G with Sylow sub-
group T : this category, called FT,G, uses the G-conjugacies—that is, the fusion—as
the morphisms.

But there are also “exotic” fusion systems F , which do not arise from a finite
group. The most famous example is the Benson-Solomon system. This arose
originally from work of Solomon, within the standard-form branch of the Odd
Case of the CFSG (recall Section 2.1): In characterizing the Conway group Co3,
with involution centralizer 2Ω7(2), he eliminated a related odd-case—showing that
no finite group G could have an involution centralizer CG(t) given by the double
cover of the orthogonal group Ω7(q) for odd q. In the process, Solomon computed
the 2-fusion pattern of such a hypothetical G; and this information is basically the
definition of the Benson-Solomon system F . This system is of independent interest
in algebraic topology: Benson (cf. [BS08a, p 202]) observed that its cohomology
corresponds to that of the previously-known “exotic space” BDI(4) of Dwyer-
Wilkerson, whose cohomology gives the rank-4 Dickson invariants DI(4). For odd
primes p, there are many examples of exotic fusion systems; see e.g. [RV04].

Fusion systems also provided the natural context for:
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The Martino-Priddy Conjecture. One natural way to express the equiva-
lence of cohomology with fusion was conjectured by Martino and Priddy, and later
proved by Oliver [Oli04, Thm B]; it is stated in terms of the relevant equivalences
for topological spaces and for fusion systems—namely homotopy equivalence, and
a strong form of category equivalence:

Conjecture 3.5.4 (Martino-Priddy Conjecture). Assume finite groups G,G∗

have Sylow p-subgroups denoted by T, T ∗. Then:

BG
∧

p 'homot.eq. (BG∗)
∧

p ⇔ FT,G ≡fus.sys. FT∗,G∗ .

Here the equivalence “fus.sys.” of fusion systems in effect requires a group isomor-
phism T ∼= T ∗ which further induces a category isomorphism.

In fact Martino and Priddy were able to prove the⇒ direction. But their hope
of proving the remaining⇐ direction fell afoul of certain obstructions, expressed in
the topological language of the “higher limit” lim2. These obstructions were later
shown to vanish by Oliver:

3.6. Oliver’s proof of Martino-Priddy using the CFSG

Oliver proved the ⇐ direction in [Oli04, Oli06], separating p odd and p = 2.
His proof uses the CFSG—and we will sample some of those arguments. How-

ever, we do mention that Chermak’s later proof [Che13] makes only a “milder”
use of the CFSG; and recently, Glauberman-Lynd [GL16] gave a CFSG-free proof.

Oliver’s general setup. We give a quick overview of the p-odd paper [Oli04];
again for expository purposes, definitions will be given only approximately.

The goal is to construct a supplementary linking system, for the fusion sys-
tem FT,G on the right-hand side of the Conjecture 3.5.4. Roughly: the morphisms
in the fusion system do not really record the kernels of mappings; and the linking
system in effect restores some of that lost information about centralizers in those
kernels. This information in turn enables the construction of a suitable classifying
space—which can then be compared to the classifying spaces on the left-hand side
of the Conjecture, to complete the proof.

The linking system turns out to require consideration of a certain center-
functor Z, roughly containing centralizer-information for centers Z(P ) of the p-
groups P ; this functor is defined on the G-orbit category—essentially corresponding
to the permutation representations G/P on the cosets of the p-groups P .

The obstruction to the construction of a linking system arises via the higher lim-
its limi>0 of the functor Z—these are derived functors of the usual limit lim = lim0.
Oliver establishes suitable vanishing results on these higher limits; this removes the
obstruction to the construction of linking systems, allowing completion of the proof.
Here is some of the underlying group theory:

Oliver’s application of the CFSG. Oliver reduces at 4.1 of [Oli04] to the
case where G is a nonabelian simple group.
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The subgroup X(T ), and conditions for a suitable subgroup Q. For this situa-
tion, Oliver shows it suffices to produce a subgroup Q ≤ T with the properties:
• Q is p-centric—this means that Z(Q) is Sylow in CG(Q);8

• Q is weakly closed in T with respect to Aut(G); and
• Q ≤ X(T ), where X(T ) is a certain characteristic subgroup of T (below).

At several later points, we will want to use the elementary observation that T itself
automatically satisfies the first two conditions; so that:

Lemma 3.6.1 (The case X(T ) = T ). If it happens that X(T ) is all of T , then
we can choose T as “Q”—to complete the proof of the Conjecture 3.5.4 for G.

We turn to some of the discussion of X(T ) from [Oli04, Sec 3]:

Definition 3.6.2 (The subgroup X(T )). We consider chains of normal sub-
groups Ri of T :

1 = R0 ≤ R1 ≤ · · · ≤ Rn ≤ T ,
which satisfy [ Ω1

(
CT (Ri−1)

)
, Ri ; p−1] = 1. It turns out there is a unique maxi-

mal choice for the final member Rn of such a chain; define this choice to be X(T ). ♦

We mention that for p = 2, we always get X(T ) = CT
(
Ω1(T )

)
; and so X(T ) is not

really useful when Oliver treats the Conjecture for p = 2 in [Oli06].
We note also that the (p − 1)-times-repeated commutator with CT (Ri−1) in

the definition is reminiscent e.g. of the quadratic condition in 3.2.4; and may help
explain why Oliver encountered phenomena related to J(T ) and failure of factor-
ization. This connection arises more clearly in the subsequent Section 3.7.

Exercise 3.6.3. Find X(T ) for some small nonabelian p-groups T , with p odd.
Hint: You may wish to use some of the properties listed in Lemma 3.6.4 below.
For example, an extraspecial p-group G of order p3 has distinct abelian normal
subgroups of order p2; so X(T ) = T by 3.6.4(1). ♦

We indicate some useful properties of X(T ) from [Oli04, 3.2,3.10]:

Lemma 3.6.4. X(T ) is p-centric. Furthermore:
(1) If A is abelian, and A E T , then A ≤ X(T ).
(2) If Ω1( Z

(
X(T )

)
) has rank < p, then X(T ) = T . (So we are done by 3.6.1.)

Also from [Oli04, 3.7] we give some sufficient conditions for the choice of Q:

Lemma 3.6.5. The following situations givea suitable Q to complete the proof:
(a) J(T ) ≤ X(T );
(b) T has a unique elementary abelian subgroup A of maximal rank;
(c) T/X(T ) is abelian.

We mention that in (a), we can take J(T )CT
(
J(T )

)
as Q. In (b), we get A = J(T );

so J(T ) ≤ X(T ) by 3.6.4(1), and then we are done by (a).
In fact in [Oli04, Conj 3.9], Oliver asks if the inclusion J(T ) ≤ X(T ) in (a) is

always true for odd p, independently of the CFSG. We will return to this conjecture,
in the subsequent Section 3.7.

8This centric condition had already been prominent in the topological approach; for example,
to the decompositions of cohomology that we discuss in later Section 7.6.
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Oliver’s choice of Q for the various simple G. We next give a quick sketch
of [Oli04, 4.2–4.4], where Oliver verifies the existence of a suitable Q, for the types
of simple groups G in the CFSG.

Many cases finish via 3.6.5(b), namely T with a unique maximal elementary:
This works for G an alternating group: Recall that we saw at 1.1.1(2) that

the p-rank is bnp c. Furthermore the subgroup A, generated by the order-p elements

from each part of the partition determining that rank, is unique in T—for T is
determined by further grouping-together in that partition, p parts at a time.

It also works for G of Lie type, in characteristic r 6= p. For we commented
at Example 2.2.1 that the widest elementary r′-subgroup A lies on the diagonal
subgroup H of Remark 1.3.20(2). (Here “diagonal” should be interpreted so as
to allow for non-split tori as in Example 5.2.2.) And much as in the previous
paragraph, A is unique in T .

Exercise 3.6.6. Describe non-split tori in L4(2) for p = 3, 5, 7. What is the
widest for p = 3? ♦

(The method via 3.6.5(b) would also work in some of the remaining cases below.)

Now consider cases for G of Lie type in characteristic p: Most have X(T ) = T ,
and so are finished by 3.6.1. (This remark after [Oli04, 4.3] can be used to replace
some later arguments that use the statement there that “UJ ∩UJ′ = UJ∪J′”, which
unfortunately is incorrect.) In other cases, a suitable unipotent radical, insideX(T ),
can be chosen as “Q”.

Finally for sporadic G: For p > 3, mp(G) < p—so 3.6.4(2) completes the
proof. And for p = 3, various methods can be used: At least 11 cases similarly
have m3(G) < 3, as in 3.6.4(2). Then at least 8 more cases have T/X(T ) abelian—
and so are completed by 3.6.5(c). The few remaining cases can be finished, with
some further work, via 3.6.5(b) or 3.6.1.

3.7. Oliver’s conjecture on J(T ) for p odd

We saw above that Oliver conjectured in [Oli04, Conj 3.9] that the earlier
sufficient condition 3.6.5(a) should in fact always hold:

Conjecture 3.7.1 (Oliver’s Conjecture on J(T )). If T is a p-group, p odd,
then J(T ) ≤ X(T ).

One motivation for Oliver was that if this Conjecture could be proved, he would
be able to avoid the use of the CFSG, and obtain a much simpler proof of the
Martino-Priddy Conjecture for p odd: indeed substantially simpler than that of
Chermak and Glauberman-Lynd indicated earlier.

So let us examine some aspects of Oliver’s Conjecture 3.7.1. In a minimal
counterexample to this “J-Conjecture”, we may in fact assume that:

X(T ) is elementary abelian;
so we will now abbreviate it by V := X(T ). Furthermore V = CT (V ) by the centric
property 3.6.4, so our counterexample must satisfy J(T ) � CT (V )—so that as in
Definition 3.2.1 we have:

V is an FF-module under T := T/CT (V ).
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Set n := dim(V ). Some results in the literature show T is “not too small”; e.g.:
• Oliver [Oli04, 3.10] showed: n ≥ p.
• Green-Héthelyi-Mazza [GHM10] showed: nilpotence class cl(T ) ≥ 5;
• Indeed Lynd showed: cl(T ) ≥ log2(p− 2) + 2.

We now proceed to a variant of the original Oliver Conjecture, discussed for ex-
ample in [GHM11, 1.4]; cf. also [GL13]. Recall that the Thompson Replacement
Theorem 3.2.4 shows that FF-offenders must in fact contain offenders which exhibit
quadratic action. Oliver’s viewpoint in fact suggests:

Conjecture 3.7.2 (Quadratic Conjecture). If V is an FF-module for T an
odd p-group, then Ω1

(
Z(T )

)
contains a quadratic element.

Notice then that for a counterexample T to this “Q-conjecture”:
T has no quadratic normal subgroup.

Further, it seems implicit in the literature that T contains no transvections on V .
These remarks suggest some connections with material earlier in this book—

which tend to show that T is “not too large”. We begin by embedding our coun-
terexample T in a full unipotent group U of GL(V ).

Consider the unipotent radical U k̂ of the maximal parabolic Pk̂ in earlier Ex-

ample 1.3.4: observe that U k̂ is normal in U , and acts quadratically on V . So by
the displayed remark above, we have:

(3.7.3) T ∩ U k̂ = 1.

Note furthermore that a transvection t lies in some U k̂, from the requirement that 1-
dimensional [V, t] must lie in some Vk. Thus from (3.7.3), we get an easy proof that:

T contains no transvections.
Also from (3.7.3), we see that the map from our counterexample T into U/U k̂ must

be faithful. So take k := bn2 c: from the faithful map of T into the product in U of
the full unipotent groups in the linear groups on Vk and V/Vk, we conclude that:

cl(T ) ≤ n
2 ; and

νp( |T | ) ≤ 1
2

(
n
2

)
.

So, one can hope that future research will enlarge the earlier lower bounds on the
size of T , and shrink the upper bounds just above—until they pass each other, for
a contradiction that would prove the Oliver Conjecture 3.7.2.

Ideally this brief discussion will motivate some readers to work on the Conjecture!

Oliver’s work on the Martino-Priddy Conjecture demonstrates that the ideas
around Failure of Factorization continue to be productive in wider areas. So al-
though we might have been tempted to think that we were finished with Thompson
Factorization, it turns out that Thompson Factorization was not finished with us.





CHAPTER 4

Recognition theorems for simple groups

This chapter reviews techniques for identifying members of the CFSG-list.

Introduction: finishing classification problems

For contrast with recognition, we first mention an opposite situation: In the
final stages of proving some classification theorem, it is often necessary to eliminate
various configurations—which correspond to groups that do not arise in the conclu-
sion of that theorem. For example, we sketched in Example 3.4.7 the elimination of
the 2-local 211M23, corresponding to the “shadow” of the group Fi23—which is not
quasithin, and hence does not appear into conclusion of the quasithin classification.

Recognition. On the other hand, the more common task at the end of a clas-
sification proof is to verify that the stated conclusion-groups actually do arise; and
this typically involves using structural information in the proof-so-far, to identify
those specific target groups.

For this, we normally are able to use suitable “recognition theorems”; these are
typically fairly generally-stated results, roughly establishing that:

(sufficient local information) ⇒ (characterization of “global” G) .

This procedure of using recognitions theorems is in the broad spirit of applications of
the CFSG: for whether the relevant classification problem occurs within the CFSG
proof, or in some application-result which quotes the CFSG, the recognition process
normally involves inspecting the list of the CFSG for the relevant groups, in order
to recognize them via suitable properties.

For some deeper general background on recognition theorems, the reader may
wish to consult sources such as Chapter 3 of [Gor82] (which we will quote often in
this chapter), and Section A.5 of [ALSS11].

Uniqueness. The literature in fact contains a vast number of recognition the-
orems. Often these have titles of the general form “A characterization of (some
particular group or groups)”.

But we also emphasize that the recognition problem for some group G implicitly
includes the underlying uniqueness problem: namely that G should be defined
uniquely—that is, up to isomorphism—by a suitable subcollections of its properties.
Hence also relevant to our topic of recognition are many papers in the literature
with titles of the general form “Uniqueness of (some particular group or groups)”.

Of course for many simple groups, such as the alternating groups or linear
groups, the definition (in terms of permutations or matrices) is sufficiently natural
to make uniqueness immediately clear. But this was not always the case for some of
the simple groups discovered after 1960—where the phrase “group of type X” was
often used, to indicate a group X whose “definition” was really just a description:
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believed to be unique up to isomorphism, but not proved unique until later on. Per-
haps the most celebrated examples of this complication were the Ree groups Ree(q):
where the eventual proof of uniqueness required subtle properties of finite fields,
which were finally resolved by Thompson and Bombieri; see e.g. [Gor82, 3.38] for
further details.

A propos of uniqueness, we should also mention that the usual form of the CFSG-
list 1.0.2 implicitly assumes a few small cases where several groups with different
names turn out to be isomorphic; for detailed reference see [ALSS11, p 261]. We
had seen examples, such as A5

∼= L2(4) ∼= L2(5), in earlier Exercise 1.5.5.

Some techniques for recognition problems. In this chapter, we will sam-
ple some frequently-used recognition results. But before subdividing our discussion
according to the three standard classes of simple groups in the CFSG-list 1.0.2, we
first distinguish several common methods and approaches for recognition problems
in general.

Here the underlying question is: What kinds of information should be sufficient—
that is, as hypothesis—in recognition theorems? There are in fact many different
approaches. But the information in the hypotheses is typically rather technical; so
our discussion here will remain at the level of overall descriptions. The reader can
consult the sources mentioned above for fuller details.

Presentations. We first briefly mention the approach via a group presentation:
that is, definition via abstract generators and relations.

We’ll see one such result for An, in the subsequent Section 4.1. Furthermore
for the Lie-type groups, we’ll examine the important Curtis-Tits Presentation in
Section 4.2 immediately thereafter.

Nonetheless, we emphasize that presentation-arguments are often rather touchy;
and they are not as common in finite group theory, as they are e.g. in the infinite
group theory associated with geometry and topology.

Action identifications. For convenience, I’ll invent a term “action” identification—
to refer to recognition of G, via its action on some natural structure; such properties
which are typically close to the actual definition of G. Furthermore we have men-
tioned earlier that the natural actions of simple groups are often highly transitive.

Here the “structure” might be only a set; e.g. 6-transitivity determines the
alternating group An among simple groups. Or the structure might instead be:
• a graph, as in rank-3 permutation groups (cf. later 4.3.1); or
• a module, such as the natural module for GLn(q) in Remark 1.3.1; or
• a geometry on a module, e.g. projective or polar space—cf. 7.0.1; or
• a lattice, e.g. the Leech lattice for the Conway groups in Section 1.2;

and so on. We’ll see various such examples of this action-approach, as we proceed
in this chapter.

Internal identifications. In contrast to action-identification above, I’ll also in-
vent a term “internal” identification: to refer to hypotheses typically involving in-
stead various internal group-structure (e.g. p-local) properties—that is, structures
within G itself, rather than some external object that G acts on.
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And beginning with such internal hypotheses, we typically hope (at the cost of
further effort) to work toward a final identification of G—often via a more funda-
mental action-identification, as above.

Some common internal-identification approaches. We suggest a few:

One classic internal-hypothesis is provided by the structure of an involution
centralizer CG(t)—for reasons we had suggested around Remark 2.0.2. And indeed
the literature from the 1960s and 1970s has very many such characterizations via
involution centralizers. In particular, we saw in Section 2.1 that standard-form
problems are in this spirit; and they provided the key to the treatment of the Odd
Case of the CFSG.

But we also emphasize that the centralizer alone is not always sufficient for
recognition: the most notorious example is the group 21+6L3(2), which occurs
as CG(t) in three different groups G—namely L5(2), M24, He.

A similar internal-hypothesis is the structure of the Sylow 2-subgroup T of G.
Again many cases of T were considered in the literature of the 1960s and 1970s. A
famous example was T abelian—treated by Walter; and see also Bender, e.g. 4.126
in [Gor82]. The groups G determined by an abelian Sylow of order 2a are:

L2(2a); a = 2—L2(q), q ≡ 3, 5(8); a = 3—J1 and Ree groups Ree(q).
Similar classifications—for T dihedral, semi-dihedral, and wreathed—were used in
the Small Odd Subcase m2(G) ≤ 2 of Section 2.1; for example see [ALSS11, 1.4.6].

The structures CG(t) and T above involve recognition via certain 2-local sub-
groups; and the literature also contains recognition theorems by various other kinds
of local subgroups.

A different internal hypothesis is given by the group order |G|; again the
early CFSG literature contains many characterizations by group order. And we
mention here an important tool for computing |G|, namely the Thompson Order
Formula [Gor82, 2.43]; a standard special case is:

Theorem 4.0.1 (Thompson Order Formula). For a group G with exactly two
conjugacy classes of involutions—say t, u—we have:

|G| = a(u)|CG(t)|+ a(t)|CG(u)|;
where a(v) is the number of ordered pairs (x, y) from tG, uG with v ∈ 〈xy〉.
We remark that the input to this calculation is purely “internal” to G: namely
the structure of the centralizers CG(v), plus the fusion-information as in Defini-
tion (3.5.1). And of course the output of the formula can be input to characteriza-
tions by order.

Exercise 4.0.2 (Practice with the Thompson Order Formula). Use the formula
to compute the orders of the small groups S4, and S5. Then for a more “realistic”
example, try A8 (this can be fairly lengthy).

Hint: Some details were provided to the class online; these now appear in ap-
pendix Remark B.2.1. ♦

A related internal hypothesis is provided by the character table of G. Note that
this information implicitly includes the group- and centralizer-orders used above.

We turn in the next three sections to specific recognition results for the three
classes of simple groups in the CFSG-list 1.0.2.
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4.1. Recognizing alternating groups

Action identification. The group An is usually regarded as fairly easy to
recognize, at least in terms of its natural action as permutations: that is, in situa-
tions where we can exhibit the natural permutation representation of degree n, we
just need to establish suitable multiple transitivity.

See e.g. [Gor82, Sec 3.2] for some analogous recognition results for various
doubly-transitive groups. Indeed in application-situations where we are assuming
the CFSG, the determination of 2-transitive groups (which we had outlined in
Section 1.6) shows that 6-transitivity suffices to recognize An.

Internal identification. Recognizing An from internal group-theoretic struc-
tures can be more difficult. Gorenstein [Gor82, 3.42] gives one standard approach:
it is actually via a presentation—but it involves internal structures such as proper-
ties of involutions, and of 3-cycles, in a subgroup An−2.

We mention also a more general recognition-result, which is based on some-
what analogous properties of individual elements: namely the celebrated theorem of
Fischer—which was originally aimed at recognition of the almost-simple group Sn,
based on generation by a class of 3-transpositions: recall from (1.2.2) this means
that |xy| = 1, 2, or 3, for pairs in the class.

In fact, various other simple and almost-simple groups arise naturally under this
hypothesis; see e.g. [ALSS11, A.6.3]: namely some classical groups over F2; some
orthogonal groups over F3; and Fischer’s sporadic groups Fi22, Fi23, and Fi24—
which were discovered during the course of Fischer’s work.

Exercise 4.1.1 (Classical 3-transposition groups). Find 3-transpositions in
some of the classical groups indicated above.

Hint: Consider transvections and reflections, respectively; verification is as-
sisted by rank-3 considerations as in the discussion leading up to later Exercise 4.3.2.
Some sample details appear in appendix Remark B.2.7. ♦

Generalizations from the viewpoint of 3-transpositions led to further recognition
theorems for various Lie-type groups; see the discussion of root involutions etc in
the following section.

4.2. Recognizing Lie-type groups

Action identification. For most Lie-type groups G, perhaps the most nat-
ural recognition is again via an action: namely on its building ; for details on this
geometry, see e.g. [Car89, Sec 15.5]. For the moment, in terms of structures we
had introduced e.g. at 1.3.20(4) and 1.3.11, we’ll just indicate that the building is a
simplicial complex—determined by the collection of parabolic subgroups of G; and
in particular, “axiomatized” by the Dynkin diagram of G. We’ll examine buildings
in a bit more detail, in later Section 7.2; indeed see Remark 7.2.5 for one version
of the definition.

We mention that the uniqueness-aspect of the recognition of G and its build-
ing relies on an underlying topological result [Ron89, 4.3] of Tits, which we state
as (7.2.10) in our later discussion: namely that (assuming rank ≥ 3), a finite build-
ing is simply connected . Also for more on recognition of Lie-type G via equivalence
with its building, see e.g. [Gor82, 3.12].
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Internal identification. We turn to recognition via internal-structure hy-
potheses. Here the is the Curtis-Tits Presentation [ALSS11, A.5.1] is the standard
tool, based on the earlier Steinberg relations.

Underlying these relation-considerations are some deeper geometric results of
Tits [Tit74, 13.11,13.29] on buildings. To give a sample of what Tits proved,
adapted for our present group-recognition purposes, below we give a rough para-
phrase of the Curtis-Tits Theorem [ALSS11, A.5.1]. Recall from Remark 1.3.20
the setup of root subgroups, and the Dynkin diagram; we have:

Theorem 4.2.1 (Curtis-Tits Presentation). For an untwisted universal Lie-
type group G, with simple system Π of rank ≥ 3, take generators given by root
subgroups U±αi for i ∈ Π; and relations given by the subgroups 〈U±αj , j ∈ J〉, for
the rank-2 subsets J ⊂ Π. (The structure of these subgroups can be read off from
the Dynkin diagram.)

Then these generators and relations give a presentation for G.

Note that the G above is the “universal” form of the simple Lie-type group: that
is, it is typically a quasisimple extension of the simple group over elements from
the Schur multiplier—for example, it uses SLn(q) rather than PSLn(q). In effect,
the generators are rank-1 groups SL2(q); with relations from rank-2 subgroups for
the corresponding rank-2 subdiagrams.

Exercise 4.2.2. For a few rank ≥ 3 diagrams, exhibit the structure of the
rank-2 subgroups given by 〈U±j , j ∈ J〉, for rank-2 subsets J ⊂ Π, which give the
relations in the presentation.

Hint: For example, for the group SL4, the subdiagrams of A3 have their types
given by A2, A1 × A1, and A2; with corresponding groups SL3, SL2 × SL2, SL3.
For Sp6 with diagram C3, the first subdiagram instead has type C2 (for Sp4). ♦

The Curtis-Tits Presentation has been applied very widely. We had already
mentioned one crucial use, in our discussion of the treatment of standard type, in
the Even Case of the CFSG—namely branch (1) of the Trichotomy Theorem 2.2.8:
Recall this was the paper of Gilman-Griess [GG83], which gave the final recognition
of most Lie-type groups in characteristic 2.

There are versions of the presentation applying also to twisted Lie-type groups;
we won’t here present those more complicated statements. An early version includ-
ing the unitary groups was given by Phan; nowadays most authors instead reference
the more fully detailed revision given by Bennett and Shpectorov [ALSS11, A.5.2].

Internal identification for small ranks. We turn to some remarks about recog-
nizing Lie-type groups of Lie ranks ≤ 2; these are not covered by the Curtis-Tits
Presentation, so that some kind of further work is required.

The groups of of Lie rank 1 were in fact mostly recognized using some pre-CFSG
results on 2-transitive groups; see e.g. [Gor82, Sec 3.2].

For groups of rank 2, two major approaches have been used:
• early on: via split BN -pairs1 of rank 2 ; see Fong-Seitz [FS73];
• more recently: via Moufang generalized polygons;2 see Tits-Weiss [TW02].

1We had briefly suggested the BN -pair approach at the end of Remark 1.3.20(3).
2We sketch generalized polygons at Remark 7.3.1. For Moufang conditions, cf. Section 10.4.
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But we also mention a method developed in [AS04a, Sec F.4], for the analysis of
quasithin groups—which involves the context of amalgams; we’ll examine this in a
bit more detail in later Section 4.5. For the moment, we’ll just summarize as follows:
Recall first that the quasithin conclusion-groups are mainly the Lie-type groups in
characteristic 2, of Lie rank ≤ 2. The amalgam for such a group consists roughly of
the quotients of the two minimal parabolics modulo their unipotent radicals. And
the main result in [AS04a, Sec F.4] allows recognition of rank-2 groups via the
amalgam—plus the standard internal-structure of the involution centralizer. This
recognition can be reduced to that in either of the approaches mentioned above,
namely split BN -pairs of rank 2, or Moufang generalized polygons.

Some other influential internal recognitions. We briefly mention some more
specialized characterizations of certain Lie-type groups, also widely applied:

Generalizing beyond Fischer’s condition of 3-transpositions, Timmesfeld recog-
nized in [Tim73] many of the groups defined over F2—using generation by a class
of {3, 4}+-transpositions: where now product-orders |xy| can be 1, 2, 3; or 4—in
which case (xy)2 is also in the class. Important applications of his result were
made, for example, in the treatment of groups of GF (2)-type—namely branch (3)
of the Trichotomy Theorem 2.2.8 in the Even Case of the CFSG.

We also mention that groups over larger fields F2a were recognized by Timmes-
feld [Tim75] in terms of generation via a class of root involutions—where the “3”
in {3, 4+}-transposition above is replaced by “any odd number”.

An important early result of McLaughlin [ALSS11, A.6.1] classified groups G
generated by transvections on some irreducible G-module V defined over F2: the
groups appearing in the conclusion are:

G ∼= SL(V ), Sp(V ), SO±(V ), Sn+1, or Sn+2.

Exercise 4.2.3. Exhibit transvections in some small cases of the above-listed
groups. Hint: Various groups of transvections appear in Remark B.2.1. ♦

We also mention Aschbacher’s Classical Involution Theorem, appearing origi-
nally in [Asc77a][Asc77b][Asc80] (or see [ALSS11, 1.7.5]), which used the view-
point of “fundamental SL2(q)s” to recognize Lie-type groups defined over fields of
odd order: this work was important for example in the recognition stages of the
treatment of the standard form 2.1.2 problems in the Odd Case of the CFSG.

4.3. Recognizing sporadic groups

Since there is no general theory of sporadic groups, there is no really uniform
approach to their recognition.

Internal identification. We mention that the literature contains many char-
acterizations of sporadic groups via their involution centralizers. For an indication
of various such results. see for example [Gor82, 3.50].
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Action identification. There are a reasonable number of approaches to spo-
radic recognition via actions; we will outline a few:

There are various discussions of the Mathieu groups in terms of their actions
on Steiner systems and Golay codes; and the Conway groups on the Leech lattice.
The books of Wilson [Wil09] and Griess [Gri98] are good sources for this material.
(And also the Atlas [CCN+85]; but treatments there don’t usually contain proofs.)

There is also a literature on geometries for sporadic groups, which attempt to
exploit some limited analogies with buildings for Lie-type groups. We examine this
topic in a little more detail in later Section 7.3.

Rank-3 permutation representations. We saw in Section 1.2 that a number of
sporadic groups were discovered via rank-3 permutation representations; we now
give a brief overview of this more general topic:

The condition is a weakening of double transitivity—where a point stabilizer Gα
is transitive on the remaining points 6= α. Here we assume instead:

Definition 4.3.1 (Rank-3 permutation representation). In a rank-3 permu-
tation representation, the point stabilizer Gα has exactly two orbits (the “G-
suborbits”) on the points 6= α. ♦

There are various classical examples of rank-3 representations. Indeed, es-
sentially in view of Witt’s Lemma, which we had indicated at Remark 1.3.5, the
situation usually arises for a classical group G, on a space V with a form: the two
further orbits of Gv on 1-spaces of the same “length” are those for: (all other w ⊥ v)
and (all x 6⊥ v).

Exercise 4.3.2. Give the suborbits for O−4 (2) ∼= S5 on the 10 non-isotropic
points; and for Sp4(2) ∼= S6 on the 15 points; cf. the discussion in Sections 2.1
and 2.2 of [Smi11]. In particular, verify that these permutation representations
have rank 3. The suborbit sizes are 1, 3, 6 and 1, 6, 8, respectively.

Hint: Compute the index in CG(v) of substabilizers CG(v, w) etc, as suggested
above. And see also Remark B.2.7—where several somewhat larger rank-3 repre-
sentations are presented. ♦

But in addition, as we had already commented in introducing the sporadic groups
in Section 1.2, certain sporadics—e.g. J2, HS, McL, Suz, Ru, and the Fischer
groups—were found (and often characterized) via rank-3 representations. For more
on this topic, see e.g. [Gor82, Sec 2.6].

We mention that the analysis of rank-3 representations in the literature is often
phrased in the language of a graph—where the edge relation is defined using one
of the two suborbits.

More generally: Aschbacher in Part III of [Asc94] develops (and applies) a
fairly uniform approach to recognition for sporadic groups; which is similarly set in
the context of suitable graphs, suborbits, and connectivity—but not restricted to
the rank-3 case.
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Applications to recognizing some quasithin groups

The final sections of this chapter demonstrate the application of certain recog-
nition theorems—as used to determine some of the conclusion-groups G, in the
analysis of quasithin simple groups in [AS04b].

4.4. Background: 2-local structure in the quasithin analysis

In each of the subsequent two sections, the quasithin conclusion-group G arises
essentially as 〈L,H〉: where L and H are certain 2-local subgroups, produced at
the end of a process of fairly-standardized development.

The purpose of the present background-section is to provide a quick overview
of the foundations for that development. But understanding those foundations is
not absolutely essential for the later sections; the more impatient reader, who is
prepared to accept some mystery about the origins of L and H, can skip over the
background material in this section.

Implementing the Thompson strategy. We had described the Thompson
strategy in earlier Remark 3.3.1, with respect to a chosen Sylow 2-subgroup T of G.

In particular we recall that in order to use the strategy, we must first deal
with the case where T is contained in a unique maximal 2-local subgroup M of G.
For the general Even Case of the CFSG, namely under the hypothesis of charac-
teristic 2 type, this is accomplished via the Global C(G,T )-Theorem 3.3.8. How-
ever, the quasithin analysis instead proceeds under the weaker hypothesis of even
characteristic; and so Chapter 2 of [AS04b] in effect gives a “quasithin C(G,T )-
Theorem”—namely an analogue of Theorem 3.3.8, proved under the hypothesis of
even characteristic.

Thus after Chapter 2 of [AS04b], we can adopt the Thompson strategy 3.3.1:
where in addition to the maximal 2-local M over T , we also have a 2-local H over T
which is not contained in M . And we can hope to either identify, or eliminate, the
larger group 〈M,H〉; for the very many cases for M and H that must be considered.

In the quasithin work, we normally take H minimal subject to not lying in M .
And typically we can take M arising as NG(L), where L is roughly an extension
of a 2-group by a quasisimple group. These choices are based on what amounts to
a “local theory” for quasithin groups. (Indeed such a theory can usually be given
within any reasonably general classification problem.) This quasithin local theory
is developed particularly in Chapter 1 of [AS04b], based on a substantial array of
preliminary results contained in [AS04a]. We sketch only some salient points:

The abstract minimal parabolic H. The case of H is actually fairly quick
to summarize: Our choice of H minimal subject to H � M gives the technical
condition called “H ∈ H∗(T,M)” at [AS04b, 3.0.1]. On using [AS04b, 3.3.2(4)],
we obtain that H is an “abstract minimal parabolic”, in the sense of McBride—see
for example [AS04a, B.6.1]:

Definition 4.4.1 (Abstract minimal parabolics). An abstract minimal para-
bolic H roughly has a Sylow T which is not normal, but is contained in a unique
maximal local subgroup. ♦
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Note that this condition does hold, if H actually is a minimal parabolic in
Lie type: for then H/O2(H) has Lie rank 1—and hence the indicated uniqueness
condition holds, in view of 1.3.20(6).)

In the quasithin context, such groups are described in [AS04a, E.2.2]:

Lemma 4.4.2. For an abstract minimal parabolic H under the QT hypothesis,
most of the possible H/O2(H) are rank-1 Lie-type groups in characteristic 2 (the
Bender groups L2(q), U3(q), Sz(q) of Theorem 2.0.17); but a few other cases arise.

Indeed H typically exhibits failure-of-factorization FF on a suitable internal
module, in the sense of Definition 3.2.1; and then H/O2(H) is in the FF-list of
Theorem 3.2.7—usually L2(2m), as indicated in [AS04a, E.2.2].

The C-component L. For our maximal 2-local M , there will be more possi-
bilities. We summarize various results from quasithin local theory:

First, M arises as NG(L), for a suitable “C-component” L: namely L, modulo
a solvable normal subgroup, is a simple group which is described in Section 1.2
of [AS04b].These C-components have some of the properties of ordinary quasisim-
ple components—such as commuting.

Next, the maximality is expressed via the condition called“L ∈ L∗f (G,T )”;

here the subscript f indicates that L/O2(L) acts faithfully on a suitable module V
inside O2(L).

And usually we even have the Fundamental Setup of [AS04b, 3.2.1]; where
subsequent results in Section 3.2 of [AS04b] determine the case-list for possible
pairs given by L := L/O2(L) and the internal module V . Typically L is a Lie-type
group of rank 1 or 2 in characteristic 2, with V one of just a few possible “small”
modules for L.

Overview of the treatment of cases. The upshot of the above is basically
that the main quasithin analysis must treat a fairly large case-list: indexed primarily
by the possible pairs (L, V ) in M—but for each of these, considering also the various
possibilities for H �M given above in Lemma 4.4.2.

As we had already previewed in the analysis for Example 3.3.14, that treatment
is assisted by pushing-up considerations as in Section 3.3: Notably we saw in (3.3.12)
that by [AS04b, 3.3.2(1)]:

M is the unique maximal 2-local subgroup over LT .
And then for R := O2(LT ), we saw in (3.3.13) that we get the R-(CPU) condition
in (3.3.10):

C(G,R) ≤M < G.
Hence we can exploit C(G,R)-theorems such as [AS04a, C.2.8].

The “majority” of the cases for (L, V ) are treated in several chapters follow-
ing [AS04b, Ch 4]:

First, most quasithin conclusion-groups are of Lie-type and Lie-rank 2, in char-
acteristic 2; these are recognized in [AS04b, Ch 5]—as we will outline, in our
subsequent Section 4.5.

Next, in most cases of (L, V ) which do not lead to a quasithin conclusion-group,
the module V does not satisfy the FF-condition; these “shadows” are eliminated
in Chapters 7–9 of [AS04b]. In fact we had already outlined the elimination,
using weak-closure and pusing-up methods, of the case L = M23 on V = 211, in
Example 3.4.7.
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So: Chapters 10–16 of [AS04b] are then devoted to treating only a comparatively
few small cases of (L, V )—but those small cases are disproportionately difficult.

4.5. Recognizing Rank-2 Lie-type groups

We now outline Chapter 5 of [AS04b]—to demonstrate the use of recognition
theorems, in identifying the main quasithin conclusion groups, namely the Lie-type
groups of rank 2 in characteristic 2.

That chapter works under Hypothesis 5.0.1 there, which has L is L2(2n), for
some n ≥ 2. Thus a number of different subcases for the module V will be
considered. However, we note that most cases for n = 1, corresponding to the
small field F2, involve extra difficulties—and so are postponed to later chapters
of [AS04b].

Constructing parabolics. Recall from Lemma 4.4.2 that H/O2(H) is usually
also a Lie-type group of rank 1 in characteristic 2. Consequently under the present
hypothesis, both L and H resemble rank-1 parabolics—which might be expected to
generate some rank-2 Lie-type group X. In this interpretation, T ∩ L should play
the role of a full unipotent group of X; and so NG(T ∩L) should play the role of a
Borel subgroup. Of course, substantial work is required to implement this outline:

Thus Section 5.1 of [AS04b] first develops various further restrictions on the
possibilities for V and H. For example, the “Borel” NL(T ∩ L) should be roughly
an extension of the 2-group T ∩ L by an odd-order subgroup, and in particular
solvable; so that a Hall 2′-subgroup should play the role of a Cartan subgroup.

Then Section 5.2 of [AS04b] determines the corresponding “amalgams”—
essentially the possibilities for L/O2(L) and H/O2(H), along with specific pos-
sibilities for the Sylow T ∩ L. This argument proceeds by verifying conditions of
a preliminary result [AS04a, F.1.1]: which is a version of the “weak BN-pairs of
rank 2” condition, where the possibilities had been determined in celebrated work
of Delgado-Goldschmidt-Stellmacher [DGS85]. Very roughly:

• The input gives the rank-1 parabolics and their intersection—only mod O2.
• And the output gives the (previously-unknown) cases for the Sylow 2-group.

We emphasize that this determination of the amalgam does not yet identify the
group generated by the parabolics. This is roughly because, in contrast to buildings
of rank ≥ 3 as in (7.2.10), buildings of rank 2 are not simply connected—instead,
they have an infinite universal cover, whose automorphism group would be some
infinite group, with our finite G as a quotient.

The possible amalgams are of course basically those for the rank-2 Lie-type
groups in characteristic 2. However among those, the L3(4)-amalgam—based on
two L2(4)’s as quotients of parabolics—in fact admits an extension, correspond-
ing to enlarging one L2(4) ∼= A5 to A7; and that extension also arises in the list
of amalgams here. In the case of that extended-amalgam, we identify the qua-
sithin conclusion group G ∼= M23; with recognition accomplished using the uniform
method of [Asc94, 37.10].

Recognizing most conclusion groups. Section 5.3 of [AS04b] now imple-
ments the hybrid method described in Section 4.2: Namely the initial lemmas es-
tablish, for each of the remaining amalgams, the structure of CG(t) for 2-central t.3

3Recall that this means that t lies in the center of some Sylow 2-subgroup of G.
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And this information, together with the amalgam, provides the hypothesis of the
recognition theorem [AS04a, F.4.31], identifying G as the corresponding rank-2
Lie-type group in characteristic 2. We mention that in that method, the structure
of the subgroup CG(t) provides sufficient further relations beyond the amalgam, to
“collapse” the infinite automorphism group of the universal cover of the building
down to the desired finite G.

Hence at the end of Chapter 5 in [AS04b], the infinite families of groups
satisfying the quasithin hypothesis have now arisen.

But alas, the analysis of the remaining “small” cases for (L, V ) (which may
or may not lead to conclusion-groups) will require difficult and detailed work—
occupying another 11 chapters there.

In fact the last case of (L, V ) within the Fundamental Setup to be thus treated
is L ∼= L3(2), in Chapter 14 of [AS04b]—with V a natural module; the reduction
to this V holds after [AS04b, 12.4.2]. And next we will summarize the treatment
of the very last subcase of the case (L3(2),natural V ):

4.6. Recognizing the Rudvalis group Ru

In Section 14.7 of [AS04b], as noted above we have L ∼= L3(2) on natural V .
Further Sections 14.3 and 14.4 of [AS04b] had shown for 2-central z that

the subcase in which U := 〈V CG(z)〉 is nonabelian leads to G ∼= HS or G2(3).
In fact [AS04a, I.4.8, I.4.5] indicates a number of different possible recognition
theorems for these identifications: including the methods of rank-3 graphs, or
involution-centralizer characterizations, or weak BN -pairs of rank 2—techniques
we had already mentioned in earlier sections of the present chapter.

Constructing parabolic-like subgroups. So Section 14.7 of [AS04b] be-
gins with the final subcase, where U is abelian; and it remains to construct local
subgroups resembling those in the Rudvalis group Ru.

Taking CG(z) for “H”, subsequent lemmas reduce to H/O2(H) ∼= S5; and
obtain specific action of H on sections of U—of dimensions 1, 4, 6. Further O2(H)
is shown to consist just of U of order 211.

This information in turn leads to determination ofO2(L)/V as the 8-dimensional
adjoint-module for L3(2); so that O2(L) also has order 211.

Thus at this point, H and L now have the structures of two standard well-
known 2-local subgroups of Ru.

Recognizing the Rudvalis group. These subgroups are then the hypothesis
for applying the preliminary result [AS04a, J.1.1]—which identifies G as Ru. We
mention that this preliminary recognition result proceeds via uniqueness of the
rank-3 permutation graph.





CHAPTER 5

Representation theory of simple groups

Applications of simple groups often proceed via their linear representations.
One standard reference for general representation theory is Curtis-Reiner [CR90].
As usual we will confine ourselves to a limited number of salient features; the
experienced reader can skip over the basic review in the introductory section below.

Introduction: some standard general facts about representations

A representation is a group homomorphism ρ : G → GL(V ), where V is a
vector space over a field F . And then V is the FG-module corresponding to that
representation. Typically we can reduce to the case where V is irreducible: that is,
where no proper nonzero subspace W of V is G-invariant.

“Ordinary” representation theory. We first consider the case char(F ) = 0.
(The theory is similar when char(F ) is a prime p that does not divide |G|.)

In this situation, the group algebra FG is semisimple; and then representations
are completely reducible—that is, they decompose into a direct sum of irreducible
representations.

Much of the information about a representation ρ in in effect encoded in its
character : namely the values of the traces Tr

(
ρ(g)

)
of the representation matrices

over g ∈ G. The set of characters for the irreducible representations ρ gives the
character table of G. The character of ρ determines for example its decomposition
into irreducibles. See for example Isaacs [Isa06] for basic character theory.

Modular representation theory. We turn to p := char(F ) which does di-
vide |G|. See e.g. Feit [Fei82] for fuller details of the modular theory. We only
mention in rapid summary:

In this situation, the group algebra FG is not semisimple; and representations
need not decompose into irreducibles—that is, there can be non-split extensions
among the irreducible sections.

So some attention is also focused on representations which are indecompos-
able—that is, which cannot be further decomposed as a direct sum. These are of
course less precisely described than irreducibles; typically just in terms of a compo-
sition series: The multiplicities of the various irreducible sections in such a series are
determined— by the character; but if we proceed up an ascending series of submod-
ules, the irreducibles might appear in various different orders. So now the character
of the representation only describes those irreducibles and their multiplicities in a
composition series.

Some restrictions on the possible non-split extensions are given by Brauer’s
theory of p-blocks: these blocks are the terms in a maximal decomposition of FG
into two-sided ideals. Non-split extensions are only possible between irreducibles

89
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associated to the same block.1 In particular, each irreducible module I is visible in a
unique block, by means of its projective cover P (I)—an indecomposable summand
of the block, which has I as its unique irreducible quotient; and which is also
projective, in the sense of the standard definition:

Definition 5.0.1 (projective module). There are many equivalent definitions
of a projective module; perhaps the most common is, as a direct summand of a free
module. A free module is in turn a direct sum of copies of the group algebra FG.
In particular, a projective module has a basis admitting free (i.e. regular) action
by a Sylow p-subgroup of G—and so has dimension divisible by |G|p. ♦

Knowledge of the projective indecomposables, and not just the irreducibles, is a
crucial part of the modular representation theory. A very special situation for a
projective indecomposable is given by defect 0:

Remark 5.0.2 (Defect groups and defect 0). To a block B is associated a cer-
tain p-group D, called the defect group of the block. An extreme case is given by a
block of defect 0: Here D = 1; and the block contains a single ordinary irreducible—
which when read mod p, remains irreducible, giving the single p-modular irre-
ducible I of the block. Now I in addition to being irreducible is also in fact pro-
jective; so that I is in fact equal to its indecomposable projective cover P (I). This
situation holds for an ordinary irreducible iff its dimension is divisible by |G|p. ♦

The p-modular theory is important for many applications—especially for mod-
ules involved in the structure of p-local subgroups of G.

Some other features. For simple groups (especially in the p-modular case),
it is often important to study modules which are “small” in some suitable sense.
For example, in Theorem 3.2.7 we had mentioned that the FF-condition 3.2.1 leads
to one important notion of smallness.

In fact for many groups, the nontrivial irreducible module N of smallest di-
mension can often be considered the “natural” module or G—in analogy with the
terminology of V as the natural module for GL(V ).

There are various constructions by which smaller modules V,W lead to larger
modules: notably their tensor product V ⊗W . For V = W , this leads to the stan-
dard theory of symmetric and exterior powers Sk(V ),Λk(V ). And often a “natural”
module V leads to a suitable “adjoint” module—typically related to Λ2(V ). This
is in analogy with behavior in classical Lie-type groups, where the adjoint module
(defined by the underlying Lie algebra, as in Example 1.3.12) has such a relation
with the exterior square.

Given an extension of a normal subgroup A by a group B, Clifford’s Theo-
rem [CR90, 11.1] describes how representations of the extension AB are assem-
bled from representations of A—using suitable representations of B (or perhaps of
suitable central extensions of B).

In the next few sections, we consider more specific aspects of representation
theory, for each of the three standard classes in the CFSG-list 1.0.2:

1Furthermore the ordinary characters are also associated with particular p-blocks.
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5.1. Representations for alternating and symmetric groups

Typically it is most natural to first discuss representations of almost-simple Sn;
and then pass down to representations of the normal subgroup An, via Clifford’s
Theorem indicated above. So in this section we focus on Sn.

Ordinary representations. We first make some naive remarks about the
smallest irreducible: Let P denote the natural permutation module; this has basis
given by the n points permuted by Sn. Then P decomposes as T ⊕N , where: T is
a 1-dimensional trivial submodule—spanned by a vector with coefficient 1 in all n
places; and N is the (n − 1)-dimensional natural irreducible submodule—whose
vectors have coefficient-sum 0.

The general theory of the irreducibles for Sn is a very classical topic—going
back to the 19th-century theory of Young diagrams; and it is prominent not just in
the algebra literature but also in combinatorics. For more modern treatments, see
for example James-Kerber [JK81] and Sagan [Sag01].

Remark 5.1.1 (Some features of ordinary irreducibles for Sn). We give just a
rapid overview of some salient points:

• A conjugacy class in Sn is determined by a cycle-type, which in turn is
determined by a partition of the n points—customarily denoted by λ.
• It is standard that the number of irreducible characters of a group is equal

to the number of conjugacy classes (so that the character table is a square matrix,
indeed invertible); hence for Sn, this value is the number p(n) of such partitions.
• Furthermore there is a natural 1:1 correspondence, with the partition λ de-

termining an irreducible Iλ. This Iλ has a basis indeed by standard Young tableaux :
where, given boxes arranged in rows of lengths given by the parts of the partition λ,
we insert the values of 1, · · · , n—increasing in each row and column. The dimen-
sion of Iλ is given by the celebrated “hook-length formula”, which we give in the
Appendix at (B.3.2). ♦

Here are some easy sample calculations, not even requiring that formula: The
trivial module T above corresponds to the “trivial” partition—into just one part;
there is only one way to fill the corresponding single row in increasing order; so
dimT = 1. The natural module N above corresponds to the partition with parts
of size (n − 1), 1: The column-increasing conditions means that we cannot put 1
into the single box in the second row; but the other (n− 1) choices are possible for
that box—and each allows just one increasing way to fill the top row. Thus N has
dimension (n− 1).

Exercise 5.1.2. Using the formula, write out the details for the above remark;
and explore some other examples, say for n = 4.

Hint: Some sample details appear in appendix Remark B.3.1. ♦

Modular representations. Consider the permutation module P above, but
defined now with coefficients over Fp. If p does not divide n, the discussion of T⊕N
is much as before. But assume instead that p does divide n: Then T is a submodule
of N—and P is now indecomposable. Furthermore N is now reducible; so we refer
to the irreducible (n− 2)-dimensional quotient N/T as the “natural” irreducible.
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In much the same way, the above general theory has to be further refined—since
the earlier modules Iλ may be reducible, when read mod-p.

For example, there will now be fewer irreducibles: It is standard that their
number is the number of conjugacy classes of p′-order; and these in turn correspond
with p′-partitions—namely where the part-sizes are not divisible by p. The latter in
turn correspond with p-regular partitions, in which no p successive parts have the
same size; and it is these p-regular partitions λ which are customarily used to index
the modular irreducibles. For such λ, the irreducible will be a suitable quotient Iλ
of the characteristic-0 irreducible Iλ above.

This p-modular theory is still under vigorous development; again see for exam-
ple James-Kerber [JK81]. For example, some features still not determined include:
the dimensions of the irreducibles Iλ; and the decomposition matrix , expressing the
characteristic-0 module Iλ, mod-p, via a composition series in terms of Iµ for p-
regular µ which are suitably below λ in a natural ordering ≤.

Remark 5.1.3 (Connections between Sn and GLn(q)). We continue an ongo-
ing theme, introduced after earlier Example 1.3.1: Recall that Sn is the Weyl group
of GLn(q), as in 1.3.20(3). It turns out that the representation theory of Sn in fact
leads naturally to some parts of the representation theory for GLn(q). Due to space
limitations, such connections will remain mainly implicit, in the following section on
representations. But the connections-theme will recur much more explicitly—when
we discuss maximal subgroups, in the following Chapter 6; and indeed elsewhere. ♦

5.2. Representations for Lie-type groups

The reader may wish to review material from Section 1.3, e.g. the overall Lie-type
setup in Remark 1.3.20.

Ordinary representations. A good source here is Carter [Car93]. I’ll rapidly
sketch some classical Deligne-Lusztig theory ; note that more recent developments
also use the later Lusztig induction.

We indicated in Remark 1.3.23 that we can obtain a finite Lie-type group G
as the fixed points in an algebraic group G defined over the algebraic closure Fp,
under a suitable “Frobenius” automorphism F ; where F involves some power of
the field automrophism x 7→ xp, and possibly some graph automorphism.

Now inside G, fix some maximal torus T (i.e. Cartan subgroup), which is stable
under the action of F . There is a relation with the Weyl group W :

(5.2.1) classes of F -stable T
1:1↔ “F -conjugacy” classes in W .

And roughly: The fixed points T
F

, as we vary T , give rise to the various tori in
finite G—not just the split Cartan subgroup, but also the non-split tori; as in:

Example 5.2.2 (split and nonsplit tori in GLn(q)). First let V denote a vector
space of dimension d over the prime subfield Fp. Then GLd(p) contains a cyclic
subgroup T of order pd− 1; and any subgroup of T which remains irreducible on V
is an example of a nonsplit torus. This is in contrast to a split torus, namely a
diagonal subgroup of order (p − 1)d. And notice that a nonsplit torus becomes
split—if the field of definition for the matrix action is extended from Fp to Fpd .



5.2. REPRESENTATIONS FOR LIE-TYPE GROUPS 93

Now consider GLn(q), for q = pa: Here the various choices for full tori corre-
spond to the possible partitions of the n diagonal positions: For given a diagonal
block of of size k > 1, by the previous paragraph we can find a nonsplit size-k
torus of order qk − 1. A split full torus, of order (q − 1)n, arises from the trivial
partition 1, 1, · · · , 1; but all other partitions give nonsplit full tori.

And we had already seen in Remark 5.1.1 that the partitions in turn correspond,
via cycle-types, to conjugacy classes in the Weyl group W = Sn. This in particular
continues the theme of connections in Remark 5.1.3 above.

We return to nonsplit tori in Section 9.3; especially Exercise 9.3.1. ♦

Now choose a prime different from the characteristic p of G; this prime is typically
denoted by `.

Fix an irreducible (in particular, 1-dimensional) character θ of T
F

. DefineRG
T

(θ)
as the alternating sum of the θ-components of the `-adic cohomology, with compact
support, of the variety {g ∈ G : g−1F (g) ∈ U}, where U is a full unipotent group U
normalized by T .

Deligne and Lusztig showed that these sums determine much of the ordinary

representation theory for G, in the following sense: Namely RG
T

(θ) is a virtual

representation of G; and further, each irreducible for G is contained in an RG
T

(θ),

for some T , θ. Finally the sets of irreducibles in the RG
T

(θ) are disjoint, up to
“geometric conjugacy” of θ.

Subsequent research has analyzed the RG
T

(θ) for many classes of Lie-type G;
and of course development is continuing.

Modular representations. Here for Lie-type G in characteristic p, the mod-
ular theory is most interesting for the natural-characteristic prime p; and corre-
spondly, most of the literature considers this p-modular case.

However we briefly mention some work on the “cross-characteristic” case; that
is, q-modular representations for q 6= p. Suitable “small” representations are stud-
ied for example in Landazuri-Seitz [LS74]. But see also a number of papers of
Guralnick and Tiep in this area.

So we now focus in the p-modular case, for p the characteristic prime of G.

Some general features of weight theory. Here the main idea is to mimic the
“highest weight” properties of representations of the underlying Lie algebra G of G;
cf. Humphreys [Hum78] for details of the latter. We had sketched elements of the
weight-theory, mainly in the special case of the roots which arise on the adjoint
module G, earlier in Remark 1.3.7.

We now recall, and expand somewhat on, that earlier discussion of more general
weights: The roots arise as irreducible (1-dimensional) characters of the Cartan
subalgebra H. We fix a simple system Π = {α1, . . . , αn}, affording a basis for the
space generated by the roots inside H. Using the natural inner product on H given
by the Killing form, we obtain the corresponding basis {λ1, . . . , λn} of H∗ which is
dual to the simple co-roots—namely those roots divided by their squared-lengths.
The resulting characters λi of H are called the fundamental weights. These are
determined and listed at e.g. [Hum78, p 69], for the various types of simple G.

For the corresponding Lie-type group G, the weights—the integral lattice which
is spanned by the fundamental weights—play the role of characters of a Cartan
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subgroup H. This statement in fact requires certain technical adjustments for
dealing with finite fields; for example, note that H = 1 when G is defined over the
smallest field F2. We summarize some of the features emerging from this theory:

Remark 5.2.3 (Some weight theory for natural-characteristic modules). An
irreducible module V for G mimics many of the standard properties of Lie-algebra
representations; for example:

(1) The action of a Cartan subalgebra H on V is completely reducible: into
weight spaces, namely 1-dimensional subspaces on which the character of H is given
by one of the weights. The action of a root group Uα on a weight space is determined
via exponentiation from the action of the root subspace Uα in (1.3.9).

(2) The fixed points V U , for a full unipotent group U , are 1-dimensional. Fur-
thermore NG(V U ) is a parabolic subgroup of G.

(3) The weight λ on V U is highest in V , in the natural ordering: where for any
other weight µ on V , λ− µ is a positive linear combination of simple roots.

(4) The weight λ on V U is dominant : that is, it has the form
∑n
i=1 aiλi—

with 0 ≤ ai ≤ q − 1, for an untwisted group G defined over Fq. Notice that the
number of these weights (called q-restricted) is qn, for n the Lie rank.

(5) There is a bijection between the dominant weights λ and the irreducible
modules V (λ). ♦

Example 5.2.4 (Weights for the natural module of L3(2)). We consider for
example the natural module V for L3(2); whose underlying root system we had ex-
amined at earlier Example 1.3.10. Explicit computation of suitable inner products
shows that the highest weight is in fact λ1—which is fundamental, and in particu-
lar dominant. Note as at [Hum78, p 69] that it can be expressed in terms of the
simple roots, as 2

3α1 + 1
3α2. And the two remaining, lower weights on V are λ1−α1

and λ1−(α1 +α2)—exhibiting via (1.3.9) the action of negative-root subgroups. ♦

Exercise 5.2.5. Mimic this discussion of weights in some more examples of
small G and V : for example, in the 4-dimensional natural module for Sp4(2); and
the 8-dimensional adjoint module for L3(2).

Hint: Some details appear in appendix Remark B.3.3. ♦

One approach to this high-weight theory proceeds via restriction from the ir-
reducible representations of the algebraic groups G. This is the viewpoint used in
the celebrated lecture notes of Steinberg [Ste68]. We next mention some further
features which are usually deduced in that context:

Assume G is an untwisted group Lie-type group G(q) of rank n, defined over Fq
where q = pm. It is standard that the number of p-modular irreducibles is equal to
the number of conjugacy classes having p′-order. One can show group-theoretically
that this number is qn—and this agrees with the number of q-restricted domi-
nant weights λ in 5.2.3(4). This underlies the correspondence of such λ with irre-
ducibles V (λ) in 5.2.3(5).

Furthermore the irreducibles can be studied more finely using the viewpoint
of the groups G(p) defined over the prime field Fp, and its irreducibles—these are
the “basic” irreducibles, corresponding to the pn dominant weights which are p-
restricted. Indeed given a q-restricted dominant λ, which has a decomposition
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via p-powers, of the form
∑m
i=1 piµi—so that each µi is p-restricted—we have the

important expression (see e.g. [Jan03, 3.17]):

Theorem 5.2.6 (Steinberg Tensor Product Theorem). We have:

V (λ) = V (µ1)⊗ σ
(
V (µ2)

)
⊗ · · · ⊗ σm−1

(
V (µm)

)
,

where σ generates the Galois group Gal(Fq/Fp) of order m.

Exercise 5.2.7. Express as products the irreducibles of SL2(4) and SL3(4).
Hint: Some further details appear in appendix Remark B.3.4. ♦

Some finer points of module structure. We first single out one module of par-
ticular significance:

Definition 5.2.8 (Steinberg module). The largest q-restricted dominant weight,
Of form

∑n
i=1 (q − 1)λi, corresponds to the irreducible called the Steinberg mod-

ule St for G. This module has a number of very special properties:

• It has dimension q|Φ
+|—equal to the order |U | of a full unipotent group.

• It is the unique irreducible which is also projective—of defect 0 as in 5.0.2.
• It is the product of the conjugates of the basic-Steinberg modules for G(p). ♦

Exercise 5.2.9. Here are some very unusual relationships, for certain small
Steinberg modules: They can be verified using the 2-modular character tables in
the Modular Atlas [JLPW81].

(1) The Steinberg module of L3(2) is given by its 8-dimensional adjoint module.

Hint: The tensor product of the natural 3-dimensional module V with its dual V̂
affords the space gl3(2) of 3× 3 matrices—with a trivial submodule given by scalar
matrices. So from the product character, remove a trivial character: the result is
afforded by the adjoint module sl3(2).

(2) For Sp4(2), the 16-dimensional Steinberg module is given by the tensor
product of the natural 4-dimensional module with its conjugate under a graph au-
tomorphism. ♦

Next we turn to a general irreducible V (λ) for some high weight λ:
As an initial approximation to the module V (λ) for G, we can consider the

characteristic-0 Weyl module W (λ), defined for the underlying Lie algebra G—but
in fact read mod-p; the result has V (λ) as its unique irreducible quotient. From
Weyl’s formula [Hum78, p 139], which we state as (B.3.6), we know the dimension
of W (λ); but determining the typically-smaller dimension of the irreducible V (λ)
has been a major open problem in the theory.

For example, for L4(2), the adjoint module W (λ1 + λ3) for the Lie algebra has
dimension 15; but the irreducible module V (λ1 +λ3) is the 14-dimensional quotient
modulo a trivial submodule. (We will revisit this irreducible in later Exercise 5.6.1.)

Exercise 5.2.10. For G = Sp4(2) of type C2: Apply Weyl’s formula to W (λ1),
to describe the natural 4-dimensional symplectic module—which is irreducible.
Then apply the formula to W (λ2), to obtain the 5-dimensional orthogonal module.
This is the natural module for Ω5(2) of type B2—which is isomorphic to Sp4(2), as
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we had observed toward the end of Remark B.2.7. This time the Weyl module has
a trivial submodule, and so is reducible. The symplectic module can be regarded
as the “spin” module for the orthogonal group Ω5(2).

Hint: Some further details appear in appendix Remark B.3.5. ♦

Lusztig in 1979 stated a conjecture for the dimensions of the V (λ). Later
Andersen-Jantzen-Soergel [AJS94] showed it must hold for sufficiently large p.
But recent examples of Williamson2 show that a lower bound for p must be fairly
large. (E.g. larger than Coxeter number h that Lusztig had originally hoped for.)

A different approach to high-weight theory, using only finite G, was developed
by Curtis and Richen; see [Cur70]. The basic context is that of a split BN -pair,
which we had mentioned at Remark 1.3.20(3), and in the discussion of rank-2 in
the later part of Section 4.2.

Here a weight includes not just λ (as a character of the finite subgroup H),
but also certain scalars µi—roughly recording the effect of the U−αi for i ∈ Π on
a high-weight vector. This compensates for “small” H—for example, H = 1 for
groups defined over F2. Of course, the final results are the same as those arising
from the algebraic-groups approach; but sometimes the purely finite-group context
of Curtis-Richen can be more convenient.

One result that fully generalizes from the Lie-algebra situation is given by 10.1.7
in [Smi11]—which extends to all parabolics the irreducibility under the Borel sub-
group B = UH that is a consequence of the 1-dimensionality of V (λ)U in Re-
mark 5.2.3(2):

Theorem 5.2.11. For irreducible V (λ) and parabolic PJ = UJLJ , the fixed
points V (λ)UJ are irreducible under LJ ; they afford the module V (λ|LJ

) for LJ .

Examples of this property have already appeared implicitly; e.g. in Remark B.1.1,
for the action of the maximal parabolics Pk̂ indicated there, on the natural mod-

ule V : Namely we saw that the usual k-subspace Vk of V arises as V Uk̂—and affords
the natural irreducible module for a suitable factor of Lk̂.

Indeed in the Ronan-Smith presheaf-viewpoint [Smi11, 10.1.8], which we re-
turn to at Remark 7.5.5, the irreducibles—or equivalently, their highest weights—
are in 1:1 correspondence with irreducible presheaves on the building: Here the
presheaf is defined at all parabolics; but each is determined already by the values
at the minimal parabolics. These values are irreducible by Theorem 5.2.11.

Exercise 5.2.12. Explore such presheaves, in some small modules for groups
such as L3(2); Sp4(2); L4(2). Hint: We already mentioned Remark B.1.1, for
the case of maximal parabolics on the natural module studied there. And see
also [RS89], which methodically explores the presheaves for several examples. ♦

2See http://people.mpim-bonn.mpg.de/geordie/Torsion.pdf
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Some remarks on “small” representations. For classical matrix groups, the nat-
ural representation is the obvious action on the vectors of the defining space. For
exceptional groups, the term “natural representation” is sometimes used informally
to refer to the smallest module.

Example 5.2.13 (The Cayley-algebra module for G2(q)). For example, the
group G2(q) acts on the 7-dimensional Cayley algebra—see e.g. [Hum78, p 105];
this has a 6-dimensional quotient in characteristic 2. ♦

A further comparatively small representation is the adjoint module—arising
from the underlying Lie algebra G for G, in the Chevalley construction in Sec-
tion 1.3. For classical groups, the action on the n-dimensional natural module is
usually described via n× n matrices; and the adjoint module corresponds roughly
to the conjugation action of these square matrices on the underlying space of not-
necessarily-invertible n× n matrices

The weights that arise on an irreducible V (λ) fall into orbits under the Weyl
group W of G. A corresponding further notion of smallness is given by: The
dominant-weight λ is called minimal (or minuscule) if there is just one W -orbit in
Weyl module W (λ). Such weights for all Lie types are listed at [Hum78, p 105].
In this case, W (λ) must remain irreducible, when read modulo any prime p; that
is, W (λ) gives the irreducible V (λ) for the finite group. Note in type Am that each
fundamental weight λi is minimal; in particular this includes λ1, which gives the
natural module. In type Bm, for groups O2m+1(q), the weight λ1 for the natural
module is not minimal; but λm is minimal, and gives the irreducible spin-module
of dimension 2m. We saw this distinction for type B2 in earlier Exercise 5.2.10.

The FF-context of Definition 3.2.1 gave still another notion of “small” module;
we mention that the work of [GM02] establishing the FF-list 3.2.7 made heavy use
of the above weight-theory.

5.3. Representations for sporadic groups

Of course there is no common theory of the structure of sporadic groups; much
less, for their representations.

But often, it is possible to get information about some of their smaller rep-
resentations: from their construction; or from their containments in other groups,
whose representations are more familiar. Many such details be found using the
Atlas [CCN+85]; or especially the Modular Atlas [JLPW81] for modular repre-
sentations. We quickly indicate the dimensions and fields for several such modules:

• From Golay codes: M12 in 6/F3; M24 in 12/F2.
• From the Leech lattice: Co1 in 24/F2; 3Suz in 12/F3; 2J2 in 6/F5.
• Since J1 < G2(11), J1 is represented in 7/F11.
• From J2 < G2(4), we find the group J2 in 6/F4.
• From 3J3 < U9(2), we get 3J3 in 9/F4 ; etc ...

However, some groups have no really small irreducibles; For example, the Baby
Monster BM has minimal dimension 4370/F2; and the Monster M has minimal
dimension 196882/F2.
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Applications to Alperin’s conjecture

By way of full disclosure: I find the p-modular theory for the Lie-type groups
a particularly appealing area. And this is behind my choice here of Alperin’s
conjecture, to demonstrate applications in this chapter: the conjecture is motivated
by aspects of modular Lie theory, and allows for some specially elegant uses of that
theory in verifying the Lie-type case.

5.4. Introduction: the Alperin Weight Conjecture (AWC)

In early 1985, Alperin [Alp87] stated a bold conjecture on the modular theory for
any finite group. In this section, we briefly review some of the background.

Alperin isolated, from the high-weight theory for a Lie-type group G, the fol-
lowing subset of features—from among those which we had indicated earlier at
Remark 5.2.3 and thereafter:

An irreducible module V (λ) determines a high-weight 1-subspace X.
• Further NG(X) is a p-local: say PJ = NG(UJ)—where UJ = Op(PJ).
• KJ := 〈U±i : i ∈ J〉 is of Lie-type—with projective irreducible Steinberg StJ .
• Also λ · StJ is projective irreducible module for HKJ = LJ ∼= NG(UJ)/UJ .

And conversely: The pair (UJ , λ · StJ) in turn determines V (λ).

Exercise 5.4.1. Exhibit such pairs (UJ , λ · StJ), for irreducibles of some
smaller groups, such as L3(2); Sp4(2); L4(2). Hint: Some further details appear in
appendix Remark B.3.7. ♦

Alperin focused on generalizing these pairs to an arbitrary finite group H. He
defined an “abstract” weight as a pair (P, S): where P is a p-subgroup of H (so
that the normalizer NH(P ) is a p-local subgroup); and S is a projective irreducible
module for NH(P )/P .

We note that it is elementary to show that such an S can exist only in the case
that P = Op

(
NH(P )

)
; so in fact we may restrict attention to such P . This is the

important p-radical condition (recall Definition 3.3.11) on P—such subgroups have
proved crucial in many other places in the literature. And when H is actually of
Lie-type, as we had mentioned earlier, a standard result (e.g. [Smi11, 4.4.1]) on
the unipotent radicals motivated the terminology of “p-radical” for general groups:

Theorem 5.4.2. For H of Lie-type in characteristic p, Bp(G) consists of the
unipotent radicals of parabolics.

Alperin then conjectured that these abstract-weights in fact determine the number
of modular irreducibles:

Conjecture 5.4.3 (Alperin Weight Conjecture (AWC)). For a finite group H,
and any prime p dividing |H|:

#(p-modular irreducibles for H) = #(Alperin-weights—up to conjugacy) .

Example 5.4.4. We summarize a verification for H = A7 at p = 2: There
are 6 conjugacy classes of odd order—so 6 is also the number of the 2-modular
irreducibles. We can check that the 2-radical subgroups P are represented up
to conjugacy by: the Sylow D8; and two subgroups E4—one contained in a sub-
group A4, the other not. The first and third of these representatives have NG(P )/P
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given by the trivial group, and L2(2), respectively; each of these quotients has just
one projective irreducible, namely the trivial module and the Steinberg module—
so together they contribute 2 Alperin-weights. Finally the second E4, that lying
in an A4, has NG(P )/P given by an E9 inverted by an involution. The ordinary
character table of this quotient has 2 characters of degree 1, and 4 of degree 2.
Those latter 4 are of defect 0 via Definition 5.0.2—and so this P contributes 4
more Alperin-weights. So we also have 2 + 4 = 6 Alperin-weights, as desired. ♦

Exercise 5.4.5. Verify the conjecture for some other small groups. ♦

The Alperin Weight Conjecture is of course fascinating in its own right. It has
also various further consequences, such as conjectures of Broué; see for example
Schmid [Sch07, p 202].

We mention that for general groups H (as opposed to Lie-type G), there is
not necessarily any “natural” bijection between the irreducibles and the Alperin-
weights; for example, given an irreducible V , one can’t necessary hope to find the
projective irreducible S visibly embedded in the restricted module V |NH(P ).

Various important special cases H of the Conjecture were verified early on;
for example Alperin in [Alp87] mentions: solvable groups; Sn; GLn(q); and some
others. Seemingly Alperin himself did not originally check all the possible Lie types;
soon Cabanes [Cab88] gave a general argument—using the viewpoint of modular
Hecke algebras. We will revisit some aspects of the motivating Lie-type case, in
Section 5.6 below.

Various authors have studied the AWC from the viewpoint of general groups H;
and a number of topological viewpoints are mentioned for example in Chapter 11
of [Smi11]. But for the remainder of this chapter, we’ll focus instead on the
substantial literature which approaches the AWC via reduction to simple groups—
this of course in particular requires verification for each group in the CFSG-list 1.0.2.

5.5. Reductions of the AWC to simple groups

I thank P. H. Tiep for suggestions in this area; much more detail on applications
in representation can be found in his survey [Tie14].

Some earlier history of reductions. On the more specific topic of reduc-
tions, for more details see e.g. Navarro-Tiep [NT11].

The reduction-approach was pioneered by Dade: who gave a number of vari-
ants of the Conjecture (e.g. the “projective” conjecture); and also announced an
anticipated proof of the relevant reductions.

This motivated verifications of the conjectures for many of the simple groups, by
a number of researchers, including many of Dade’s students. Various papers of An
include an overview of much of this verification-literature. But unfortunately, no
complete proof of Dade’s reduction has yet appeared.

We do however mention one feature of verification-proofs for simple G, from
that period: We had already commented in the previous section that in order
for NG(P )/P to have a projective irreducible S, necessarily P = Op

(
NG(P )

)
—

the p-radical condition of Definition 3.3.11. So in order to implement the verification
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of the AWC for G, it is first necessary to determine the poset Bp(G) of p-radical
subgroups. The determination of this poset is also of interest for applications in
geometry and topology; see e.g. [Smi11, p 121], and later Section 7.5. The literature
of that early period contains such determinations for many simple G, by various
authors. The reader is particularly directed to various relevant papers of Yoshiara,
Sawabe, O’Brien, and An.

More recent approaches to reduction. In the last decade or so, there has
been a resurgence of interest in reductions for the AWC and related conjectures.

We first summarize a reduction given by Navarro-Tiep [NT11]: For the AWC,
it suffices to show that all simple groups G are AWC-good ; this is defined by con-
ditions (1.a) · · · (3.d) in Section 3 of their paper. Indeed we mention that (1.b),
together with the bijection in 3.2 there, roughly requires a “partition” of the AWC,
indexed via the p-radical subgroups; and in fact further requires verification for
central p′-extensions of G.

The proof of their main reduction Theorem 5.1 relies repeatedly on conse-
quences of AWC-goodness established in their Theorem 3.2. And 3.2 in turn par-
allels Theorem 13.1 of Isaacs-Malle-Navarro [IMN07], which gives an analogous
goodness-condition the McKay Conjecture—a topic we will mention later, as re-
mark (1) in the brief concluding section of this chapter.

Since AWC-goodness has stronger requirements than those of the AWC itself,
it is not sufficient to just quote the above-mentioned literature verifying the AWC
for various simple G. For example, Section 6 of [NT11] now checks AWC-goodness
for G of Lie type in natural characteristic p—going beyond the earlier-indicated
verification of AWC for such G by Cabanes.

In fact, Cabanes himself in [Cab13] gave an additional modern reduction-
proof for the AWC. Furthermore Puig in [Pui11] stated a variant of the AWC, and
likewise reduced it to checking central p′-extensions of simple groups.

5.6. A closer look at verification for the Lie-type case

In the section, we will focus on Alperin’s motivating case of Lie-type G in
characteristic p. We won’t try to outline Cabanes’ general verification of the AWC
for this case; instead, we’ll just consider a few special aspects, which can be checked
using just a few features of the p-modular theory in Section 5.2.

We had seen at Remark 5.2.3(4) that for untwisted G of rank n over Fq, the
number of p-modular irreducibles is qn; this followed e.g. by calculating the number
of q-restricted dominant weights. So to verify the AWC, we want to obtain this
same number qn, by calculating the number of Alperin-weights (P, S).

We had mentioned earlier that for G of Lie type, the p-radical condition nec-
essary for the existence of the projective irreducible S of NG(P )/P is by Theo-
rem 5.4.2 satisfied exactly by the unipotent radicals UJ ; recall such a J varies over
a subset of the simple system Π. Now for UJ , we saw at Remark 1.3.20(4) that the
normalizer NG(UJ) is the parabolic PJ ; and we have NG(UJ)/UJ ∼= LJ = H ·KJ ,
where KJ is generated by the U±α for α ∈ J . Since KJ is also of Lie type, it has a
projective irreducible StJ—which is unique (as we mentioned at Definition 5.2.8).
Consequently the possibilities for S are the extensions λ · StJ from KJ to LJ ,
where λ denotes a 1-dimensional character of H/HJ , for HJ := H ∩KJ .
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Thus to count the pairs (P, S), we must count the pairs (UJ , λ ·StJ): varying J
over subsets of Π; and for fixed J , counting extensions λ · StJ from KJ to LJ .

The case of general q. In the general case, q is some power of the prime p;
and in particular, we have |H| = (q − 1)n.

Since LJ = HKJ , where HJ = H ∩KJ is the product of the Hi with i ∈ J ,
we can obtain a semidirect product LJ = KJHĴ : where HĴ is the product of

the Hi with i ∈ Ĵ := Π \ J . Hence for the character λ of H/HJ
∼= HĴ indicated

earlier, the number of choices is |HĴ | = (q − 1)|Ĵ|; and so this gives the number of
extensions λ · StJ .

And now combining J-terms over fixed |J | = i, for the total number of Alperin-
weights, using just the binomial theorem we get:∑n

i=0

(
n
i

)
(q − 1)n−i 1i =

(
(q − 1) + 1

)n
= qn ;

as desired. �

The subcase q = 2. We end the section with a slightly different viewpoint on
the subcase corresponding to the smallest field F2—where the analysis has some
particularly elegant features.

In this case, the target value for our count of Alperin-weights will be 2n; and
this value is of course immediate, from setting q = 2 in the binomial-theorem
expression above.

But let us examine a little more deeply the assumption q = 2: We get H = 1
for the Cartan subgroup. Hence LJ = KJ , and the only possible value for λ is the
trivial character 1. Thus StJ is the only possible choice for the extension λ · StJ .
So the number of Alperin-weights (UJ , λ ·StJ) is just the number of subsets J of Π,
a set of size n; so we get 2n for our count—just as the size of the power-set of Π.

Let’s go even a little farther: As in our introduction to the AWC in Section 5.4,
we recall from Remark 5.2.3(2) that each irreducible V (λ) has a high-weight 1-
subspace X which is stabilized by a parabolic PJ . From the discussion in the
previous paragraph, including triviality of λ as a character of H = 1, we see that
in the present situation with q = 2, we may as well replace the notation of V (λ)
with V (J)—where V (J) now denotes the unique irreducible in which PJ is the
stabilizer of a high-weight space. And now the module-weight correspondence has
been simplified to the form V (J) ↔ (UJ , StJ). We cannot expect such a natural
bijection in more general groups.

Indeed, we can even shift attention to the “complementary” parabolic PĴ ,

where Ĵ := Π \ J . This has the advantage, for our present purposes, that the U−i
for i ∈ Ĵ do not stabilize the high-weight space X. And then, using the viewpoint
of presheaves in [Smi11, 10.1.8] which we had mentioned after Theorem 5.2.11, it
follows that the fixed subspace V (J)UĴ , which is in fact generated by the action
of LĴ on X, has dimension 2n−|J|—and affords the Steinberg module StĴ of LĴ .3

So we could even replace the correspondence of the previous paragraph with the
form V (J) ↔ (UĴ , StĴ)—where this time the restriction V (J)|PĴ

in fact contains

the subspace V (J)UĴ affording StĴ . And as noted above, we cannot expect such a
natural “internal” correspondence with subspaces, for general groups and modules.

3Roughly because minimal parabolics Pî have Levi complements Lî = Kî
∼= L2(2); with

Steinberg module given by the 2-dimensional natural module of L2(2).
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Exercise 5.6.1. Explore these features, for some small Lie-type groups such
as L3(2); Sp4(2); L4(2).

Hint: Again the examples in [RS89] will be helpful. Note also that in the
various modules for L4(2) and Sp4(2) considered in appendix Chapter B, the par-
abolic PJ stabilizing a high-weight space was always a maximal parabolic. Hence
in those cases, the complementary parabolic PĴ is a single minimal parabolic, with
Levi complement L2(2); and necessarily StĴ is then the natural module.

So in addition, consider also the 14-dimensional irreducible V for G = L4(2);
this is afforded by the 15-dimensional Lie-algebra adjoint module sl4(2), modulo
its trivial submodule of scalars. Here the highest weight is given by the highest
root α1 + α2 + α3 = λ1 + λ3; it is afforded by the root subspace which under-
lies the root group for 2-central z, in the notation of Remark B.2.1. This space
has stabilizer PJ given by the involution centralizer CG(z) there, namely the min-
imal parabolic P2

∼= 21+4L2(2); so we have J = {2}. Hence the complementary
parabolic PĴ is the maximal parabolic P2̂ as in Remark B.1.1, with unipotent rad-

ical U2̂
∼= 24. Here V U2̂ is the 4-subspace given by the root subspaces underlying

the 4 root subgroups generating U2̂; and we can see that this space affords the

Steinberg module St2̂ for L2̂
∼= L2(2)× L2(2) ∼= Ω+

4 (2). ♦

A glimpse of some other applications of representations

We end the chapter with a briefer indication of some other applications of repre-
sentation theory.

(1) The McKay Conjecture. This conjecture of McKay, from around 1971,
concerns ordinary characters: Indeed let Irrp′ denote the set of characters which
have p′-degree. The conjecture says, for a finite group H with Sylow group P , that:

|Irrp′(H)| ?
= |Irrp′

(
NH(P )

)
|

Exercise 5.6.2. Check the conjecture at p = 2 for A5; A6; L3(2); etc. ♦

Isaacs-Malle-Navarro in [IMN07, Thm B] in effect reduce the McKay Conjecture
to simple groups: namely it suffices to show that all simple groups are good (for p)—
goodness is defined by conditions given in Section 10 there.

Various cases of simple groups G are in fact treated in that paper, and in
further work in the subsequent literature. (We had mentioned in Section 5.5 that
this reduction largely inspired the reduction in [NT11] for the AWC.)

Recently Malle-Späth announced the full verification for p = 2; see [MS16].

(2) The Brauer Height 0 Conjecture. This conjecture of Brauer from
around 1955 concerns the theory of ordinary characters, via p-blocks and their
defect groups in the sense of 5.0.2. It asserts that, for a p-block B of a finite
group H, with defect group D, that:

[Degrees of irreducibles in B have p-part
|G|p
|D| ]

?⇔ [D is abelian].

First ⇐ was reduced to quasisimple groups by Berger-Knörr [BK88]. Various
quasisimple cases were then treated—see e.g. the history in Kessar-Malle [KM13].
And in fact 1.1 of that paper completed the treatment. We mention that for
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characters of Lie-type groups, they use the later method of Lusztig induction, which
we only indicated without details in Section 5.2.

The ⇒ direction would follow, if we knew a certain strong form, in Navarro-
Späth [NS14], of the Alperin-McKay Conjecture (this last is a blockwise version
of the McKay Conjecture).

The “would follow” argument in fact comes via Navarro-Tiep [NT13] and
Giudici-Liebeck-Praeger-Saxl-Tiep [GLP+16]; and that in turn uses Aschbacher’s
work on maximal subgroups of classical groups—which we indicate at Theorem 6.2.1.

(3) Dade’s projective conjecture. Recently Späth announced a similar re-
duction to simple groups, for Dade’s projective version of the AWC, which we had
mentioned early in Section 5.5.

(4) The Ore Conjecture. This is a conjecture in general group theory, dating
from about 1951. It asserts that:

Conjecture 5.6.3 (Ore Conjecture). For a nonabelian simple group G, every
element should be a commutator a−1b−1ab.

A substantial literature on this conjecture has developed over the intervening years,
and many simple groups had been covered.

Recently Liebeck-O’Brien-Shalev-Tiep in [LOST10] completed the analysis of
all remaining cases. Their methods are character-theoretic (and use numerical
computation); for example, they use the standard lemma of Frobenius that:

g is a commutator ⇔
∑

χ∈Irr(G)

χ(g)

χ(1)
6= 0.

Exercise 5.6.4. Explore, either directly or using the lemma, some small cases
of the conjecture; for example, the groups A5, L3(2), A6. ♦

For Lie-type groups, some use is also made in [LOST10] of the Deligne-Lusztig
theory sketched in Section 5.2.





CHAPTER 6

Maximal subgroups and primitive representations

For further reference, we mention that Wilson’s recent book [Wil09] has a
good discussion of maximal subgroups for various kinds of simple groups. Indeed
Wilson has been a major contributor in the determination of maximal subgroups,
especially in sporadic groups. But also see the surveys of Kleidman-Liebeck[KL88]
and Liebeck-Saxl [LS92].

I thank the referee for a number of valuable suggestions in this chapter.

Introduction: maximal subgroups and primitive actions

To get started, let’s first explore how we might approach the problem of finding
maximal subgroups—particularly in a simple group G.

I’ll begin by indicating some overall features for the almost-simple symmetric
group G = Sn. This will first of all provide background for our more formal treat-
ment of maximal subgroups of Sn in the subsequent Section 6.1. But in addition,
these features will have suitable analogues for maximal subgroups in a number of
other possible simple groups—notably classical groups in Section 6.2.

In fact, we’ll start with essentially a more methodical version of the analysis
which had been briefly sketched in earlier Remark 1.1.1(3):

A structures-list (S). Our eventual goal is a list of the maximal subgroups M
of G. But in fact we want more—namely to understand the maximals, ideally via
some role that they play in the context of G. Indeed, often a subgroup H of G will
preserve some natural structure; in the present case of Sn, meaning some additional
substructure on the n points. So here is a possible initial step, on the way to a final
list—which I’ll call:

(S): Obtain a list of the possible substructures (and their stabilizers)

Indeed if we can show that any proper subgroup H < G stabilizes one of those
structures, then the stabilizers in the structures-list (S) at least give possible can-
didates for the maximal subgroups M . So this structures-viewpoint will be a main
theme, in the present chapter on maximal subgroups.

Below are several easy examples of such structures. First for 1 < k < n:

(1) (intransitive:) If H fixes a k-subset, then H ≤ Sk × Sn−k.

Now with (1) in hand, we are reduced to considering subgroups H which are tran-
sitive on the n points. And we next recall the setup we indicated in Exercise 1.1.3:

Definition 6.0.1 (blocks of imprimitivity). Assume for some 1 < k < n that k
divides n. If G preserves a partition of the points into parts of size k, we say those
parts form a system of blocks of imprimitivity for G. ♦
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Hence we have:
(2) (imprimitive:) If H permutes such k-blocks, then H ≤ Sk o Sn

k
.

Most readers will be familiar with this concept; but in case not:

Exercise 6.0.2. In Exercise 1.1.3, give blocks for n = 4 and n = 6. The cen-
tralizer of a regular involution should suggest examples. ♦

And now with (2) in hand, we are reduced to considering subgroups H which
act primitively on the n points. This in turn suggests a related kind of list, which
I will call:

An actions-list (A). Permutation-group theorists also need the classification
of all possible types of primitive actions. See e.g. Cameron [Cam99] for background
on permutation-group theory.

So we now let H denote some “general” subgroup of Sn acting primitively on
the n points—where H is not necessarily assumed maximal in Sn. But in fact it is
standard that:

(6.0.3) A transitive group H is primitive iff Hα is maximal in H.

So in seeking general primitive actions, we have not completely escaped maxi-
mal considerations. Indeed a natural intermediate goal, on the way to our final
maximals-list for Sn, might be:

(A): Obtain a list of the possible actions for a primitive group H.

Here I’ll just say, rather vaguely, that this list should give a suitable “qualitative”
description of H: The possibilities will typically depend on features such as the
structure of the socle:

Remark 6.0.4 (socle). The socle soc(H) is the product of the minimal normal
subgroups of H. Each minimal normal subgroup is the product of isomorphic sim-
ple groups: these may be nonabelian simple; or abelian—these latter giving normal
subgroups of suitable prime-power orders. ♦

Let’s consider how we might use these two lists, toward obtaining our fi-
nal maximals-list: The actions-list (A) should be essentially a refinement of the
structures-list (S). Roughly, we should be able to fit each primitive group in (A)
into one of the structure groups in (S). Indeed, we can consider chains of proper
inclusions among members of (A): in any chain that cannot be extended, the fi-
nal member should determine a structure in (S), hence a candidate for a maximal
subgroup, which in particular is primitive.

I have tried here to emphasize the distinction between (S) and (A): because it
seems to me (as an outsider to permutation-group theory) that this distinction is
sometimes blurred in the literature.

6.1. Maximal subgroups of symmetric and alternating groups

I thank Cheryl Praeger for assistance with this section.
For further detail on this specific material, see for example Cameron [Cam81],

or Praeger [Pra83], or Wilson [Wil09, Sec 2.6]. In addition, this area was the
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topic for the 2008 Venice Summer School lectures of Michael Aschbacher; these can
be found online, at URL:

http://users.dimi.uniud.it/∼mario.mainardis/scuolaestiva2008/venotes.pdf

Structures: The O’Nan-Scott Theorem. Much of a structures-list (S)
for Sn was known classically: mainly “obvious” structures—starting with the in-
transtive and imprimitive cases (1)(2) in the introductory section above, and con-
tinuing with various fairly straightforward primitive cases.

And in addition, it was known that any such list must also be subject to at
least one limitation: since a further case, namely almost-simple groups, can arise
“unpredictably”—that is, outside of any methodical list of structures.

However, completeness of any suggested structures-list was not known until:

Some history of the structures-list (S). At the Santa Cruz AMS Summer Sym-
posium in 1979, O’Nan and Scott announced a completeness proof for a suitable
structures-list (S) for Sn. This result is usually called the O’Nan-Scott Theorem;
and we will state it below as Theorem 6.1.1. But first, we metion a complication
(which did not in fact affect its proof).

The proof was deduced, as suggested in the introductory section above, using
a primitive actions-list—stated by Scott [Sco80, p 328]. Unfortunately, that list
was found to be incomplete; a correction was given by Aschbacher [AS85, App].
The final result is often called the Aschbacher-O’Nan-Scott Theorem: we state
it as Theorem 6.1.3 below; and we examine that final, corrected actions-list (A),
somewhat informally, by means of the table in Remark 6.1.4.

Perhaps confusingly, some of the literature seems to use the term “O’Nan-
Scott Theorem” to refer to both the above results. However, to try to prevent
such confusion, I will follow the naming convention indicated above—namely the
O’Nan-Scott Theorem for the structures-list (S), and the Aschbacher-O’Nan-Scott
Theorem for the final, corrected actions-list (A).

The structures in the O’Nan-Scott Theorem. As indicated above, the original
statement of the O’Nan-Scott Theorem nonetheless remained correct: This is be-
cause the action-type originally omitted in [Sco80, p 328] could not in fact be
terminal in an inclusion-chain; and thus could not lead to a new maximal-stucture.
So with that observation, Scott’s analysis at [Sco80, p 329], fitting the various
primitive types into possible structures, delivered the correct final structure-list. In
particular, the resulting maximal structures which are primitive appear as (3)–(6)
in Theorem 6.1.1 below. The result had been obtained independently by O’Nan.

We state it essentially in the form given by Wilson [Wil09, Thm 2.4]:

Theorem 6.1.1 (O’Nan-Scott Theorem). A proper subgroup H of Sn, other
than An, lies in one of following subgroups (which stabilize the structures indicated
in parentheses on the right):

(1) Sj × Sk, where n = j + k; (intransitive: j-set; partition j, k)
(2) Sj o Sk, where n = jk; (imprimitive: blocks, giving array j×k)
(3) Sj o Sk, where n = jk; (“product”: k-hypercube of side j)
(4) AGLd(r) ∼= rd : GLd(r), n = rd; (affine d-dimensional space over Fr)
(5) Lk

(
Sk ×Out(L)

)
, L simple, n = |L|k−1; (soc(H)α = L diagonal in Lk)

(6) an almost-simple group H. (?—no “predictable” structure)

Cases (3)–(6) are primitive.
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We note that as H is primitive in cases (3)–(6), the point stabilizer Hα is maximal
in H by (6.0.3). So it may seem ironic, that in determining maximal subgroups in
the Theorem for the particular almost-simple group Sn, we are in effect “reducing”
in (6) to determining maximal subgroups such as Hα for all almost-simple groups.

Exercise 6.1.2. Which of (1)–(6) arise for S4? S5? · · · S8? Use for example
the Atlas [CCN+85] to decide case (6). Some details appear in Remark B.4.1. ♦

We remark that the “candidates” in cases (1)–(6) are typically, but not always,
maximal; the details of verifying which are actually maximal were handled (for An
as well as Sn) by Liebeck-Praeger-Saxl [LPS87]. Their result includes partial, but
still reasonably general, restrictions on the “unpredictable” almost-simple case (6).
We also mention (as briefly suggested earlier) that the verification of maximal-
ity involves analyzing possible proper inclusions among pairs of members of the
cases (1)–(6); for example, if j = k in case (2), the group is properly included in
case (3). The analysis of this inclusion-problem was often difficult—notably, with
pairs in case (6).

Actions: The Aschbacher-O’Nan-Scott Theorem. We now resume our
earlier discussion of the actions-list (A), namely the Aschbacher-O’Nan-Scott The-
orem 6.1.3 below. This result also has been very heavily applied in the literature
on permutation groups.

Below we give one fairly standard statement, that of Liebeck-Praeger-Saxl as
in [LPS88, Thm, Sec 2]; in particular, we follow the convention there of first
giving only the names of the cases, with discussion of those fairly intricate cases
given elsewhere:

Theorem 6.1.3 (Aschbacher-O’Nan-Scott Theorem). Any finite primitive per-
mutation group is permutation-equivalent to one of the types I, II, III(a), III(b),
and III(c)—briefly described in our Remark 6.1.4 below.

Some remarks about the statement and proof. Before trying to summarize that
specific list of actions, we’ll first comment further on several general features rele-
vant to the result.

We add a detail to our earlier discussion of the procedure which corrected
Scott’s original form of the actions-list: Namely Aschbacher saw that Scott had
omitted the action usually called twisted wreath products; it is the case III(c) in
Theorem 6.1.3 above. Equivalently, it is abbreviated by TW in Remark 6.1.4 below;
we will indicate there how this case was already in fact included in case (3) of the
the maximal structures-list—so that its omission in the original action-context did
not affect the original proof of the structures-list in the O’Nan-Scott Theorem 6.1.1.

We had remarked that the CFSG has been extensively applied to problems in
permutation-group theory; see e.g. Cameron [Cam81]. Seemingly it was not orig-
inally clear if the CFSG was needed for the (S) and (A) lists; this point is perhaps
not crystal-clear in the literature. However, the usual modern published proofs do
seem to make a fairly mild use of the CFSG—via the Schreier Conjecture 1.5.1,
which of course is common elsewhere in permutation-group theory. But see also
the discussion of Wilson’s approach to (S) in appendix Section A.1.
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Next we mention several such proofs of the specific actions-list given in the O’Nan-
Scott-Aschbacher Theorem.

We caution that the various approaches indicated below may make different
subdivisions of the primitive-types, as they appear in their final statements. To
avoid confusion among those statements, it may be helpful for the reader to first
look at one or more sources in the literature, which make a comparison of the cases
in those approaches: e.g. Table 2 in Baddeley-Praeger-Schneider [BPS07], which
we essentially reproduce in our Remark 6.1.4 below; or Table 6.1 in the forthcoming
Praeger-Schneider book [PS].

Now to indicate those various approaches:
Cameron’s view [Cam81, 4.1] of the proof has been influential; e.g., it led to a

later short self-contained proof, in Liebeck-Praeger-Saxl [LPS88] (from which we
quoted Theorem 6.1.3).

A version of the result for actions of quasiprimitive H (meaning that all normal
subgroups of H are transitive) appears in Praeger [Pra93]; this version does not
use the CFSG, even via the Schreier Conjecture 1.5.1.

A later subdivision into 8 basic action types appears for example in Baddeley-
Praeger [BP03]; and a more extended and elementary discussion is given in Sec-
tion 6 of [PLN97]. We include this approach in Remark 6.1.4 below; and in later
applications, often follow this case division, rather than the one in Theorem 6.1.3.

Finally the texts of Dixon-Mortimer [DM96], Cameron [Cam99], and Praeger-
Schneider [PS] all have chapters on O’Nan-Scott theory (structures and actions).

A glimpse of the actions in the Aschbacher-O’Nan-Scott Theorem. For later ref-
erence, I’ll roughly state the actions-list (A), via the table in Remark 6.1.4 below—
using an 8-type viewpoint from [PLN97, Sec 6].

Remark 6.1.4 (Actions in the Aschbacher-O’Nan-Scott Theorem). I won’t here
try to give real details on those cases. However, column 2 of the table gives the
abbreviations of the names for the 8 cases—followed by a parenthetical comment
intended to give a brief suggestion of the underlying structure. As in Table 2
of [BPS07], column 1 gives the correspondence of the column-2 cases with the
case-divisions in [LPS88]; while column 3 gives containments of column-2 actions
within the cases of the Sn-structures-list in the O’Nan-Scott Theorem 6.1.1. (Note
that the term holomorph of X below means X · Inn(X) ·Out(X).)

cases in [LPS88] cases in [PLN97, Sec 6] ≤ 6.1.1-cases
I HA (holomorph of abelian-group) (4)
II AS (almost-simple group) (6)
III(a)(i) SD (simple-diagonal group—as Hα) (5)
III(a)(ii) HS (holomorph of simple-group) < (3),(5)
III(b)(i) PA (wreath-product action) (3)
III(b)(ii) CD (compound-diagonal—i.e. of SDs) < (3)

if 2 components HC (holomorph of compound-group) < (3)
III(c) TW (twisted wreath-product) < (3)

(In SD, Hα is the full diagonal in a product of isomorphic simple groups.) ♦

Notice that from the completeness of the primitive-list (A) of the Aschbacher-
O’Nan-Scott Theorem 6.1.3—as given in column 1 (or 2) of Remark 6.1.4—along
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with the inclusions in column 3 there, we immediately deduce that the cases for
the maximal-structures list (S) which are primitive are exactly the cases (3)–(6) of
the O’Nan-Scott Theorem 6.1.1.

We also recall our earlier remark that deducing (S) from (A) in this way makes
use of the CFSG, via the Schreier Conjecture 1.5.1; where the deduction of the
weaker quasiprimitive types [Pra93] would not.

We won’t outline the proof of the actions-list in the O’Nan-Scott-Aschbacher
Theorem, as given in Remark 6.1.4. However, there are some perhaps subtle points,
underlying the above argument leading from it to the O’Nan-Scott Theorem 6.1.1,
which we discuss in appendix Section A.1; notably analyzing inclusions among the
cases, in the spirit of the remark after Exercise 6.1.2.

6.2. Maximal subgroups of Lie-type groups

Just as with the symmetric groups, the maximal subgroups of the classical
groups had been a topic of research already from the early days of group theory.
Indeed the analogous problems had been studied in the context of Lie algebras, with
applications to Lie groups, notably by Dynkin; applications to algebraic groups were
taken up by Seitz and others, as we will be indicating later in the section. For a
survey of this area, see e.g. Liebeck [Lie95].

The study of the maximal subgroups for the finite Lie-type groups was sub-
divided into two cases: namely the classical matrix groups; and the “exceptional”
groups—where now this term combines our previous usage for groups corresponding
to actual exceptional Lie algebras (types E6, E7, E8, F4, G2), with the non-classical
twisted groups: namely the types 2C2(i.e. Sz), 2G2(i.e. Ree), 3D4, 2F4, and 2E6.

Maximal subgroups of classical groups. A good discussion of this case
appears in Wilson [Wil09, Sec 3.10]; and here we will largely parallel his viewpoint.

Aschbacher [Asc84] continued, for the classical matrix groups, the viewpoint
of structures for Sn which we saw in the O’Nan-Scott Theorem 6.1.1. A first case:

Maximals for linear groups. We begin with the standard example given by the
linear subcase, namely G := GLn(q). This time, the structures will of course not
be for n permuted points, but instead will be described inside the n-dimensional
natural module V for G. In particular, we will continue the theme of connections
between Sn and GLn(q) which we had indicated at Remark 5.1.3. Also much
as for Sn with respect to An, we work primarily with GLn(q), which mod-center
is almost-simple; since results can usually be easily translated to the simple sec-
tion Ln(q).

We essentially follow Wilson’s “elementary” version [Wil09, Thm 3.5],1 pre-
sented as an analogue of a structures-list (S) for GLn(q). Indeed we make our
statement largely parallel to the that of the O’Nan-Scott Theorem 6.1.1—even
largely preserving the case-numbers from that earlier result; but at the left, we also
indicate (most of) Aschbacher’s names Ci for those “families” of structures.

For brevity, we will usually suppress the indication of the field Fq—writing
just GLn, instead of GLn(q) for q = pa. The result can be stated roughly as:

1A technical point: The “structured” subcases in the conclusion we denote by C+ in the
Theorem below seem to have been inadvertently omitted in case (vi) of Wilson’s statement; and

those subcases might not be the preimage of an almost-simple group (some are even solvable).
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Theorem 6.2.1 (Aschbacher). A proper subgroup H of GLn, not contain-
ing SLn, lies in one of the following subgroups (preserving, in the n-dimensional
natural module V , the structure indicated in parentheses on the right):

C1: (1) qjk(GLj ×GLk), where n = j + k; (reducible (parabolic!)—j-subspace: J)
C2: (2) GLj o Sk, where n = jk; (imprimitive—direct sum: V = ⊕k J)
C4: (2 ′) GLj ·GLk (commuting), n = jk; (tensor product: V = J ⊗K)
C7: (3) GLj o Sk, where n = jk; (k-hypercube tensor-product: V = ⊗k J)
C6: (4) r1+2dSp2d(r), n = rd, r 6= p prime; (lift of affine, to extraspecial)
C+: (6) F ∗(H) quasisimple—plus certain structure-cases; see below.

In (4), if r = 2, replace Sp2d(r) by the relevant orthogonal group O±2d(2).

We’ll provide further discussion of the final conclusion C+ in a moment.

Exercise 6.2.2. Which of the above cases arise for L3(2)? for L4(2)? As in
earlier Exercise 6.1.2, again use e.g. the Atlas [CCN+85] to decide the correspond-
ing case (6) here; and note that this case is further subdivided below—cf. later
Exercise 6.2.3. Also recall L4(2) ∼= A8, where A8 appeared in 6.1.2. Some details
appear in appendix Remark B.4.2. ♦

To recover the further structures in Aschbacher’s actual statement, we now
subdivide the conclusion we had denoted by C+ above: That conclusion certainly
contains the the unpredictable-case analogue of (6) in the O’Nan-Scott Theorem.
But it also contains some predictable groups, corresponding to preserved structures;
and these groups also are “usually” quasisimple. Thus Aschbacher defined three
further structure-families within what we called C+, beyond the five others we
indicated in our statement of 6.2.1 above. These further families are:

C3: GLm(qr)Zr, where n = mr, for r a prime; (extension field)

C5: GLn(q
1
r ), for r a prime dividing νp(q); (subfield)

C8: Spn(q), On(q), Un(q). (subgroup for a form)

It was convenient to include these at first within our notation C+; but it was then
necessary to use the word “plus” there: since as we had mentioned earlier, these
classical subgroups might not be quasisimple—for certain small dimensions and
fields. (Some examples arise in appendix Remark B.4.2 mentioned below.)

Exercise 6.2.3. Exhibit C3 and C8 for L4(2); and C5 for GL2(4). Some
details for L4(2) appear in Remark B.4.2; and S3

∼= L2(2) is maximal at least
in A5 = SL2(4) in Remark B.4.1. ♦

Finally we emphasize that, beyond the classes C3, C5, and C8 just indicated, conclu-
sion C+ still also contains quasisimple groups which arise “unpredictably”—that
is, not from any obvious substructure. Many authors refer to this as a further
subcase “C9”.

Maximals for the other classical groups. In fact, Aschbacher also gave a similar
treatment for other classical groups, with forms: there the families Ci now also
contain a few further substructures for those forms (for example, distinguishing
isotropic and non-isotropic subspaces). See especially Wilson [Wil09, Ch 3] for
statements of these results for Spn, Un, On.
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Exercise 6.2.4. Explore families for S6—viewed as classical Sp4(2), or O−4 (3).
Hint: The Atlas [CCN+85] has some details, at the bottom of page 4. The array-
format there makes it easy to compare with the cases for S6 in the viewpoint of the
O’Nan-Scott Theorem 6.1.1, in Remark B.4.1. ♦

Again, the “candidates” in the families Ci are usually, but not always, maximal.
Many such details are handled by Kleidman-Liebeck [KL90b].

Maximals via the algebraic-groups viewpoint. Furthermore, maximal subgroups
for classical G were also described via the Lie theory: this involved first studying
the overlying infinite algebraic group G. I thank Gary Seitz for suggestions about
this aspect of the maximal-subgroups program.

One reference for families Ci in algebraic groups is Liebeck-Seitz [LS98a]. Here
we will single out just a few aspects of that exposition:

The analogue of the inclusion-problem indicated after Exercise 6.1.2, indeed for
pairs within the unpredictable almost-simple family C9, is the crucial analysis of:

(6.2.5) X < Y < G with X,Y irreducible on the natural module V .

This was treated by Seitz [Sei87]—building on analogous work of Dynkin for Lie
algebras. (That problem for exceptional groups was treated by Testerman [Tes88].)

The families for algebraic groups then led naturally to analogous results for the
finite Lie-type groups G. In particular, this helps describe much of the subcase for
characteristic p in the almost-simple case C9.

For further reference, see also the overview in Malle-Testerman [MT11]. The
topic is also part of the material in the lectures planned by those authors at the
Venice Summer School in September 2017; see URL:

//users.dimi.uniud.it/∼mario.mainardis/summerschool2017/programme.html

Maximal subgroups of exceptional groups. For a survey of this area, see
for example Liebeck-Seitz [LS03]; we largely summarize that exposition, in our
fairly informal sketch below:

The analysis of maximal subgroups remains focused on structures—where now
for non-classical groups, the families arise even more predominantly from the Lie
theory than in the classical-via-algebraic case indicated just above. (But also com-
pare with the approach in Wilson [Wil09, Ch 4] and its references; as well as
Aschbacher’s approach to types G2 and E6 via analysis of a “natural” module.)

Maximals for exceptional algebraic groups. Again just as in the classical-via-
algebraic treatment above, the Lie approach first treated maximals for the corre-
sponding overlying algebraic groups. Here we provide a brief summary, intended
to be suggestive, but with only an approximation of the details.

Remark 6.2.6 (Background from characteristic 0). For exceptional Lie groups
over C, Dynkin in [Dyn52] gave maximal connected subgroups. The main cases
emerge from underlying Lie-algebra substructures:
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• maximal parabolic subalgebras: roughly, from the building—cf. C1;
• maximal-rank reductive2 subalgebras (certain root subsystems)—cf. C8;
• scattered cases—mostly simple, and smallish (but note e.g. F4 < E6). ♦

Exercise 6.2.7. Describe some maximal-parabolic structures in G2; in E6.
Some details appear in appendix Remark B.4.3. ♦

For the exceptional algebraic groups, Seitz in [Sei91] gave a result analogous to
Dynkin’s; this was extended to the maximal positive-dimensional case by Liebeck-
Seitz [LS90]. The work was originally done for characteristic p > 7; it was later
extended to small p in [LS04].

Finite groups of exceptional Lie type. The algebraic-group results led to sim-
ilar results for finite exceptional Lie-type groups: Indeed [LS90, Thm 2] gives a
structures-list, which we informally summarize in the form:

Remark 6.2.8 (Maximal subgroups in exceptional Lie type). First there are
cases correspdonding to structures indicated earlier; that is:
• groups from cases for Lie algebras (and algebraic groups), as in Remark 6.2.6.

In addition, for a group defined over the finite field Fq, we expect also further cases,
of the “same” Lie type—compare with Aschbacher’s subfield-family C5 (though
there is no non-classical analogue of the extension-field case in C3):
• groups for a subfield (including twisted groups).

Like the root-subsystem situation from Lie algebras as above, these form part of
the almost-simple subcase. In addition, we get:
• a few “exotic” local subgroups—for example, 23L3(2) in G2(odd).

Finally, any group not arising from one of the structures above comes from:
• unpredictable almost-simple groups;

where of course this case compares with earlier “C9”. ♦

In fact, in further pursuing this last unpredictable-subcase of the almost-simple
case: those in characteristic p are called generic (cf. [LS98b]); and those in other
characteristics are called non-generic. Non-generic possibilities are listed in Theo-
rem 4 of Liebeck-Seitz [LS03]; and generic cases in Theorems 5 and 7 there.

Finally Theorem 8 of [LS03] gives an overall summary of the work indicated
above. Also used in the program are further papers of Testerman [Tes88]; and
Liebeck-Seitz [LS99a].

Some details of the overall program remain unfinished: for example, conjugacy
of some of the almost-simple cases.

6.3. Maximal subgroups of sporadic groups

Many maximal subgroups of sporadics are described in the Atlas [CCN+85],
but without proofs; that source roughly records the state of knowledge circa 1985.
A summary with fuller references appears in [Wil86].

2Reductive means that the solvable-radical is given just by the center.
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Wilson’s recent book [Wil09] contains tables of maximal subgroups for each of
the 26 sporadic groups. These give the status essentially as of the present (2017).
In summary: Those tables are known to be complete—except possibly for the
Monster M . A still more-recent survey of maximal subgroups of the sporadic
groups, including corrections to some errors in the literature, will soon be appearing
in [Wil17].

Sometimes those maximal subgroups are visible from the viewpoint of preserved
structures; for example, in Steiner systems, or Golay codes, or the Leech lattice.
A standard example is Co2—which arises in Co1, as the stabilizer of a “length-2”
vector in the Leech lattice.

In other cases, suitable local subgroups are maximal; these may or may not
preserve any obvious structure external to the group. E.g., the maximal 2-local
subgroup 24A8 in M24 is also visible as the stabilizer of an “octad” in the Steiner
system S(5, 8, 24).

But often, other methods are needed; especially, to determine maximals which
are almost-simple.

Some applications of maximal subgroups

Results on maximal subgroups, some of which we’ve sketched in the earlier sections
of this chapter, have been applied in a very wide variety of problems.

So this may be a good point at which to expand a little on our brief introduction
to applications, in the introductory remarks before Section 1.4—especially since we
noted there that the applications in the chapters before this one were largely focused
on more specific questions related to group structure.

6.4. Background: broader areas of applications

So we’ll now briefly describe (in no particular order) a number of important
more general areas of application; again with the caveat that there are many other
areas that could be mentioned here.

(1) Random generation and probabilistic group theory . There has been consider-
able research activity studying groups from a probabilistic viewpoint; for example,
the probability of generation by sets of randomly-chosen elements of suitable types.
Frequently such questions reduce to problems about simple groups, and their per-
mutation representations—hence maximal subgroups. The interested reader may
wish to consult Liebeck’s survey [Lie13]. Some sub-topics include: probability
of generation by some special subset—e.g. by a pair of elements, as in the ap-
plications indicated in Section 6.7; random walks on generators, and the size of
a minimal generating set, as in Section 6.5; probabilistic properties of representa-
tion varieties—namely mappings of suitable finitely generated groups (e.g. Fuchsian
groups, surface groups, triangle groups, ... ) into linear groups; diameter and growth
properties of the Cayley graph determined by a generating set; and more.

(2) Actions of finite linear groups. For a linear group H ≤ GLn(p), one can
study special properties of H-orbits on nonzero vectors v in the natural module V
for GLn(p); such as the number or length of those orbits, For example, the case of all
orbit lengths coprime to p is the topic of Section 6.6. Furthermore the first part of
Theorem 6.6.1 in that section includes one notion of a “long” orbit, namely a single
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regular orbit: these were determined by Liebeck in [Lie87a, App 1].3 Similarly one
can study the situation of comparatively few orbits: the cases of one and two orbits
appear in Hering [Her85] and Liebeck [Lie87a].

(3) Algebraic combinatorics. When combinatorial structures (such as graphs,
designs, association schemes, etc) have a high degree of symmetry, they can be very
naturally studied via the structure of the underlying symmetry groups. There are
many corresponding applications of the CFSG, in particular of maximal subgroups;
and a number of surveys of that area: for example, Praeger [Pra97] overviews work
on graphs whose automorphism group is quasiprimitive in the sense of Section 6.1.
Examples of such applications to distance-transitive graphs are indicated in later
Section 9.1; and to the expander graphs of computer science, in Section 10.6.

(4) Computational group theory . This very active area is concerned with al-
gorithms for computing with groups—and consequently, also with the theoretical
efficiency of those algorithms, in the sense of computer science. These in turn
require various statistical measures in simple groups; such as estimating the pro-
portions of elements with various properties, so that they can be found efficient with
essentially random methods. The interested reader might wish to consult the sur-
vey of Niemeyer-Praeger-Seress [NPS13]. Very frequently these algorithms involve
permutation representations of the underlying groups, and consequently maximal
subgroups. An example of such an application, to the proportion of p-singular ele-
ments, is discussed in later Section 9.2; while algorithms for computing structural
features such composition factors are indicated in Section 9.8.

(5) Degrees of primitive permutation groups. For applications in the more
general area of permutation groups, we had already mentioned such sources as
Cameron’s early survey [Cam81]. We mention in particular the sub-area of primi-
tive groups—and in particular properties of the degrees of the corresponding prim-
itive representation. There are many results in the corresponding literature, and
we indicate some in Section 9.5, including prime-power index and odd index.

And now in the remainder of the chapter, we sketch a few particular applications
of maximal subgroups. These were mainly suggested to me by expert colleagues.

6.5. Random walks on Sn and minimal generating sets

I thank Persi Diaconis for suggesting this topic.

We first summarize some background from Whiston [Whi00]:

Maximal independent generating sets. In [NP92], Neumann and Praeger
gave an algorithm for recognizing, in a linear group G, the span of a set S of
elements. The span is viewed as being built up from a random walk on G based
on S—that is, building up words in S, via successive multiplication of previously
built-up words by further random choices from S.

Holt and Rees [HR92] made some adjustments, to improve the convergence
behavior of the algorithm to the final span of S—typically, to the full original
group G.

3That result was in turn further applied in the Robinson-Thompson approach [RT96] to the
k(GV ) problem—a conjecture of Brauer, now a theorem, asserting, for a p′-group G faithful on

an Fp-module V , that the number of conjugacy classes in the GV is ≤ |V |.
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Diaconis and Saloff-Coste [DSC98] then gave more specific results on the con-
vergence of the span to G, for more general groups. They worked with bounds (such
as that indicated below) on the parameter m(G)—namely the size of a maximal
independent generating-set S for G; where “independent” has the obvious meaning,
that no element of S is in the span of the remaining elements.

Thus it is of interest, in particular for efficiency of computations such as those
above, to determine the value of m(G)—especially for almost-simple groups G.

Whiston’s result for Sn. For G given by the symmetric group Sn, Whis-
ton [Whi00, Thm 1] showed that m(Sn) = (n − 1); of course this value achieved
by the standard generating set S given by adjacent transpositions.

The proof quotes the actions-list (A), namely that of the Aschbacher-O’Nan-
Scott Theorem given in Remark 6.1.4. (Thus this part of the argument seems to
require the CFSG, via the Schreier Conjecture 1.5.1.)

In overall summary, the flow of the argument in effect actually follows the
structures-list (S), that is, the O’Nan-Scott Theorem 6.1.1. And to finish the proof,
Whiston eventually quotes the full strength of the CFSG, to determine the possi-
bilities for almost-simple groups in case (6) of 6.1.1.

Use of the maximal subgroups in the structures-list. We roughly sketch
the logic flow:

To summarize first the strategy: From an independent generating set S of Sn,
remove an element to obtain a subset S′. The span H of S′ is by independence a
proper subgroup of Sn, hence lies in some maximal subgroup M . One can avoid the
trivial case of M = An, by re-defining S′ via the removal of an even permutation.
Hence M can be described using the structures-list in 6.1.1.

And now show: Either m(M) ≤ (n− 3); or m(M) = (n− 2), and any further
indepndent element added to H will generate the full Sn.

The implementation of this strategy based on a maximal M roughly follows a
deduction of the structures-list in 6.1.1 from the actions-list in 6.1.4; namely:

First reduce to M transitive on the n points: otherwise we are in the intransitive
structure-case given by (1) Sj ×Sk; and here we can apply induction to Sj and Sk,
together with some further argument, to finish by establishing the desired bounds
on m(M) indicated above.

Next, reduce to M primitive on the n points: otherwise we are in the imprim-
itive case (2) Sj o Sk; where we can similarly apply induction to Sj , Sk to finish.

Now we can quote the primitive actions-list for the Aschbacher-O’Nan-Scott
Theorem in Remark 6.1.4. However, since we are in the process of proving a purely
group-theoretic assertion, it is really only the group-structures for the primitively-
acting M that matter; it is for this reason that in effect we really just need the
corresponding structures-list from the O’Nan-Scott Theorem 6.1.1. (Recall we indi-
cated the relevant inclusions in column 3 of the table in 6.1.4.) So we can summarize
the remaining argument for the 8 types of primitive actions:

Types PA,CD,HC,TW: These lie in structure (3) Sj oSk; this is the same group
as in (2) considered above, and so can be finished with that earlier argument.

Type HA: This lies in (4) rdGLd(r). Here we can finish using arguments
based on possible lengths of subgroup-chains, determined in Cameron-Solomon-
Turull [CST89].
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Types SD,HS: These lie in (5) Lk
(
Sk×Out(L)

)
. But numerical bounds coming

from induction, using the overgroup S|L| o Sk much as in (3), can be used to finish.
Type AS: This lies in (6) almost-simple. Here we use the CFSG to determine

the list of possible simple groups. And now to finish, we can quote results in the
literature on minimal degrees of permutation representations, along with bounds
in Kleidman-Liebeck [KL90b].

6.6. Applications to p-exceptional linear groups

I thank P. H. Tiep for suggesting this topic.
We first sketch some material from the paper of Giudici-Liebeck-Praeger-Saxl-

Tiep [GLP+16]: (We had also briefly mentioned this paper in regard to the Brauer
Height 0 Conjecture, in the final (afterword-glimpse) section of Chapter 5.)

The examples of p-exceptional groups. We say H is p-exceptional if all
orbit lengths are coprime to p; that is, if each v is fixed by some Sylow group of H.

Of course, we may as well assume that p does divide |H|. Furthermore, we may
as well assume that H is irreducible on V—avoiding the family C1 of Aschbacher’s
Theorem 6.2.1. With regard to the family C2, corresponding to an “imprimitive”
direct-sum decomposition of V which might be preserved by H, there are some
subtleties—which we will be mentioning below.

There are various natural situations giving examples of p-exceptionality:
We might in particular have all H-orbits of the same size; recall that the total

number of nonzero vectors |V #| is not divisible by p. This subcase is called a 1
2 -

transitive action; these are described in Theorem 6 of [GLP+16]. (Furthermore
Corollary 7 there discusses the related notion of 3

2 -transitive.)

Of course a special case of 1
2 -transitive action is fully transitive action of G

on |V #|. Some standard examples include: SLn(V ); Spn(V ) for even n = 2m;
and G2(2a) when n = 6 for the Cayley-algebra module of earlier Example 5.2.13;
as well as a full nonsplit torus T of order pn − 1, as in Example 5.2.2.

The main result Theorem 1 of [GLP+16] shows that the above cases are in
fact almost all the examples of the p-exceptional condition which have a primitive
action on V :

Theorem 6.6.1. Any subgroup H ≤ GLn(p) which is irreducible, primitive,
and p-exceptional, must be one of:

(i) H is transitive on V #. (These are known—see [Lie87a, App 1].)
(ii) H ≤ ΓL1(pn). (Nonsplit tori—described in [GLP+16, 2.7].)
(iii) p = 2; n-dimensional V is the natural irreducible for H = Sc or Ac,

where c = 2r − 1 or 2r − 2.
(iv) the inclusion H < GLn(p) arises from one of the inclusions in the following

list: SL2(5) < GL4(3); L2(11) < M11 < L5(3); or M23 < L11(2).

Exercise 6.6.2. Explore some of the orbit sizes in (iii) and (iv) above. Hint:
Some details are given in appendix Remark B.4.4. ♦

The paper also contains a result [GLP+16, Thm 3] covering much of the imprim-

itive case: namely if H = Op
′
(H), then one has transitivity as in (i) above on the

nonzero vectors of the components of a direct-sum decomposition of V under H.
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Maximal subgroups in the proof. Of course we may as well assume that
we have H < GLn(p); otherwise we get transitivity as in conclusion (i).

Consequently H lies in some maximal subgroup M of GLn(p); and we can make
use of the list of Ci-structures in Aschbacher’s Theorem 6.2.1.

More precisely, the proof in [GLP+16, Sec 12] actually parallels the logic-
sequence in Section 11 of Aschbacher [Asc84], by which he deduces his result on
the families Ci. We give a rough sketch of this deduction below.

Note first that the hypotheses of irreducibility and primitivity eliminate the
cases C1 and C2. (Irreducibility also eliminates the subcase Spn(p) in C8.)

Next the consideration of field extensions in case C3 is roughly automated: We
choose a maximal such extension: namely d dividing n, so that q := p

n
d maximal

subject to H ≤ Γd(q). We may assume that d ≥ 2, since if d = 1 we get conclu-
sion (ii). Then [GLP+16, 12.1] shows, using irreducibility of H over Fp, that the
intersection H0 := H ∩GLd(q) is absolutely irreducible.

Furthermore the case C5 would require realizing H (modulo scalars) over a
proper subfield of Fq; but [GLP+16, 6.1] shows that this situation does not lead
to any p-exceptional examples.

Now consider the case where H preserves a tensor decomposition J⊗K of V , by
means of factors of dimension ≥ 2, where the action is that arising in the C4-case.
Then [GLP+16, 4.1,4.2] show this leads to a contradiction to absolute irreducibility
above. Thus we may assume there is no such decomposition.

Analysis now focuses on the socle structure soc(H/Z), where Z is the subgroup of
scalars in H0.

The situation where the socle contains some minimal normal subgroup of H
which is an elementary abelian r-group would lift in H to an extraspecial r-group,
as in case C6. But this would lead by [GLP+16, 7.1] only to imprimitive examples.

The situation where the socle contains some minimal normal subgroup of H
which is a product of more than one nonabelian simple group L would lead to
a k-hypercube tensor decomposition as in C7. But this by [GLP+16, 5.1,5.3,2.8]
would lead either to reducible or imprimitive cases;4 or to the cases in (i) and (ii);
or to a case in (iv), namely SL2(5) E H ∩GL2(9) (where the latter is embedded
in the group GL4(3) on V ).

This has reduced to case of a simple socle; so that H itself is almost-simple
modulo center; in effect “C9”. Here we apply the full force of the CFSG, to deter-
mine the list 1.0.2 of simple groups, giving the possibilities of F ∗(H/Z). And below
we briefly summarize the work of Sections 8–11 of [GLP+16] analyzing those cases:

For F ∗(H/Z) of Lie type in the same characteristic p, [GLP+16, 8.1] shows
that only the transitive conclusion (i) can hold. (Notice this completes case C8, by
eliminating On(q) and Un(q).)

For F ∗(H/Z) alternating, [GLP+16, 9.1] allows either conclusion (iii), with Sc
or Ac on its natural irreducible; or (iv) with F ∗(H) = SL2(5) = 2A5.

For F ∗(H/Z) sporadic, [GLP+16, 10.1] shows that we must have just cases
in (iv), from either M11 < GL5(3), or M23 < GL11(2).

Finally for F ∗(H/Z) of Lie type in characteristic other than p, we obtain
via [GLP+16, 11.1] either the transitive conclusion (i); or cases in (iv)—arising
from F ∗(H/Z) ∼= A5

∼= L2(4) ∼= L2(5); or A6
∼= Sp4(2)′ ∼= L2(9); or L2(11).

4It seems implicit that this is the argument for eliminating the case 2.8(ii) there.
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6.7. The probability of 2-generating a simple group

In this section, we provide an application of maximal subgroups, beyond just
the symmetric and linear groups considered in the previous two sections.

We first summarize some exposition from Liebeck-Shalev [LS95]:

2-generation for simple groups. In [AG84, Thm B],5 Aschbacher and
Guralnick showed (using the CFSG) that any simple group G can in fact be 2-
generated. That is, there exists some pair x, y ∈ G with 〈x, y〉 = G.

For the special case G = Sn, Netto had conjectured in 1882 (see [Net64])
that “most” pairs (x, y) work: that is, that for randomly chosen x, y, we find that
the probability(〈x, y〉 ≥ An) → 1, as n → ∞. Dixon [Dix69] later proved this
conjecture—in fact, before the CFSG and the O’Nan-Scott Theorem 6.1.1. And
then he ventured the same conjecture for all other inifite families of simple G.

Since then various authors, using the CFSG, have now covered all G, establish-
ing the general result—which we phrase as:

Theorem 6.7.1. prob(2-generating simple G) → 1, as |G| → ∞.

Notice this statement is already about simple groups; so the CFSG is really
being used just for the list 1.0.2 of the simple groups. Of course, the detailed
properties of those groups are heavily used in the proof.

In fact, the proof proceeds via the complementary probability, showing:
probability(random x, y not generating G) → 0.

Indeed if generation fails, then 〈x, y〉 < G, and hence 〈x, y〉 falls into some maximal
subgroup M < G; hence we can apply the lists of candidates for maximals, from
the first three sections of the chapter.

Use of maximal subgroups, especially of exceptional groups. First
notice that the sporadic groups G are automatically excluded from the statement:
for |G| → ∞ doesn’t make sense for the 26 sporadics, which are not members of
infinite families.

So we now summarize how the various infinite families of simple groups G were
handled:

(alternating:) We already mentioned that the symmetric groups were handled
by Dixon [Dix69]—work done before the availability of the maximal subgroup list
in the O’Nan-Scott Theorem 6.1.1. So we won’t here try to describe Dixon’s proof.

(classical:) These groups were treated by Kantor-Lubotzky [KL90a]: The cases
are subdivided via Aschbacher’s families Ci in Theorem 6.2.1. We followed such a
subdivision in the previous section; so we won’t here follow this similar subdivision.

(“exceptional”:) The remaining infinite families of simple groups are the types
called exceptional in this chapter: namely untwisted groups for exceptional Lie
algebras, and non-classical twisted groups. These groups were handled by Liebeck-
Shalev [LS95]. Their argument followed the case-subdivision that we summarized
in Remark 6.2.8. So below, we will illustrate some of those subdivisions.

The main idea: Compute the probability that generation by a random pair x, y
fails, as the sum—over all maximal subgroups M—of the terms:

prob(random x, y ∈M) = ( |M ||G| )
2 = 1

|G:M |2 .

5We’ll explore that paper a bit more in later Section 9.6.
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Since the value for M occurs for each member of its conjugacy class of size |G : M |,
in practice we just compute the contribution 1

|G:M | from the whole class.

A first reduction appears as [LS95, (c), p 110]; this can be compared with
earlier [KL90a, (**), p 69]. Roughly: For G of Lie type over Fq, and a maximal-
type M coming from a natural “structure” as in 6.2.8, the index |G : M | is a non-
constant polynomial in the field-size q. So for suchM , the sum of terms 1

|G:M | should

indeed tend to 0 as q → ∞. This now leaves only the sum over “unpredictable”
almost-simple M in 6.2.8.

In fact, in [LS95], the first and more easily-handled sum can be made over
terms in a larger class, called K (“known”). It includes first the structured-types
of M from 6.2.8; we recall these are (in highly abbreviated and possibly cryptic
wording): maximal parabolics; maximal-rank-as-reductive subgroups; the indicated
scattered cases; the cases for subfields and extension fields; twisted subgroups; and
the indicated exotic local subgroups. But it also includes some fairly large almost-
simple M not predictable from any structure: namely those of order ≥ about |G| 5

13 .
(Also used in this area is Liebeck-Saxl-Testerman [LST96].)

Finally for the sum over the remaining M in the class U (“unknown”), namely

small almost-simple M—of order below the bound of |G| 5
13 )—the computations

use estimates for the probability of 2-generation of M using a pair of elements
specifically containing an involution—quoted from Malle-Saxl-Weigel [MSW94].



CHAPTER 7

Geometries for simple groups

From the earliest history of group theory, there has been an important theme
of the study of groups via their actions on suitable geometries: where the term
“geometry” can be fairly broadly interpreted.

The theme has been particularly prominent in geometric topology—where the
geometries are typically those in the usual continuous context, namely configura-
tions defined by lengths, angles, etc. This holds to some extent also in algebraic
topology; although weaker notions of geometry are reasonably common there. For
some background in this area, see e.g. Adem-Davis [AD02].

However for finite groups, instead of such continuous geometries, it is usually
natural to instead study discrete (indeed, finite) geometries. For a permutation
group like Sn, the geometric context can be very weak—e.g. just the combinatorics
of a finite set. But more commonly, finite groups act naturally on geometries
exhibited by various simplicial complexes.

Often these complexes may arise from inclusion-chains in a partially ordered
set; we had introduced these briefly in Section 2.4: for example, we saw in (2.4.2)
the poset Sp(G), defined by the nontrivial p-subgroups of any finite group G. And
sometimes it is of interest to study this particular geometry, especially for the case
of simple G.

In that general direction, we focus in this chapter on the viewpoint of set-
theoretic projective geometry: here the model case is given by a linear groupGLn(p),
with the projective space 7.0.1 given by the poset of proper nontrivial subspaces of
the natural module V . This in turn provides an initial context for:

Introduction: the influence of Tits’s theory of buildings

For the more general class of Lie-type groups G, the value of this approach
was cogently demonstrated by Tits’s theory of buildings—which provided for any
suchG a suitable simplicial complex, generalizing the model case of projective space.
We had only briefly suggested buildings, in discussing action-identifications early
in Section 4.2; we’ll soon be saying considerably more, in Section 7.2 (especially
Remark 7.2.5).

But first, we’ll provide some historical context on the study of buildings:
The classification of semisimple algebraic groups (∼1955) led to a unified un-

derstanding of the various different groups of Lie type. But that did not yet provide
a unified geometric analysis of those groups. This was roughly because: A classical
group G with natural module V acts on a natural geometry determined by the sub-
spaces of V—isotropic, in the case of a form: namely the underlying projective or
polar space. But a group G of exceptional type may not have such a “natural” V .

121
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Tits (∼ 1965) defined a common structure, the building, providing a suitable
analogue of projective space—for both classical and exceptional G. (We’ll examine
it more closely at later 7.2.5.)

To overview this unification, we expand a little on the background introduced above:

Example 7.0.1 (projective space and polar space). Consider the projective
space P(V ) a vector space V ; this poset consists of the proper nontrivial sub-
spaces W of V . In particular, projective points and lines are given by the various 1-
and 2-subspaces. The order complex of this poset, in the sense of (2.4.1), is the
simplicial complex of inclusion-chains W1 < W2 < · · · < Wr among such subspaces.

Similarly for a space V with a form, the polar space arises from the poset of
totally isotropic (or totally singular) subspaces. ♦

It is easily checked that the stabilizer of some chain c is a parabolic subgroup Pc;
and that a chain-inclusion c < d determines the reversed inclusion, namely Pc > Pd,
in the poset of parabolics. The beginning of Tits’s theory was the observation that
this simplicial complex based on the parabolics (which is one view of the building;
compare 7.2.5) is available for any Lie-type group G.

In particular, this parabolic-complex is common to both classical and excep-
tional (including twisted) groups. Tits then proceeded to give a uniform axiomati-
zation of the building-geometries, with a detailed analysis of their properties.

Since then the theory of buildings has had very far-reaching applications; see
for example Abramenko-Brown [AB08, Ch 13,14] for a survey of many of these.

In this chapter, after introducing buildings, we will restrict to one direction
of further development: namely “similar” geometric approaches to other types of
groups—notably the sporadic simple groups in Section 7.3.

7.1. The simplex for Sn; later giving an apartment for GLn(q)

A geometric viewpoint on Sn will provide a useful introduction to various fea-
tures of the building in the subsequent Section 7.2. Notice that once again, instead
of considering simple An, we prefer to work first with the almost-simple group Sn.

Given the n-transitive action of Sn, the obvious simplicial complex for Sn is the
full simplex Γ on the n permuted points; this has dimension (n − 1). Admittedly
the geometric simplex-structure of Γ does not really add any new content, beyond
the combinatorics of the n-set. Nonetheless, the geometric view of the simplex will
provide a useful initial example—demonstrating many geometric concepts of Tits
which will be prominent later in the chapter.

We will in fact focus attention on the boundary Σ := ∂Γ of Γ.

A set-theoretic approach to the simplex-boundary Σ. This viewpoint
is particularly valuable, when we regard Sn as the Weyl group of the Lie-type
groupGLn; this continues our theme of connections between these groups (cf. 5.1.3).

For note that the boundary Σ of the simplex Γ (which we may informally think
of as a “hollowed-out” simplex) is topologically a sphere; and of course it still
admits the induced action by Sn. We’ll soon be seeing that such a sphere gives
an apartment for the building ∆ of GLn—and indeed that the building can be
regarded as being assembled from these spheres. To develop this viewpoint, we’ll
want to examine this explicit sphere in a more abstract framework:
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Remark 7.1.1 (The set-theoretic hollowed-simplex Σ). We proceed essentially
by analogy with projective space in Example 7.0.1: This time we take as our poset
all the nonempty proper subsets of the n points. Note that we take proper subsets—
in order to obtain the boundary Σ, rather than the filled-in simplex Γ. And then
the simplices of the order complex Σ of our poset are just the inclusion-chains
among those subsets. This view of Σ is essentially the barycentric subdivision of
our original view of the boundary Σ. We mention that Σ is a triangulation of a
sphere of dimension (n− 2). ♦

For the above abstract setup, we examine some features in a small explicit example:

Example 7.1.2 (The apartment-hexagon Σ defined by S3). We consider the
case n = 3: thus we work with the group S3. This is also the Weyl group for the
Dynkin diagram A2, corresponding to linear Lie-type groups GL3. Let a, b, c denote
the 3 points permuted by S3.

These three points determine a 2-dimensional simplex Γ: namely the filled-in
triangle on the 3 points a, b, c. The boundary ∂Γ is then just the triangle itself.
However in the barycentric-subdivision view of Remark 7.1.1, we have vertices given
not just by the three points, but also by the 3 edges such as {a, b} among them.
Thus our boundary Σ in fact becomes a hexagon.

For later reference, let’s sketch this hexagon. For brevity of notation, I omit
braces—writing just a and a, b for the vertices. The edges are of course the ⊂-
inclusions among them:

a

a⊂a,c

a, b

a, c b

c b, c

♦

Notice that the next-larger case of S4 would be much harder to draw: The subdivi-
sion of the surface of a 3-simplex, namely a tetrahedron, has 24 maximal faces—each
a 2-simplex, i.e. a filled-in triangle.

We now use the explicit hexagon in Example 7.1.2 above, to demonstrate a
number of geometric properties of the abstract (n− 2)-sphere Σ in Remark 7.1.1—
using the language developed by Tits in the context of buildings.

Observe first that the hexagon in 7.1.2 is a triangulation of a circle—that is, of
a sphere having dimension (n− 2) = 1.

Remark 7.1.3 (Type for vertices and simplices). Next we note that since Re-
mark 7.1.1 for general n works with a barycentric subdivision, each of its vertices
corresponds to a k-subset of the n points—for some k ∈ {1, · · · , n − 1} =: Π. We
refer to this value k as the type of the vertex. Furthermore each simplex σ in Σ
also inherits a type—since σ is an inclusion-chain among vertices, that type is just
a nonempty subset J ⊆ Π; with the dimension of σ given by |J | − 1. Thus in
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the hexagon of Example 7.1.2, the vertex types for a and a, b are 1 and 2; and edges
such as (a ⊂ a, c) have full type {1, 2}.

In the general language, the simplices of full type Π, hence having dimension
given by (n−2), are called chambers; while those of the next-lower dimension (n−3)
are called panels. ♦

A group-theoretic approach to Σ. We turn to another abstract approach
to Σ—this differs from the approach in Remark 7.1.1 in being group-theoretic,
rather than set-theoretic. For that reason, we will able to more easily see the
generalization to Weyl groups W other than just Sn. Furthermore this alternative
characterization of Σ can be useful in various theoretical arguments.

Remark 7.1.4 (The coset-complex viewpoint on Σ). Instead of identifying the
indexing set Π with the sizes 1, 2, · · · , (n−1) of proper subsets of our n-set, we can
instead identify Π in effect with the simple system of the underlying root system:
more precisely, with the simple reflections wi corresponding to those simple roots.
Thus in fact we re-define our set, namely as Π := {w1, · · · , wn−1}, via the usual
generating set for Sn—consisting of the adjacent-transpositions wi := (i, i+ 1).

Further we want to define the parabolic subgroups of W : For a subset J ⊆ Π, we
define the subgroup WJ as that generated by the wj for j ∈ J . (Cf. the conventions
in 1.3.20(4).)

For example, we have W∅ = 1; and WΠ = W ; and note for 1̂ := Π\{1} that W1̂

is a point stabilizer, isomorphic to Sn−1. Indeed we can check that Wk̂ is the
stabilizer of a k-subset of the n points. So those k-subsets are in 1:1 correspondence
with the cosets of Wk̂.

By means of this correspondence, we get a simplicial complex isomorphic to Σ:
where now for a set J := {k1, · · · , kr} of distinct vertex-types, a set of cosets of Wk̂
for k ∈ J will determine a simplex of type J , precisely when those cosets have
nonempty intersection. Note however that a simplex of type J will have stabilizer
isomorphic to WĴ indexed by the complement Ĵ .

This setup gives the coset complex version of Σ. ♦

We use this group-theoretic view to demonstrate some further geometric features:
Note that the panel stabilizer Wk = 〈wk〉 of order 2 switches the chambers

containing that panel—there are in fact exactly two such chambers. Tits calls
this condition a “thin” geometry. By contrast, for an untwisted Lie-type group
defined over some finite field Fq, the number of chambers over a fixed panel will
be q + 1 ≥ 3—the “thick”-geometry situation for the building in 7.2.5.

We can define paths between chambers (and hence distance)—where adjacency
of chambers is defined by sharing a panel. Such an adjacency has a type, given
by the single member of Π not in the type of the panel; and consequently a path
between chambers also has a type, now given by a word in the generators of W .
The maximal value of this distance for Sn is given by

(
n
2

)
. When we view Sn as the

Weyl group of the root system Φ of type An−1, this value is equal to the number
of positive roots |Φ+|.

Exercise 7.1.5. Exhibit-path types in the hexagon for S3 in Example 7.1.2. ♦
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Some local aspects of “diagram” geometry. In particular, in 7.1.4 above
we are in effect identifying the indexing set Π—viewed as the generators of Sn—with
the nodes of the Dynkin diagram of Lie-type An−1:

1◦ − 2◦ − 3◦ − · · · − n−2◦ − n−1◦
We turn to a “local” or “residual” feature of of this association, which is important
for the viewpoint of Tits, namely:

Remark 7.1.6 (Residual structures in Σ). Put your finger over node k; recall
this node is for the stabilizer Wk̂ of a k-subset X of the n points. Now notice
that the “residual” diagram, that is, the part not covered, in fact has the Lie
type Ak−1 × An−k−1. This diagram first of all describes the isomorphism type of
the group Wk̂, namely Sk × Sn−k. But in fact, it also describes structure of the
geometric link (or residue, in the language of Tits) of X—that is, the geometry
of all simplices “adjacent” to our k-set X: This is the topological join, of: (the
geometry Σk, given by the subsets of X), with (the geometry Σn−k of supersets
of X). These Σi are spheres like Σ, but of smaller dimensions; and of course they
admit the action of the factors Sk, Sn−k of Wk̂.

The example above was for a singleton {k} from Π; but similar remarks hold
for simplices of more general types J ⊆ Π. ♦

Exercise 7.1.7. Describe the links of simplices of various types J , in various
groups S4; S5; etc. ♦

This local view of the diagram is a fundamental inductive feature of Tits’s approach.

Geometric properties similar to those in this section in fact hold for all Weyl
groups W ; for details see e.g. [Car89, Ch 2] and [AB08, Ch 1–3].

7.2. The building for a Lie-type group

Before commenting on more theoretical aspects of buildings, we will first exhibit
some Lie-type buildings explicitly. (For an approach which begins directly with the
diagram-geometry viewpoint of Remark 7.1.6, see Buekenhout-Cohen [BC13].)

In particular, we will largely parallel our discussion of the sphere Σ for Sn in the
previous section: First we indicate a small explicit example for n = 3; and then we
turn to the group-intrinsic construction of the building via parabolic subgroups—
and in that context, we review various corresponding geometric properties.

The projective plane for L3(2). We recall our theme of connections be-
tween Sn and GLn; where the natural explicit geometry for GLn(q) is the projective
space 7.0.1 for its natural module. And corresponding to our earlier small example
of S3, we consider the smallest Lie-type group with this Weyl group, i.e. G = L3(2).
Here the projective space is just a projective plane; and we can exhibit the geometry
in some detail:

Example 7.2.1 (The projective plane for L3(2)). Choose a basis a, b, c for
the 3-dimensional natural module V of L3(2).

Then there are 7 projective points (namely 1-dimensional subspaces); we can
denote these in abbreviated form as: a, b, c, ab, ac, bc, abc. Furthermore there are
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also 7 projective lines (given by the 2-dimensional subspaces); these are 〈a, b〉
and 〈a, c〉 etc.; we typically abbreviate these as a, b; a, c; etc.

Our simplicial complex ∆ is determined by taking the points and lines as ver-
tices, with their inclusions giving edges. Notice the “local” feature that there are 3
points per line, and 3 lines per point. Consequently there are 21 edges, in our 1-
dimensional complex ∆.

Often (e.g. [Smi11, 2.1.13]) the plane is drawn on a barycentrically-subdivided
triangle with corners a, b, c: where the 7 points are the vertices; and the 7 lines
are given by the 6 line-segments, together with an additional circular “line” joining
the points ab, ac, bc. But for our present approach, it is more natural to draw the
plane as a bipartite graph: with the two parts being given by the point-vertices
and the line-vertices. Notice that when we do this, the subgraph determined by
the points a, b, c alone, with their 3 lines, just gives us a (folded-over) copy of the
hexagon Σ of Example 7.1.2.

Indeed just as in Σ, our vertices have types in the set Π := {1, 2}: with pro-
jective points corresponding to linear dimension 1, and lines to linear dimension 2.
We could instead name the vertex types via projective dimension, say as {P,L}. ♦

Exercise 7.2.2. Draw the bipartite graph for the projective plane of L3(2). ♦

We now examine some crucial geometric features, within this example:
The subgraph Σ induced by a, b, c is an example of an apartment in the build-

ing ∆. We claim in fact for the chambers (i.e. edges—of the form a ⊂ a, b) that:

(7.2.3) Any two chambers of ∆ lie in some apartment.

You can explore this visually, in the graph drawn in Exercise 7.2.2. Or, to proceed
more abstractly: The maximal-distance case occurs if a 6∈ 〈c, d〉 and c 6∈ 〈a, b〉.
Then 〈c, d〉 ∩ 〈a, b〉 is a point x, which cannot be a or c. So here we can use the
apartment generated by a, c, x. The shorter-distance cases proceed by similar and
indeed easier proofs.

Exercise 7.2.4. Similarly draw the bipartite graph ∆ for the polar space
of Sp4(2), in the language of 7.0.1: namely using only the 2-subspaces which are
isotropic. Work in terms of a symplectic basis with (a 6⊥ d) orthogonal to (b 6⊥ c).
This time there will be 15 points, and 15 isotropic lines. Here the apartment, as
before in the subdivision-view with both points and lines as vertices, will be an
octagon; and again check that any two chambers lie in an apartment. ♦

The reader can find more small-dimensional exercises in [Smi11, Sec 2.2].

The general building. For GLn(q) with any n, the easiest approach to the
building ∆ is as projective space 7.0.1; in particular, we saw that this is parallel
with the set-theoretic approach to the apartment Σ in 7.1.1.

However, we can also proceed in parallel with the group-theoretic approach to Σ
in 7.1.4; cf. [Smi11, Sec 2.2] and its references. This time, we have a correspon-
dence: of k-spaces, with cosets of the parabolic subgroup Pk̂ stabilizing a k-space
in Example 1.3.4.
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Indeed we may as well work in the case of general Lie-type G, over a field Fq,
where q = pa. In fact, we will restrict to the subcase of G untwisted; similar
remarks will hold for twisted groups, but at the cost of somewhat more complicated
statements.

So we recall various structural features related to parabolics, from earlier Re-
mark 1.3.20: such as the root system Φ, with simple subsystem Π, and Weyl
group W ; the unipotent subgroup U , Cartan subgroup H, and Borel subgroup
given by B = UH; and parabolic subgroups PJ = UJLJ for J ⊆ Π; along with the
monomial subgroup N := NG(H), where N/H ∼= W . Then our analogue of the
group-theoretic approach to the apartment in 7.1.4 is:

Remark 7.2.5 (The building for a Lie-type group). We obtain the building ∆
for the Lie-type groupG as the complex given by the cosets of the maximal parabolic
subgroups Pî, over i ∈ Π; where a simplex of type J is determined by a set of cosets
of the Pî for i ∈ J , which have nonempty intersection.

We recall from Remark 1.3.20(4) that the parabolics have the self-normalizing
property NG(PJ) = PJ ; hence the permutation representation on their cosets is
equivalent to that on their conjugates. So we can equally well view ∆ as the sim-
plicial complex defined by conjugates of the maximal parabolics: where a simplex
is defined by a set of conjugates, of different types—which intersect at least in a
Borel subgroup. This conjugate-version can be convenient in some calculations. ♦

Exercise 7.2.6. Exhibit ∆ for L3(2) in the coset/conjugate view; and check
the isomorphism of this complex with the set-theoretic projective plane in 7.2.1. ♦

Some geometric properties of the building. We’ll now indicate some of
the fundamental properties of ∆; a number of these had been previewed, for the
apartment Σ, in Section 7.1.

The simplicial complex ∆ has dimension |Π| − 1. It is in effect built up from
many apartment-spheres Σ of that dimension; we’ll say more about this below.

Each simplex has a type J ⊆ Π; those of maximal and just-submaximal di-
mensions are called chambers and panels. For G defined over Fq, we have panel
stabilizer Pk ≥ Lk ∼= SL2(q); and this group is transitive on the q+ 1 chambers on
the panel. Thus ∆ is a thick geometry,1 since q + 1 > 2.

Again we have paths and distances between chambers: with path-types still
given by words in W ; and maximal distance |Φ+|—exhibited in an apartment Σ.

To continue the theme of geometric relations between W and G: A chamber
stabilizer is given by P∅ = B. The N -orbit of B is a single sphere: namely the
complex Σ for W as in 7.1.4, called an apartment of the building ∆.

The common stabilizer of the chambers in the apartment is the Cartan sub-
group H. One crucial property apartments is the analogue of earlier (7.2.3):

(7.2.7) Any two chambers are contained in some apartment.

1Setting q = 1 in expressions for ∆ can give analogues for the thin geometry of the apart-
ment Σ for W .
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In fact the chamber “B” (that is, the chamber stabilized by B) is in q|Φ
+| apart-

ments; and each such apartment is determined by its unique chamber at the maxi-
mal distance |Φ+| from B, and the corresponding paths to it from B. In topological
language, ∆ is a “bouquet” of such apartment-spheres.

The above geometric facts in turn reflect some group-theoretic relations:
We have a double-coset decomposition, written G = BWB: where BWB is

shorthand for BNB—since H ≤ B, and N/H ∼= W . This in turn leads to a
canonical form for elements of G, namely the Bruhat decomposition. (It is roughly
a generalization of the Jordan canonical form from GLn(q).)

Indeed for parabolics we similarly have a decomposition PJ = BWJB, in terms
of the parabolic subgroups WJ of the Weyl group in earlier Remark 7.1.4.

The diagram-inductive (“residual”) property. We particularly empha-
size the analogue for ∆ of the earlier local property 7.1.6 for Σ:

This time in the Dynkin diagram of type An−1 for GLn(V ), we associate di-
mensions of subspaces of V to nodes of the diagram:

1◦ − 2◦ − 3◦ − · · · − n−2◦ − n−1◦

Remark 7.2.8 (Residual structures in ∆). And now on covering up the node
for the stabilizer Pk̂ of a k-subspace Vk of V in Example 1.3.4, the remaining
subdiagram of type Ak−1 × An−k−1 is the diagram for Pk̂/Uk̂

∼= GLk × GLn−k.
Indeed it also describes the geometry of the link in ∆ of the vertex Vk—as a join:

(∆k=subspaces of Vk) ∗ (∆n−k=superspaces of Vk = subspaces of V/Vk).

And the GL-factors in Pk̂/Uk̂ act in the natural way on these two terms. ♦

Final remarks: the more abstract theory of buildings. The geometric
material emphasized in the section so far has focused on fairly explicit properties
of buildings in Lie-type groups. This is the kind of information usually required for
problems involving geometric applications of those simple groups.

But the reader should be aware that there is a great deal more material in
Tits’s general abstract theory [Tit74] of buildings; which we will only very briefly
mention at this point.

For example, Tits defines buildings as abstract chamber complexes, via axioms
based on the complex Σ for a Coxeter groupW . See e.g. the discussion in Section 4.1
of [AB08] (and compare [Ron89, Sec 3.1]).

That general theory has also been applied, in various significant ways; again
see [AB08] for some of those directions.

For our finite-simple-group purposes here, perhaps the most crucial result is
Tits’s characterization of finite buildings of rank at least 3; see e.g. [AB08, Ch 9]
and [Ron89, Ch 8]. Very roughly:

Theorem 7.2.9. A finite (that is, having “spherical” apartment Σ) thick build-
ing of rank at least 3 comes from a Lie-type group over a finite field Fq.

As we mentioned early in Section 4.2, this relies on Tits’s topological result 4.3
in [Ron89] that:

(7.2.10) Finite thick buildings of rank ≥ 3 are simply connected.
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We recall that for a geometry equipped with a diagram, e.g. in the sense of Re-
mark 7.2.8, the rank of the geometry is the number of nodes in the diagram.

We conclude that our approach to finite buildings earlier in this section, namely
via parabolic structures in explicit Lie-type groups, is in fact suitably general—in
view of Theorem 7.2.9.

7.3. Geometries for sporadic groups

For sporadic geometries, we will mainly follow the viewpoint of “Option S” in
the book [Smi11]; cf. also Chapter 6 of [BS08a].

The success of Tits’s theory of buildings (∼ 1965) led to much further use
of geometry in group theory. Particularly influential was the viewpoint in Tits’s
“local approach” paper [Tit81]; which roughly emphasized the diagram-inductive
property of Remark 7.2.8, over the original approach.

One popular direction was the search for suitably-analogous geometries for
sporadic groups; this analysis was pioneered by Buekenhout, notably in [Bue79].
We provide some context:

We note first that the rank-2 subgeometries in buildings are generalized poly-
gons; very roughly:

Remark 7.3.1 (Generalized polygons). A generalized n-gon has point-line cir-
cuits of length 2n, but not less. ♦

For example, the projective-plane geometry (namely of type A2) is a generalized tri-
angle; cf. the pictures in Example 7.1.2. And the polar-space geometry of type C2

is one example of a generalized quadrangle; cf. the pictures for Sp4(2) in Exer-
cise 7.2.4. Similarly the building of type G2 gives a generalized hexagon.

Hence the search for new geometries other than buildings suggested the idea
of using rank-2 geometries other than generalized polygons.

Buekenhout primarily used the circle geometry on a set S: where points and
lines are replaced by elements, and element-pairs, from S. He was able to give
“diagram geometries”, in the spirit of 7.2.8, for many of the sporadic groups. And
his work inspired a great deal of further research. The diagram-inductive feature of
these sporadic geometries gives partial analogues of various geometric properties of
Lie-type groups which we saw in the previous Section 7.2; such as type for simplices,
and structure of stabilizers resembling parabolics. However, primarily because of
Tits’s result 7.2.9 of buildings as coming only from Lie-type groups, we cannot
expect any close analogues of defining structures like apartments.

p-local geometries. Nevertheless, the analogy of simplex-stabilizers with par-
abolic subgroups in Lie-type groups can be further developed: especially if we seek
geometries in which simplex stabilizers are p-local subgroups. This is not usually
the case in Buekenhout’s geometries; but it does hold in the 2-local geometries
introduced by Ronan-Smith [RS80].

For fuller details, see e.g. [Smi11, Sec 2.3] (or [BS08a, Ch 6]). In this section,
we’ll just extract a few high points:
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The 2-local geometry for M24. Historically the first 2-local geometry discovered
was for the Mathieu group M24. The observations arose when Ronan and Smith
combined their geometric and group-theoretic viewpoints; mainly based on standard
facts such as the following (see e.g. [Con71, p 225]):

Example 7.3.2 (The 2-local geometry for M24). The group G = M24 preserves
a Steiner system S(5, 8, 24): this includes a collection of 759 special 8-subsets (called
octads) of the 24 permuted points—where any 5-subset of the 24 points lies in ex-
actly one octad. The structure also includes the 83-partitions of the 24 points via
octads, called trios; and the 46-partitions where any pair gives an octad, called
sextets. One can form a simplicial complex ∆ on these objects as vertices, using
the obvious containment as adjacency; this defines the 2-local geometry for M24. ♦

Group-theoretically, it turns out that the vertex-stabilizers2 PÔ, PT̂ , PŜ (of an
octad, trio, sextet) are in fact 2-local subgroups, with the structures:

24 : L4(2), 26 :
(
L2(2)× L3(2)

)
, 26 : 3Sp4(2) .

One can naively observe that these groups “look like” parabolics PJ , in a Lie-type
group over F2—those have a Levi decomposition UJLJ , in which a 2-group UJ is
extended by a Lie-type group LJ over F2.

Ronan and Smith then observed that the Dynkin diagrams for these local sub-
groups can be combined [Smi11, p97] as sub-diagrams of a larger “Dynkin-like”
diagram—in a way consistent with the diagram-inductive spirit of 7.2.8:

O◦=T◦ − S◦ −�
This picture is reminiscent of the Dynkin diagram of type C4; except that the right-
hand node has been replaced by a new symbol �—roughly indicating we should
not here expect a vertex, or a corresponding stabilizer-subgroup “P�̂”.

To see the consistency with the diagram-inductive feature, note that the sub-
diagram ◦ − ◦ − � for an octad O really does express the geometry of the link of
the vertex O: namely there are 15 trios, and 35 sextets, adjacent to O; and their
geometry is that of the 15 projective points, and 35 projective lines (but not the 15
planes) of the projective 3-space for PÔ/O2(PÔ) ∼= L4(2). This is called a trun-
cation of that projective 3-space; and gives an example of a rank-2 subgeometry
which is not a generalized polygon.

Similarly, the subdiagram ◦ ◦ − � for a trio T describes its link as the join:
(3 octads in T ) ∗ (7 sextet-partitions refining T ) .

Geometries for other sporadics. This view of M24 led to the discovery of 2-local
geometries for many other sporadic groups. Indeed in a somewhat formal sense,
it can be applied to all the sporadic groups—in [BS08a, Ch 6]; but it must be
admitted that some of those more formal cases have little real geometric content.

We mention just a few of the cases with substantial geometric structure:
For example, a one-node extension of the diagram for M24 leads to the dia-

gram for Co1; and then a further one-node extension leads to the diagram for the
Monster M . These lie in a class sometimes called tilde geometries in the literature.

2We mention that in the literature, these are usually denoted more simply by PO etc, cor-

responding to vertex type; here we have written PÔ etc, for consistency with our conventions

in 1.3.20(4), notably as in 1.3.21.
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A similar series via one-node extensions proceeds from M22 to Co2 to BM :
These geometries use a non-polygon rank-2 geometry called Petersen geometry :
with vertices given by the 10 vertices and 15 edges of the classical Petersen graph.
See also various relevant papers of Ivanov and Shpectorov, e.g. [IS94].

For odd p, there are a more limited number of analogous p-local geometries of
some interest and complexity.

Some other unusual geometries were discovered in the years fairly soon af-
ter 1980. These were typically made for single simple groups of various types, and
in a fairly “sporadic” fashion. We’ll be mentioning a few of those, as we continue
into the applications-portion of this chapter.

Some applications of geometric methods

The geometric theory sketched in the chapter so far has been applied in quite
a number of areas. In the remainder of the chapter, we can only choose a few of
these to demonstrate.

7.4. Geometry in classification problems

The discovery of new geometries such as those in Section 7.3 suggested the
possibility of further classification theorems within geometry itself. Ideally these
might characterize collections of geometries, properly including the finite buildings.

Unfortunately, the characterization of buildings is so precise, that it is hard to
relax any particular axiom—without letting in a vast and uncontrollable new set
of examples. Nonetheless, there have been some partial results.

The class of Tits geometries. One interesting such extension class is usually
called Tits geometries; this term is now used by many authors, to replace the
original term “type M” in Tits’s local-approach paper [Tit81].

Roughly, these require (cf. [Smi11, 2.2.34]) that all rank-2 residues—that is,
links—should be generalized polygons as in 7.3.1. Thus a larger-rank geometry
built up from these might be thought of as a “generalized polytope”—though this
terminology does not actually seem to be used. Tits in fact defined his geometries
using a symmetric “Cartan” matrix M ; where an (i, j)-entry of value k determines
the rank-2 residue of type i, j as a generalized k-gon, in the diagram-inductive
spirit of 7.1.6. But his definition did not require apartment-type properties, as
in his original theory of abstract buildings. (Because of the restriction of rank-2
residues to generalized polygons, the context of Tits geometries in fact excludes
most of the geometries for sporadics indicated in Section 7.3.)

We will indicate some unusual non-building geometries which are included
among Tits geometries; and even though the groups involved may not be sporadic,
we can consider the complexes thus arising roughly as “sporadic geometries”:

One such example in fact corresponds to one of the usual finite Dynkin diagrams:

Example 7.4.1 (Neumaier’s C3 geometry for A7). For fuller details see for
example [Smi11, 2.3.7]; this geometry has the C3-diagram:

P◦ − L◦ =
π◦
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Here P indicates the 7 permuted points; L indicates all
(

7
3

)
(= 35) subsets of size 3,

as lines; and π indicates planes: an A7-orbit (two choices are possible) of size 15—
where each plane has all 7 points, plus a subset of 7 lines, together forming a
projective plane over F2 as in Example 7.2.1. ♦

Finite geometries with affine diagrams. There are also various finite non-
building Tits geometries, with affine diagrams; these were unexpected for finite
groups—since they correspond to infinite affine Weyl groups W̃ : Namely each fi-
nite Weyl group W has an infinite extension W̃ : which is “affine” in the sense that
it has an infinite normal subgroup given by the Z-lattice for the root system of W ,
extended by the finite group W itself. The inifinte group W̃ has affine diagram
of type X̃, where X is the type of W . Here X̃ is obtained as a certain one-node
extension of X; see e.g. [GLS98, p 12] for the list of these extended diagrams. For

example, there are geometries for Suz and for U4(3) with diagram C̃2 (◦ = ◦ = ◦),
and geometries for Ly and for G2(3) with diagram G̃2 (◦ − ◦ ≡ ◦); see e.g. subsec-
tions 3.4, 3.5, and 3.12 in [RSY90].

Indeed there was a period in the 1980s when quite a number of such finite
geometries with affine diagrams were discovered; see e.g. [Smi11, 9.3.9] for an
overview of this area.

One avenue for possibly explaining this phenomenon came from studying a finite
geometry as the quotient of an infinite affine building, acted on by a corresponding
infinite Lie-type group. For the work of Bruhat-Tits showed that an infinite group—
of finite type W , but defined over an infinite local field (e.g. Qp)—has a discrete

subgroup which acts on a building of the corresponding infinite affine type W̃—but
defined instead over the finite residue field (e.g. Fp).

So, should the finite X̃-examples arises as quotients in this way? This is cer-
tainly suggested by certain results of Tits; one important such result, in fact un-
derlying the simple-connectivity result (7.2.10)—see e.g. 7.9 in [Ron89]—states
roughly that:

Theorem 7.4.2. The universal cover of most Tits-geometries having rank ≥ 3
are buildings.

Here “most” refers to a complication when the diagram involves subdiagrams of the
types A3, C3, or H3 (dodecahedron); then an extra hypothesis is needed, namely
that the covers of such subdiagrams are buildings. (That this is required should be
clear from the Neumaier C3-geometry in Example 7.4.1 above: for that geometry
is equal to its own universal cover—without being a building.) A more directly
suggestive result of Tits (cf. [Ron89, 10.25] states roughly that:

Theorem 7.4.3. An affine building of rank ≥ 4 arises via a local field, as in
the Bruhat-Tits construction.

This result applies to many of the finite geometries with affine diagrams mentioned
above. And indeed Kantor [Smi11, 9.3.10] was able to determine, for such cases,
exactly which such infinite Lie-type groups and local fields provided the relevant
universal cover.

There is further literature in this direction; e.g. [KLT87]. The discussion
in [Smi11, pp 290ff] provides a rough overview.
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Some other directions. We briefly mention some other geometric classifica-
tion results:

Timmesfeld [Tim83] and others used related group-theoretic hypotheses, to
produce some classifications of finite groups with subgroups defining a Tits-geometry
and diagram. During the process of proofs, various subcases (mainly for the small
field F2) led to the discovery of some previously-unknown sporadic geometries.
Many of these were later explained via Kantor’s affine coverings indicated above.

Onofrei [Ono11] extended that group-theoretic approach to the modern topo-
logical context of fusion systems.

7.5. Geometry in representation theory

We should perhaps first recall from Section 5.2 that algebraic geometry is basic
for the Deligne-Lusztig theory of ordinary representations of Lie-type groups. But
we won’t be pursuing that direction in this chapter, and instead continue our focus
on projective geometry.

In overview, we will examine some application-areas for simple groups: first
exploiting the “model-case” geometry of the Lie-type building; and thereafter, men-
tioning some suitable analogues for sporadic geometries.

We first recall some complexes coming from standard posets of p-subgroups:
We saw at Definition 3.3.11 the poset Bp(G) of p-radical subgroups—namely

with the property that 1 < X = Op
(
NG(X)

)
). Indeed for G of Lie type in charac-

teristic p, we recall from Theorem 5.4.2 that Bp(G) consists exactly of the unipotent
radicals of parabolics. Since the poset of parabolics gives one view of the building ∆
(cf. Remark 7.2.5), the poset of unipotent radicals (where inclusions are reversed:
i.e., PJ < PK implies UJ > UK) gives another such view.

Furthermore for general G, we have a standard equivalence (e.g. [Smi11, 4.3.4])
with other posets, introduced earlier at (2.4.2) and (2.5.1):

Theorem 7.5.1. Bp(G) is homotopy-equivalent to the poset Sp(G) (of all non-
trivial p-subgroups) and to the poset Ap(G) (of nontrivial elementary abelian p-
subgroups).

Sometimes sporadic geometries, such as those in Section 7.3, are equivalent to these
complexes.

One reason for mentioning these p-subgroup posets here, is that various useful
results (especially from the topological literature) are stated for them; some of these
will appear as the section proceeds.

The generalized Steinberg module and projectivity. For example: We
had mentioned at earlier (2.4.4) the Brown-Quillen result for the reduced Lefschetz

module L̃ that:

L̃
(
Sp(G)

)
is a projective—called the generalized Steinberg module.

We will see that this construction does indeed generalize one standard construction
of the usual Lie-type Steinberg module 5.2.8:
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Constructing the usual Steinberg module. For in the case where G is of Lie type
in characteristic p, by means of the equivalence in (2.4.4) of Sp(G) with Bp(G),

which in turn gives the building ∆ by (2.4.4), the module is equivalent to L̃(∆)—
which is the construction of the Steinberg module given by the Solomon-Tits The-
orem [Smi11, 3.4.15]. We state this latter result in the form:

Theorem 7.5.2 (Solomon-Tits Theorem). For Lie-type G in characteristic p,

with building ∆, the alternating sum L̃(∆) gives the Steinberg module.

We give a quick sketch of the proof; since the underlying “Solomon-Tits argument”
has been very influential:

We saw in the geometric properties of ∆ discussed after (7.2.7) that a cham-

ber “B” is on q|Φ
+| apartments Σ; and indeed via (7.2.7) itself that every chamber

appears in one of these apartments. Now each such sphere Σ gives, via the alternat-
ing sum over its chambers at the various distances, a top-dimensional cycle—and
so potentially appears in L̃(∆). And indeed, we will show that these cycles give a
basis for that space.

In more detail: Each such Σ determines a sphere in top dimension, and so
has 1-dimensional image in the top homology H̃|Π|−1(∆). Furthermore they are
linearly independent, since each involves a maximal-distance chamber not in any

of the others. So since they are q|Φ
+| in number, they span a subspace of the

right dimension for the Steinberg module. Indeed one can use Steinberg’s original
definition of the Steinberg module to recognize it as this subspace.

So it remains to show that any remaining homology vanishes, in the alternating

sum defining L̃. To see this, we form ∆−, by removing the q|Φ
+| chambers at

maximal distance from B; and we will show that ∆− is contractible (and hence
makes no contribution to homology). For this, we use the “gate” property of
buildings:

Each panel has a unique chamber closest to B.
Thus the panels π farthest from B lie on just one chamber c—since in ∆−, we had
already removed all remaining chambers on π, which lie at the maximal distance.
It is standard in topology that this condition means that we can homotopically
“collapse” that chamber c: from π, down to the rest of the boundary ∂c. The
effect of these removals is to collapse ∆− down to ∆−−, in which all the chambers
at the two largest distances from B have now been removed. However: we can
iterate this collapsing-argument, for the panels of ∆−− at maximal distance; and
so on—eventually contracting down to the single chamber B, and so to a point. �

Exercise 7.5.3. Use the L3(2)-graph of Exercise 7.2.2, say with initial cham-
ber “B” given by the edge (a ⊂ 〈a, b〉), to verify the contractibility of ∆−—as in
the Solomon-Tits argument just sketched. Then the 8 apartments on B give, essen-
tially via their 8 corresponding chambers at maximal distance from B, an F2-basis
for the 8-dimensional Steinberg-module.

Similarly explore the Sp4(2)-graph of Exercise 7.2.4, to give a construction of
the 16-dimensional Steinberg module. ♦

Of course it is a feature of the actual Lie-type Steinberg module 5.2.8 that it is not
just projective, but also irreducible.
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For more general G, we cannot expect that the generalized Steinberg mod-
ule L̃

(
Sp(G)

)
should also be irreducible (as well as projective). But there are at

least some restrictions on the irreducibles I, such that the projective cover P (I)

appears in L̃
(
Sp(G)

)
: typically dim I ≥ |G|p—for details see [Smi11, p 213].

Some other results related to projective modules. Soon influential work of Webb
extended the Brown-Quillen projectivity result (2.4.4) to further more general G-
complexes ∆; by first extracting from their proof a sufficient condition (e.g. 4.3.4
in [Smi11]):

(7.5.4) If ∆P is contractible ∀ p-groups P > 1 then L̃(∆) is projective.

We mention that this condition is often close to showing that ∆ is homotopy-
equivalent with Sp(G)—see e.g. [Smi11, 4.4.12]; but the projectivity result also
holds for many non-equivalent ∆.

Projectivity was verified via (7.5.4) for many sporadic G and their p-local ge-
ometries ∆, in Ryba-Smith-Yoshiara [RSY90]—including for example:
• the 2-local geometry for M24 in Example 7.3.2, which turns out to be equiv-

alent to S2(M24); and also
• the C3-geometry for A7 in Example 7.4.1, which is not equivalent to S2(A7).

For some geometries ∆ which fail the projectivity condition in (7.5.4), it turns

out that L̃(∆) satisfies the weaker condition of relative projectivity, with respect to
fairly small p-subgroups P ; by contrast, P = 1 would give full projectivity. There
is some literature in this direction; see especially the recent fairly general treatment
of Maginnis-Onofrei [MO09]. Chapter 6 of [Smi11] also surveys further literature
on projectivity.

Finally: for a general finite group G, the generalized Steinberg module, and the
underlying Steinberg complex (an associated chain complex developed by Webb),
are used in topological contexts; see e.g. Grodal [Gro02].

Irreducible modules and coefficient systems. Again we start with the
model-case of G of Lie type in characteristic p; consider G acting on some module V
in that natural characteristic p. Earlier we had mentioned Theorem 5.2.11, namely
that for V irreducible, and PJ = UJLJ a parabolic:

V UJ is also irreducible under LJ .

Application at a single parabolic PJ . When 5.2.11 above is applied for a single
parabolic PJ , the result has various uses; especially in the modular representation
theory of Lie-type groups and algebraic groups. See for example Kleshchev [Kle97]
on branching rules for GLn and Sn—namely the decomposition rules, when irre-
ducibles are restricted to subgroups. But we also mention some “adjacent” areas
of application:

For maximal subgroups: see e.g. Liebeck-Saxl-Seitz [LSS87], for application to
the inclusion-setup of irreducible X < Y in classical G on natural V , which we had
mentioned at (6.2.5).

For p-compact groups (an analogue of compact Lie groups): see e.g. the work
of Andersen-Grodal-Møller-Viruel [AGMV08], for an application to the Steinberg
module V , in order to analyze its restriction to elementary abelian p-subgroups.
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Application at all J : coefficient systems. Now consider applying Theorem 5.2.11
for all proper subsets J ⊂ Π simultaneously; we get:

Remark 7.5.5 (The irreducible presheaf on V ). The maps PJ 7→ V UJ define a
coefficient system (or presheaf ) on the building ∆. This is irreducible in the sense
of coefficient systems, by applying Theorem 5.2.11 at each J . ♦

The presheaf-viewpoint has also had various applications; for background and fur-
ther development, see [Smi11, Ch 10]. Here we mention just a few directions:

Ronan-Smith [RS85] observed that there is a 1:1 correspondence between ir-
reducible modules V , and irreducible presheaves {V UJ : J ⊆ Π}. This for example
gives an approach to constructing the irreducibles, via the homology of presheaves.

A different application is to embedding a geometry ∆ in a vector space V :
Here the idea is that the “points and lines” of ∆ should be consistently mapped
to projective points and lines, in the projective space of V ; or in the language of
linear dimensions, to 1-subspace and 2-subspaces in V . There is a considerable
geometric literature on such embeddings. For example, in the case of Lie-type G,
embeddings of generalized hexagons are considered by Cooperstein in [Coo01]. For
sporadic G, consider the 2-local geometry ∆ for M24 in Example 7.3.2: one can
check that the subgroups PÔ, PT̂ , PŜ there fix subspaces of dimensions 1,2,4—in
the 11-dimensional irreducible Golay-code module V over F2. It follows that for
points and lines given by octads and trios, the geometry ∆ is embedded in V .

Exercise 7.5.6. Show that the C3-geometry for A7 in Example 7.4.1 is not
embeddable—in any vector space V over F2.

Hint: Recall that lines are given by all 3-subsets of the 7 points. Thus the
relation among the three nonzero vectors of a 2-space over F2 shows that all 3-set
sums are 0. Finally show that this forces all point-vectors to be 0. ♦

For various further results on embeddings, see e.g. [Smi11, pp320ff].

We mention that the coefficient-system viewpoint is also used in Grodal’s ap-
proach [Gro02] to higher limits in topology.

7.6. Geometry applied for local decompositions

For fuller detail on this topic, see e.g. [Smi11, Ch 3] or [BS08a, Ch 5].

Decompositions of group cohomology. Webb observed [Smi11, 7.2.5] that in the
above projective situation, applying Ext∗-functors and Frobenius reciprocity gives
a decomposition of group cohomology, in terms of cohomology of the stabilizers:

(7.6.1) Under (7.5.4), H∗(G)p =
⊕

σ∈∆/G

(−1)dimσ H∗(Gσ)p .

This formula (7.6.1) has sometimes been used for the explicit computation of coho-
mology; for example, Adem-Maginnis-Milgram [AMM91] used the 2-local geome-
try for M12 as ∆.

But probably the major influence of (7.6.1) was to stimulate, around the
early 1990s, a research direction in algebraic topology—which “explained” the coho-
mology decomposition, in terms of an underlying decomposition of the p-completed
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classifying space BG∧p of G. The topological decompositions are phrased in the
language of homotopy colimits; and they are typically indexed via standard sub-
group posets like Sp(G), so that they apply to any finite group G. Such work
of Jackowski, McClure, Oliver, Dwyer, Grodal and others is summarized (from a
fairly group-theoretic viewpoint) in Chapter 5 of [BS08a]. We mention that in
addition to the usual p-subgroup posets like Sp(G) mentioned above, variants using
the p-centric subgroups (which we had indicated in the discussion leading up to
Lemma 3.6.4) also play a prominent role in this area.

The above topological approach was applied methodically to sporadic simple
groups G, in Benson-Smith [BS08a, Ch 7]: For each such G, they first show
that some suitable 2-local geometry ∆ for G is homotopy-equivalent to one of the
standard p-subgroup posets such as Sp(G). Then applying the above results to the
latter, they obtain a decomposition of the cohomology (and indeed of the classifying
space) for G—in terms of that of the simplex stabilizers Gσ for σ ∈ ∆.

Geometric decompositions for the Alperin Conjecture. We also mention some
geometric approaches to the Alperin Weight Conjecture, which we had introduced
earlier as Conjecture 5.4.3. For further detail on this topic, see e.g. [Smi11, Ch 13].

We saw in the discussion before 5.4.3 that the sum of the Alperin-weights in
the AWC is indexed in effect by the p-radical poset Bp(G) of 3.3.11. Influential
work of Knörr and Robinson [KR89] produces an equivalent statement of the
conjecture—now indexed by an equivalent complex ∆ (see e.g. [Smi11, 4.6.2]):
namely chains of p-subgroups, each of which is normal in the last term of the chain.

In fact, they consider the AWC partitioned over the various p-blocks B of
the group algebra. For B of defect 0 in the sense of 5.0.2, the unique projective
irreducible in B automatically supplies the requirement of their alternative version
of the conjecture. Thus they reduce to blocks B of positive defect: def(B) > 0.
Their version of the AWC requires vanishing of:

(7.6.2)
∑

c∈∆/G

(−1)dim c |Irr(Bc)|
?
= 0;

where Bc is a block of the stabilizer Gc, which lifts to B in the standard Brauer
correspondence.

This alternating-sum formula should seem reminiscent of the definition of a
reduced Lefschetz module, such as that appearing in (7.5.4). And indeed they

show that (7.6.2) is in fact the degree-term of the fixed-points L̃(B)G, in their

Lefschetz conjugation module L̃(B): given by the alternating sum of the induced

modules IndGGc
(Bc)—where G acts by conjugation, rather than the more usual

right-multiplication convention for module action. And paralleling (7.5.4), they

show in fact that L̃(B) is virtually projective.
This suggests stating a version of the AWC in terms of the module cohomology

of the block B: namely that H∗(G,B) should decompose via the terms H∗(Gc, Bc)
at the stabilizers Gc. In fact this does hold for positive dimension H>0; but the
statement for degree-0 is perhaps just as hard as the AWC itself. For some recent
promising developments related to this approach, see the talk at URL:

www.math.uic.edu/∼smiths/talkl.pdf





CHAPTER 8

Some fusion techniques for classification problems

In this chapter, we deviate somewhat from our main theme of applications of
the CFSG; and instead consider some influential early results related to 2-fusion.
These techniques quickly came to be regarded as fundamental; and they have
been very frequently applied—not only throughout the CFSG, but in many other
classification-type problems over the subsequent years.

In the first few sections of the chapter, we will overview some of those applica-
tions; and suggest some similar possible uses in other types of problems. In the final
sections of the chapter, we discuss the possibility of extending the 2-local results to
suitable analogues for odd primes p.

To begin, recall that at (3.5.1) we had introduced the notion of 2-fusion: that is,
for T a Sylow 2-subgroup of a finite group G, we study the pattern of G-conjugacies
among elements of T . We will be examining some fundamental early results on this
topic. A good source for much of this material is [GLS96, Sec 15–17], from which
we will quote frequently.

8.1. Glauberman’s Z∗-theorem

This result is often applied very early on in a classification problem: to show
that there must be some fusion, namely conjugacy among involutions in T ; which
provides the foundation on which the main argument can then be built.

The Z∗-Theorem. Glauberman’s result [ALSS11, B.2.1] deals essentially
with an involution weakly closed in T (indeed in CT (z)); it can be simply stated
for general H in the form:

Theorem 8.1.1 (Glauberman Z∗-Theorem). If an involution z of H com-
mutes with no distinct conjugate of itself, then z lies in Z∗(H)—the preimage in H
of Z

(
H/O2′(H)

)
.

So if H is simple, then z is conjugate to some other zh = t ∈ CT (z).

The result is probably used most often in the form of the second statement. Note
that initially, by simplicity we can quote the contrapositive of the initial statement—
giving us just zh ∈ CH(z); but we may as well choose z extremal , namely so
that CT (z) in Sylow in CH(z)—and then apply conjugacy of Sylows of CH(z).

We mention that Glauberman’s proof in [Gla66] used 2-modular representation
theory, and later analysis reduced this to ordinary representation theory. The recent
approach of Waldecker [Wal13] instead emphasizes local group theory; but roughly
assumes knowledge of possibilities for involution centralizers using the CFSG.

In the remainder of the section, we will be discussing some applications, of
types which have proved fairly significant.

139
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As context, we might ask something like: In a problem which reduces to a simple
counterexample G, how does the above information, namely having z 6= zg ∈ CT (z),
actually help?

Of course, the answer depends on the hypotheses of the particular problem.
Here is one of my favorite such situations:

An application to large extraspecial subgroups. Choosing this topic will
allow us to say a little more about a situation which we had only briefly summarized
in our CFSG outline, namely the treatment of the GF (2)-type branch (3) in the
Trichotomy Theorem 2.2.8:

Large extraspecial 2-subgroups, in the context of GF (2) type. Note that in the
Lie-type groups defined over the smallest field F2, the root subgroups are of order
only 2. This leads to certain restrictions on the structure of unipotent radicals,
especially in involution centralizers. In particular, in the Lie types with Dynkin
diagrams having only single bonds (namely A,D,E), below we abstract certain
features of the centralizer of an involution z generating a root-group; these are
visible in particular in GLn(2), in our earlier Even Case Example 2.0.6:

Definition 8.1.2 (GF (2) type). We say that G is of GF(2) type if for an
involution z, with centralizer M := CG(z), we have F ∗(M) = O2(M) =: Q; this
condition says Q is large in G; and furthermore Q := O2(M) is of symplectic
type—this means that every elementary abelian subgroup which is characteristic
in Q must in fact be cyclic. ♦

The symplectic-type condition arises here, because the only characteristic abelian
subgroup of Q so arising in the Lie-type examples is a root group—which is cyclic
since that root group just has prime order 2. In fact in those Lie-type cases, the
group Q is even extraspecial : namely we have Q′ = Φ(Q) = Z(Q) = 〈z〉 of order 2.
Thus those examples in fact satisfy the slightly sharper condition of:

Definition 8.1.3 (large extraspecial 2-subgroup). This is the subcase of Defi-
nition 8.1.2 in which Q is extraspecial. ♦

Exercise 8.1.4 (More large-extraspecial cases). Check Q is large-extraspecial,
in suitable Lie-type groups over the small field F2—beyond linear GLn(2) in 2.0.6.

Hint: Here “suitable” means that the Dynkin diagram should be a single-
bond type—A,D,E; i.e. the classical linear, unitary, and orthogonal types. The
exceptional cases E6, E7, E8—and in fact also G2—also work; but those require
more detailed root-system knowledge. The same holds for the single-bond twisted
types 2Dn, 3D4, 2E6.

Type A3, for the group L4(2), is explored in Remark B.2.1: see the discussion
of the unipotent radical U2 there. More generally, in the indicated Lie types, z will
generate a long-root subgroup Uα for the highest root α; CG(z) will be, for the
appropriate J ⊆ Π, the parabolic1 PJ which stabilizes that long-root group; and Q
will be the unipotent radical UJ of PJ . Now UJ is defined as in Remark 1.3.20(4)
via roots which are not combinations from J ; and in these cases for J , we check that
these roots consist of α, together with various pairs γ, α − γ, having the property

1Indeed a maximal parabolic, except in type An.
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that no other pair among this set sums to a root in Φ+. Then (1.3.13) leads to the
conclusion that Q is extraspecial. Some details for the cases of G2 and E6 appear
in appendix Remark B.4.3. ♦

In fact, Aschbacher in [Asc76] (cf. [ALSS11, 7.1.1]) reduced the GF (2) type prob-
lem to the large-extraspecial problem; by showing that the groups which have Q of
symplectic type, but not extraspecial, are;

L2(2m ± 1), M11, L3(3), U3(3), and HS.

Beyond the indicated Lie-type groups over F2, the large-extraspecial situation
was notorious for also containing the majority of the sporadic groups. We men-
tion one example: This will reflect the connection of the GF (2) type condition
with the Klinger-Mason analysis of characteristic {2, p} type—an analysis which
we had mentioned briefly in our discussion leading up to the Trichotomy Theo-
rem 2.2.8. Namely the Harada-Norton group HN has characteristic {2, 5} type;
with 21+8(A5 × A5)2 for its involution-centralizer structure—where Q := 21+8

gives GF (2) type—and indeed large extraspecial. (See e.g. Franchi-Mainardis-
Solomon [FMS08].)

Before proceeding with our discussion of the large-extraspecial situation, we di-
gress briefly to indicate the generalization of GF (2) type to GF (2n) type, which we
had mentioned only briefly, after the Trichotomy Theorem 2.2.8; here, the analogue
of the root group 〈z〉 is a root group B—which can now be of any order 2n:

Definition 8.1.5 (GF (2n) type). We say G is of GF (2n) type if we have
the following generalization of the GF (2)-type condition of Definition 8.1.2: We
have a 2-subgroup Q, again with the “large” restriction that M := NG(Q) sat-
isfies F ∗(M) = O2(M); but now Q is “semi-symplectic”: roughly, this means
that Q′ = Φ(Q) = Z(Q) = B—which arises from the strong local condition that a
maximal normal elementary abelian 2-subgroup B of M is a TI-set2 in G. ♦

Applying the Z∗-Theorem in large extraspecial subgroups. For fuller reference
on the following material, see e.g. [ALSS11, Ch 7; esp 7.0.5].

We assume the large-extraspecial situation: Thus we have G simple, with in-
volution z, such that: setting M := CG(z), and Q := O2(M), Q is extraspecial
(that is, Q′ = Φ(Q) = Z(Q) = 〈z〉 is of order 2), and large in the above sense
that F ∗(M) = O2(M) = Q.

On applying the Z∗-Theorem 8.1.1, we get some further a := zg ∈ M . How
can we use this? Here is a rough sketch:

First, we may take a ∈ Q: For Aschbacher showed (e.g. [ALSS11, 7.2.3]) that
otherwise, G is either a unitary group over F2, or Co2.

Now set Q̃ := Q/〈z〉—since Q is extraspecial, this quotient is elementary

abelian; and we can study the action of M := M/Q on Q̃, particularly with re-
spect to the M -conjugates of ã. So we set Qa := Qg; it is advantageous that
most of this must lie in M . Indeed the group A := Q ∩ Qa is elementary abelian

2Recall this means: having trivial intersection with its distinct conjugates
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(since A′ ≤ 〈z〉∩ 〈a〉 = 1); further L := Q(Qa∩M) has quotient L which is elemen-
tary abelian, and normal in CM (ã). This provides a great deal of structure, which
can be exploited in various ways.

Exercise 8.1.6. Exhibit these structures, in the case G = L5(2), where we
have CG(z) ∼= 21+6L3(2). ♦

As a very rapid summary of the subsequent solution of the large-extraspecial prob-
lem: Timmesfeld (e.g. [ALSS11, 7.3.1]) determined a list of cases for M ; and then
Smith and others (cf. the summary at [ALSS11, 7.0.1]) verified that these cases
lead to the expected sporadic and Lie-type groups G.

An application to the Sylow 2-subgroup of U3(4). In our discussion lead-
ing up to the Dichotomy Theorem 2.0.9, we had briefly mentioned Lyons among
the authors who handled the “small” subcase m2(G) ≤ 2 of the Odd Case. More
precisely, Lyons in [Lyo72] characterized U3(4) by its Sylow 2-group T . This is in
effect an internal-hypothesis recognition theorem, in the language of the introduc-
tory section of Chapter 4.

The proof begins with a discussion of fusion of involutions: The only involutions
of T are those of Z(T ) of rank 2; denote them by z1, z2, z3. Lyons in [Lyo72, Lm 1]
applies the Z∗-Theorem in some unknown simple G with Sylow T—to see that z1

must be conjugate to another involution of T . Now the only other choices for an
involution are z2, z3; so we may as well assume that z1 is conjugate to z2. But we
may equally well apply the Z∗-theorem to z3, to see that it is conjugate to z1 or z2.
Hence all 3 involutions zi of T are in fact conjugate in G.

Here is one significant structural consequence of that conjugacy: We recall
Burnside’s Fusion Theorem (cf. [GLS96, 16.2]):

Theorem 8.1.7 (Burnside’s Fusion Theorem). For W weakly closed in T with
respect to G, G-fusion in Z(W ) is induced in NG(W ).

Applying this in the case W = T , the above conjugacy inside Z(T ) must be induced
by NG(T ). So NG(T ) contains a 3-element; and hence induces the full permutation
group S3 on the three involutions zi. Thus we have found that one 2-local subgroup
is as in the target group U3(4), inside our still-unknown G.

Of course, considerable further work remains for the characterization, and we
won’t here describe those technical details; as before, we are primarily emphasizing
that the fusion information is what initially gets the proof off the ground.

An application to semi-dihedral and wreathed Sylow groups. We con-
tinue to expand, as above, on our brief mention before Theorem 2.0.9 of the Small
Odd Subcasem2(G) ≤ 2. For full details and definitions, see e.g. [ALSS11, Sec 1.4].

In the work of Alperin-Brauer-Gorenstein [ABG73], their intermediate anal-
ysis includes treatment of certain non-simple groups H, containing a Sylow 2-
subgroup T which is semidihedral or wreathed; these H are there called “Q-groups”,
and I won’t reproduce that technical definition here. Inside such groups, they ap-
ply the Z∗-Theorem in the positive direction, rather than the contrapositive as
in the cases just above: that is, they use the first sentence in our statement of
Theorem 8.1.1:
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Namely for such a Sylow group T , the center Z(T ) is cyclic. And then using (ii)
in [ABG73, Props 1.1,1.2], subgroups of Z(T ) are weakly closed in T (with respect
to such groups H). They show at their result 3.1 that this leads to:

(8.1.8) H = O2′(H)CH
(
Z(T )

)
.

We quickly sketch the deduction: By induction, we may as well assume O2′(H) = 1;
so in effect, we really need to show then that Z(T ) ≤ Z(H). If this fails, we may
assume by way of contradiction that Z0 := Z(T ) ∩ Z(H) is proper in Z(T ). So
we may take some Z ≤ Z(T ) with Z0 of index 2 in Z; hence in H := H/Z0, we
see Z is generated by an involution z. From the subgroup weak-closure property (ii)
indicated above, we get the analogue for the element z: namely z is weakly closed
in T . (In particular using Sylow’s Theorem, z cannot commute with any distinct
conjugate.) So the “forward” direction of the Z∗-theorem forces Z ≤ Z(H). But
then standard arguments lead to Z ≤ Z(H)—contrary to the definition of the
proper subgroup Z0 of Z as Z(T ) ∩ Z(H). �

And now as before, the structural information (8.1.8) produced by the initial
fusion analysis then sets up their main argument characterizing the groups H; and
eventually leads to the simple G with such a Sylow group T .

8.2. The Thompson Transfer Theorem

In contrast to the Glauberman Z∗-Theorem, which is typically applied at an
early stage in arguments, the Thompson Transfer Theorem is more usually applied
toward the end of arguments: to show that a “shadow” configuration is not simple—
or more precisely, that it is not perfect. But there is still an analogy with the Z∗-
Theorem, in that the contrapositive form can be used to force the existence of some
involution-fusion in a simple group G: this time, into a subgroup of index 2 in T .

We state the most elementary form of the result (for example [ALSS11, B.2.9]
or [GLS96, 15.16]), since this case is the situation most common in applications:

Theorem 8.2.1 (Thompson Transfer Theorem). If an involution t of a finite
group H has no H-conjugate within a subgroup T0 of index 2 in a Sylow group T ,
then t 6∈ O2(H). (In which case H > O2(H), and in particular H is not simple.)

For example, notice this holds in the case of a transposition t in the non-perfect
group H = Sn.

We mention that the proof is comparatively elementary: just compute directly
the homological “transfer”3 homomorphism—in effect, the natural map of H/H ′

into T/T ′. See also “control of transfer”, e.g. [ALSS11, p 271].

This result was widely applied in the CFSG; and a number of such applications
are indicated throughout the exposition of [ALSS11]; see e.g. the Index in that
work. As before, below we have selected some representative applications:

Some applications to quasithin groups. There are more than 30 such
quasithin applications to choose from. Here is a fairly typical one:

3See the supplementary notes in appendix Section A.2.
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Eliminating a shadow related to U4(3). We start with the observation that the
quasithin group U4(3) has a 2-local subgroup 24 : A6; but not 24 : S6.

So how might we eliminate, in some unknown quasithin simple G, that very
similar but slightly larger 2-local configuration L := 24 : S6? This 2-local subgroup
does occur in the non-simple “shadow” H := U4(3)〈t〉—where t induces an orthog-
onal reflection (denoted 22 in the Atlas [CCN+85]) on Ω−6 (3) ∼= U4(3). So ideally,
we should use Thompson Transfer to force our unknown G to be non-perfect, as is
the case for H. And indeed this is implemented at [AS04b, 13.5.16]; in overview:

Some preliminary results show much of the local structure of G is just as it
should be in H: For z ∈ O2(L), set M := CG(z) and Q := O2(M); then we find
that Q ∼= 21+4〈t〉, with M = 21+4(32.4)〈t〉. Also Z(Q) = 〈z, t〉, and NG(Q) = M ;
while for T Sylow inH, z is conjugate to all the involutions in T0 := T∩L = 21+4.4—
indeed, these involutions even lie in 21+4.

Exercise 8.2.2. Check some of these facts explicitly, in the indicated non-
simple group H = U4(3)〈t〉.

Hint: Much of this can be obtained from the Atlas [CCN+85, p 52]. The
conjugacy of z with some a ∈ 21+4 follows as in the discussion of “z, a” in the
large-extraspecial applications in earlier Section 8.1. ♦

Furthermore, we get that Q is weakly closed in M , and hence in T , with respect
to G. So by the Burnside Fusion Theorem 8.1.7, G-fusion in Z(Q) is induced
in NG(Q) = M . Now consider the above involution t ∈ T \ T0; we saw there
that t, z ∈ Z(Q). Clearly M = CG(z) cannot conjugate z to t. Hence by the
fusion-control in the Burnside statement, t cannot even be G-conjugate to z; and
so cannot be G-conjugate to to any involution a ∈ T0, since we saw that these are
conjugate to z. Consequently we may apply the Thompson Transfer Theorem 8.2.1,
to obtain t 6∈ O2(G)—so that G is not simple. �

We mention also that a subcase of this shadow-configuration H, in which t is
not an involution, but instead of order given by a 2-power at least 4, is also handled
around [AS04b, 13.5.16]—using a more general version of Thompson Transfer.

Eliminating shadows in the quasithin C(G,T )-Theorem. Important applica-
tions of Thompson Transfer also arose in the proof of 2.1.1 of [AS04b]: the analogue
for quasithin groups of the Global C(G,T )-Theorem 3.3.8: recall this deals with
the case where T lies in a unique maximal 2-local subgroup M of G.

For example, we wish to eliminate the shadow of non-simple H = L3(2n)〈x〉,
where x denotes a graph automorphism. We sketch the procedure followed in Sec-
tion 2.4 of [AS04b]:

We have a local P resembling a parabolic of L3(2n), given by L2(2n) acting on
its natural module N := O2(P ). So set R := NNx; then R〈x〉 essentially gives T ,
and NG(T ) gives the unique maximal 2-local M over T . Much further work then
leads to the fusion result [AS04b, 2.4.21.2]:

For i any involution of R, we get iG ∩ T ⊆ R.

Exercise 8.2.3. Check this holds, in explicit non-simple H = L3(2n)〈x〉. For
example when n = 1, the group R is dihedral of order 8; and its involutions lie inside
its two 4-subgroups, which are the unipotent radicals U1̂ and U2̂ as in 1.3.4—which
appear as N and Nx above. ♦
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Thus x is not G-fused to any i ∈ R. And here R is of index 2 in T ; so using
Thompson Transfer 8.2.1, we get x 6∈ O2(G) at [AS04b, 2.4.22.2]. �

We mention also a related shadow: described as for H above—but where x
instead involves not a graph- but a field-automorphism. This is also eliminated by
a Thompson Transfer argument, after [AS04b, 2.4.24]. (We note that the wording
“after 2.4.24” above corrects the inadvertent mis-statement “in 2.4.24” during the
discussion at [ALSS11, p 99].)

An application to connectivity of the graph on 4-groups. In our dis-
cussion of the Dichotomy Theorem 2.0.9, we saw that the proof actually involved a
trichotomy: where two cases were determined by whether or not connectivity holds,
for the graph on the 2-groups of rank 3, with an edge determined by a common
rank-2 subgroup. It’s essentially equivalent to consider the dual graph: on rank-2
subgroups as vertices, with edges determined by a common overgroup of rank 3.

Some technical details related to connectivity in this latter viewpoint are visible
in the more extended discussion in the outline volume [ALSS11]. For example, the
discussion after 1.5.1 and the result B.4.10 there in fact make use of the technical
result [ALSS11, B.4.9]; and we now sketch some details of applying Thompson
Transfer in B.4.9:

That result assumes that G = O2(G) and m2(G) ≥ 3; and shows that if V is a 4-
subgroup of T satisfying m2

(
CT (V )

)
= 2 (“isolated ” in T ), then we can find some

conjugate V g ≤ T which satisfies the stronger rank condition m2

(
CT (V g)

)
≥ 3—

and in particular, is not isolated.
The proof proceeds roughly as follows: Take a 4-group A normal in T . Us-

ing m2(G) ≥ 3, we get that T0 := CT (A) is of index 2 in T , with m2(T0) ≥ 3.
We then show that such a V is of the form 〈z, v〉, where z is the unique involu-
tion in R := CT0(v). We also get V < CT (V ) = 〈v〉 × R; and it follows that z
is a square in R. Since we are assuming that G = O2(G), the Thompson Trans-
fer Theorem 8.2.1 gives us some conjugate some vg ∈ T0; indeed we may assume
that this conjugate is extremal: namely CT (v)g is Sylow in CG(v), so that we may
take CT (v)g ≤ T . Then zg is a square in Rg, and Rg = CT0

(v)g ≤ T by extremality;
so that zg ∈ T0, since T0 has index 2 in T . We get 〈zg, vg〉 = V g ≤ T0 = CT (A).
We conclude that m2

(
CT (V g)

)
≥ 3, as desired—either via V gA if V g 6= A; or

if V g = A, via CT (V g) = CT (A) = T0 having rank ≥ 3 at the start of the proof. �

8.3. The Bender-Suzuki Strongly Embedded Theorem

Recall we had stated this result earlier as Theorem 2.0.17, during our sketch of
the proof of the Dichotomy Theorem 2.0.9. In particular, the simple groups that
occur in the conclusion are the rank-1 Lie-type groups L2(2n), U3(2n), Sz(2odd).
And in Remark 1.3.20(6), this value of the rank means that there is a unique
maximal 2-local subgroup M over a Sylow 2-group T .

We will use the relation of this subgroupM to the 2-fusion, to view the Theorem
within the fusion-context of this chapter.

The strongly embedded condition and control of fusion. A recurring
theme in the group theory literature has been the notion of “control of fusion”:
meaning results showing that G-fusion is induced by one or more local subgroups.

In this direction, the most fundamental result is the Alperin Fusion Theo-
rem 3.5.3; recall this asserts that fusion in T can be accomplished by a sequence
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of “local fusions”—each of these being a conjugation in NG(Ti), for suitable sub-
groups Ti of T .

Strong control of fusion. In this section, however, we focus on the restricted
situation, where fusion is controlled by a single local subgroup. Notice this single-
subgroup control is in the spirit of the Burnside Fusion Theorem 8.1.7. We now
recall the relevant standard terminology:

Definition 8.3.1 (strong control of fusion). We say a subgroupM < G strongly
controls p-fusion in G, if any G-conjugacy in T is induced in M . That is, if we are
given A,B ⊆ T with Ag = B, then we may write g = cm, with c ∈ CG(A)
and m ∈M . ♦

The relationship with the strongly-embedded condition. Our earlier statement
of the Strongly Embedded Theorem 2.0.17 used the fairly standard version (2.0.16)
of the strongly embedded condition, namely:

For g ∈ G \M , M ∩Mg has odd order.
But we observed there that the condition in fact arises in the particular situation
that was relevant at that point in our discussion, namely: The graph on four-groups,
via containment in rank-3 groups, is disconnected. In fact the derivation of strongly
embedded proceeds via reduction from there to a form defined via a different graph:

The commuting graph on involutions is disconnected.
For notice in this latter situation that:

(8.3.2) strong embedding variant: If 1 < S ≤ T , then NG(S) ≤M < G.

Here M is the stabilizer of a connected component. And this connectivity-related
variant of strongly embedded that is most directly relevant to our earlier discussion
of the Dichotomy Theorem 2.0.9.

But we now proceed a little farther: We see that for the subgroups Ti of a
conjugation family in the Alperin Fusion Theorem 3.5.3, the terms ni ∈ NG(Ti) in
a local conjugation must in fact lie in M ; hence the same holds for the product
of the sequence, giving the overall conjugation. Since furthermore any CG(A) in
Definition 8.3.1 lies in M , we conclude that M strongly controls fusion.

We mention that various other equivalent versions of the strongly embedded
condition are used in the literature; see for example [ALSS11, B.4.7] for some of
these further variants.

Exercise 8.3.3. Exhibit the strongly embedded subgroup M , in the rank-1
conclusion groups such as L2(2n) above; and check that it satisfies some of the
basic variant versions of strongly embedded indicated above. ♦

As before, in the remainder of the section, we exhibit some representative applica-
tions of the Strongly Embedded Theorem 2.0.17.
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An application related to connectivity. As already suggested above, prob-
ably the most typical applications of strong embedding are related to connectivity
of the 2-structure graphs in the many contexts where signalizer functors are relevant
(notably the Dichotomy Theorem 2.0.9). And indeed various kinds of connectivity
arise; mostly based on the general notion of component-stabilizers lying in proper
subgroup M < G. Relationships among a number of such relevant graphs are
discussed e.g. around [ALSS11, p 36].

For example: In Aschbacher’s Proper 2-Generated Core Theorem (for exam-
ple [ALSS11, 1.5.10]), the role of the M containing component stabilizers is played
by the 2-generated core Γ2,T (G): this is generated by the normalizers NG(S), for
subgroups S of rank ≥ 2 in T . Of course this is a weakening of (8.3.2), which
considers S of rank ≥ 1, i.e. all S. Aschbacher’s result shows, under the assump-
tion m2(G) ≥ 3, that if Γ2,T (G) ≤ M < G, then J1 is the only “new” group
to arise—beyond the “old” Bender groups of the usual Strongly Embedded Theo-
rem 2.0.17. We sketch how this is accomplished:

Aschbacher at [Asc74, 3.7] reduces to the situation where CG(z) ≤ M for all
the 2-central involutions z of G: For otherwise, this is where the new conclusion-
group J1 arises—using his earlier result 2.5,4 which in turn applies an earlier clas-
sification result of Gorenstein and Walter.

And now, if x is another involution of T , and we have CG(x) � M , then
by his 3.8, we can conclude that CM (x) is strongly embedded in M . This result
on CM (x) gives the sufficient local-condition in his [Asc74, Thm 2], to force M
to be strongly embedded in G. And so at this final point in the proof, the old
conclusion-groups now arise: namely the rank-1 Lie type groups in the Strongly
Embedded Theorem 2.0.17. �

An application to quasithin groups. We recall from our discussion of the
Small Even Subcase of the CFSG in Section 2.2 that when Aschbacher and Smith
analyzed quasithin groups, they worked not under characteristic 2-type, but instead
under the weaker notion of even characteristic in Definition 2.2.3: where at least
the 2-central involutions z satisfy F ∗

(
CG(z)

)
= O2

(
CG(z)

)
.

We now expand a little on that earlier discussion, on the work of Chapter 16
in [AS04b]: which extends the Aschbacher-Smith classification of quasithin groups
of even characteristic, to the still-weaker hypothesis of even type used in the GLS
revisionism program [GLS94, p 36]. In the latter situation, the above centraliz-
ers CG(z) might instead have some components L of characteristic 2. And there the
corresponding result [ALSS11, Sec 3.12] shows that the only new group to arise
under even type, beyond the previous conclusions under even characteristic, is the
Janko group J1. (This is similar to the role played by J1, in our discussion above
of proceeding from strongly embedded to a proper 2-generated core.) We briefly
summarize the deduction of this result:

The analysis of a new G, now with such a component L in some CG(z), leads
in a fairly straightforward way to the situation where L is standard in G: and of
course we saw after Definition 2.1.2 that this concept was crucial in the treatment of
the Odd Case of the CFSG. But the subsequent arguments are made directly—that
is, not quoting that earlier literature on standard form—roughly as follows:

4Note that the references “3.5,2.1” just before [Asc74, 3.7] should be “3.3,2.5”.
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For K := CG(L), we obtain at [AS04b, p 1183] a conjugate R = Kg distinct
from K, with NR(K) of even order: for otherwise, we would get the sufficient con-
dition of [AS04b, I.8.2], for NG(L) to be strongly embedded. And of course, the
Strongly Embedded Theorem 2.0.17 gives the rank-1 Lie type groups in character-
istic 2: in particular, these are old conclusion-groups, of even characteristic—and
have no such component L, contrary to our assumption of a new-G involving L.

In the subsequent argument, most possibilities for L are eliminated. The only
case remaining is for L ∼= L2(4): and then the R above has order 2 (and indeed lies
in L), so that CG(z) ∼= Z2×L2(4). Finally G is identified as the new-conclusion J1,
using the involution-centralizer recognition theorem of Janko [AS04b, I.4.9]. �

An application for Holt’s theorem in permutation groups. One further
variant of the condition of M strongly embedded—indeed the one referenced in the
title of Bender’s paper—is:

All involutions fix exactly one point of G/M .
Holt (see [ALSS11, B.2.1]), and independently F. Smith, extended the analysis to
transitive groups satifying the weaker condition:

(8.3.4) (Holt:) Some 2-central involution fixes just one point of G/M .

In the extended result, the only new simple groups to arise, beyond the Bender
groups in the strongly embedded situation, are Sn and An for odd n.

Exercise 8.3.5. Check Holt’s 2-central condition in these “new” groups. ♦

In a moment, we will briefly summarize Holt’s argument.
However, we mention that the reader wishing to directly consult Holt’s pa-

per [Hol78] may have some difficulty with the very terse exposition style which
was common in that era. For this reason, I had provided to the class at the Venice
Summer School 2015 some additional online notes on certain arguments in that
paper—which now appear in appendix Section A.3.

Holt reduces at [Hol78, 4.1] to a certain more technical fusion condition: since
failure would give Aschbacher’s sufficient condition [Asc73] for G to have a strongly
embedded subgroup. That is, the “old” conclusion groups, given by the Bender
groups, arise here.

Then following further analysis of that technical fusion condition, the new
conclusion groups Sn and An arise toward the bottom of [Hol78, p 182].

Holt’s theorem was used at many points in the CFSG; for various applications,
see e.g. the Index in [ALSS11]. It was typically used toward the end of proofs:
when a group H has been constructed, which might conceivably be of odd index
in the desired conclusion-group G; to force H = G. For G/H should here have
Holt’s hypothesis; but ideally the details of the problem being considered should
be sufficiently specific to rule out Holt’s Bender-group and alternating conclusions.

Subsection-appendix: a related result of Parker-Stroth. I thank Gernot Stroth,
who (during the course of the lecture that became this chapter) pointed out a
version of Holt’s Theorem, using a variant-hypothesis, in Parker-Stroth [PS14].
Below I have transcribed a Web pdf file that Stroth kindly posted for the class:
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This is a version of Holt’s Theorem [Hol78], taken from Chris Parker and Gernot
Stroth [PS14].

Lemma 8.3.6. Suppose K is a simple group, P is a proper subgroup of K, and r
is a 2-central element of K. If rK ∩ P = rP and CK(r) ≤ P , then K is one of:

PSL2(2a), PSU3(2a)(a ≥ 2); 2B2(2a)(odd a ≥ 3) ; Alt(n);

where in the first three cases P is a Borel subgroup of K, and in the last case we
have P ∼= Alt(n− 1).

Proof. Set Ω := K/P and assume that P < K. The conditions CK(r) ≤ P
and rK ∩ P = rP together imply that r fixes a unique point of Ω. Let J be the set
of involutions of K which fix exactly one point of Ω. Since r is a 2-central element
of K, any 2-group which fixes at least 3 points when it acts on Ω commutes with
an element of J . Hence Holt’s criteria (*) from [Hol78] are satisfied. In addition,
the simplicity of K yields that K = 〈rK〉 = 〈J〉. Thus [Hol78, Thm 1] implies
that K is isomorphic to one of the following groups: PSL2(2n), PSU3(2n)(n ≥ 2);
or 2B2(2n)(n ≥ 3 and odd ); or Alt(Ω); where in the first three classes of groups
the stabiliser P is a Borel subgroup and in the latter case it is Alt(Ω \ {P}). �

Analogous p-fusion results for odd primes p

The remaining sections of the chapter discuss the possibility of odd-p analogues
of the results in the previous sections.

8.4. The Z∗p -theorem for odd p

The odd-p analogue of the Z∗-Theorem states:

Theorem 8.4.1 (Odd Z∗p Theorem). If an element z of odd order p in H com-

mutes with no distinct conjugate, then z ∈ Z∗p (H)—the preimage of Z
(
H/Op′(H)

)
.

Unlike Glauberman’s situation for p = 2, for odd p no “elementary” proof of The-
orem 8.4.1 is known. Instead, the CFSG is used in proving the result.

Experts were aware fairly early on that 8.4.1 could be obtained using the CFSG.
For example, Artemovich published a proof in [Art88a]. And more recetnly:

A sketch of a CFSG-based proof. Guralnick and Robinson outlined a proof
at [GR93, 4.1], from which we now extract a few features:

The hypothesis implies that z is central in a Sylow p-group P of H. We may
assume that P is noncyclic: as otherwise the result follows using the Frobenius
Normal p-Complement Theorem [GLS96, 16.10].

Then we reduce to z acting nontrivially on all components L, which we may
assume are simple. Earlier Gross [Gro82] had studied the simple L in the CFSG-
list 1.0.2, showing for p odd that p-central automorphisms are inner. For example,
recall the description of Out(L) from Theorem 1.5.4: note e.g. that for a Lie-type
group in characteristic p, nontrivial field automorphisms (including any of order p)
do not centralize a Sylow p-group.

Exercise 8.4.2. Check that the analogue for p = 2 of Gross’s conclusion fails.
(Consider a transposition in S6.) ♦
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This inner-restriction leads in fact to z ∈ L; indeed with just a single component L
providing the full group H. And earlier Gorenstein [Gor82, 4.250] had examined
the list of L in the CFSG-list, showing in fact there there are only a few groups L
that even satisfy the weaker condition, namely:

all L-fusion of z in P falls inside 〈z〉.
But in those cases, one sees that z is fused to a nontrivial power zi; whereas our z
is assumed to commute with no distinct conjugate. �

Some other directions. In the Guralnick-Robinson work [GR93], in fact
the Z∗p -theorem arises in their wider setup—namely, of generalizations of the Baer-
Suzuki Theorem [GLS96, 15.5]. That result states that if x is a p-element such
that 〈x, xh〉 is a p-group for all h ∈ H, then x ∈ Op(H).

Robinson has also considered in [Rob90][Rob09] some approaches to proving
the Z∗p -theorem via p-block theory.

The reader may also wish to explore the discussions in Broué [Bro83], Row-
ley [Row81] and Toborg [Tob16].

8.5. Thompson-style transfer for odd p

By contrast with the situation odd Z∗-Theorem 8.4.1, there is an elementary
proof of odd-p analogues of the Thompson Transfer Theorem 8.2.1: since the result
for p = 2 is proved just by computing the transfer homomorphism. Such extensions
are often called Thompson-Lyons transfer .

One fairly general such extension appears in [GLS96, 15.15]; instead we state
the somewhat simpler special case in [GLS96, 15.17]:

Theorem 8.5.1 (Thompson-Lyons Transfer). Assume that Q has index p in a
Sylow p-subgroup P of H; and that z of order p outside Q satisfies zH ∩ P ⊆ zQ.
Then z 6∈ Op(H).

We could in fact weaken the hypothesis to extremal x ∈ zH∩P ; namely with CP (x)
Sylow in CH(x).

Lynd [Lyn14] extends the Thompson-Lyons analysis to fusion systems.

My impression is that the case of odd p has not been as influential in applications
as the original Thompson Transfer for p = 2.

8.6. Strongly p-embedded subgroups for odd p

There is a substantial literature on the odd-p analogue of the strongly embedded
condition (2.0.16); we state the version analogous to (8.3.2):

Definition 8.6.1 (strongly p-embedded). For odd p, and P denoting a Sylow p-
subgroup of G, we say that M is strongly p-embedded in G, if for all 1 < X ≤ P ,
we have NG(X) ≤M < G.

Here in contrast to the Strongly Embedded Theorem 2.0.17 at p = 2, for odd p
there is no elementary treatment of the strongly p-embedded condition: instead,
proofs depend on using the CFSG.
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The Gorenstein-Lyons analysis of strongly p-embedded in the CFSG.
We saw, during our discussion of the treatment of the pre-uniqueness case (2) of
the Trichotomy Theorem 2.2.8, that the weaker condition of almost strongly p-
embedded arises within the “Uniqueness” subcase of the Even Case. So a treatment
of strongly p-embedded is required in that more general context.

Indeed for use in their inductive situations, Gorenstein and Lyons list at 24.1
of [GL83] (and see also [GLS98, 7.6.1]) the cases satisfying the strongly p-embedded
condition, for the known simple groups G in the CFSG-list 1.0.2; and for P non-
cyclic, since the cyclic case is essentially uncontrollable. Hence when the CFSG
was completed, their list became a result covering all simple G.5 We note that the
list contains the expected analogues of the Bender groups: that is, the rank-1 Lie
type groups in characteristic p; but it also contains the alternating groups A2p, and
a few scattered cases for small primes p.

Of course their proof involves detailed examination of the p-local structure of
the simple groups in the CFSG-list.

We mention that a similar analysis of strongly p-embedded configurations is
also required, in the later GLS revisionism-approach to the CFSG—which we had
briefly mentioned in Section 2.3 as new-approach (2) to the CFSG. For details of
this later treatment, see e.g. [GLS96, Sec 17] and [GLS99, Ch 3].

Strong p-embedding also arises in new-approach (3) to the CFSG, namely the
characteristic-p viewpoint of Meierfrankenfeld-Stellmacher-Stroth. See for exam-
ple Parker-Stroth [PS11] for a discussion of that treatment.

Applications of strongly p-embedded in other directions. The condi-
tion of strong p-embedding arises naturally in group-theoretic situations other than
the CFSG itself. Here is a sample:

In p-modular representation theory: Zhang [Zha94] deduces from the condition
the existence of a p-block of defect 0, in the standard language of 5.0.2. And
Robinson [Rob11] and others study the condition, in the context of endotrivial
modules.

In p-local structure theory: Strongly p-embedded subgroups are especially
important for conjugation families, in the context of the Alperin Fusion Theo-
rem 3.5.3; In fact the members of those families can be taken to each possess a
strongly p-embedded subgroup. An early discussion of these connections appears
in Miyamoto [Miy77].

These lead in turn to various contexts in algebraic topology which depend on
fusion, notably those related to group cohomology. We mention in particular: For
saturated fusion systems, see e.g. Oliver-Ventura [OV09]; and for rings of group
invariants, see e.g. Kemper [Kem01].

We also mention that Brown [Bro00] considers strong p-embedding, in rela-
tion to the probability of generating a group G (a context we had mentioned in
Section 6.5).

5One point that often seems to be left implicit in the literature is the reduction from the

general case, to the case where G is almost-simple: in fact this follows essentially using a Frattini
Argument 3.0.3 on the Sylow p-subgroup of a component. I thank Jesper Grodal for interesting

discussions on this background.





CHAPTER 9

Some applications close to finite group theory

I am grateful to many colleagues, who suggested quite a number of intriguing
applications for this book—only a small fraction of which I’ve been able to discuss
so far. And I also thank the referee for some additional suggestions.

In the remaining two chapters, I’ll try to cover a wider array of those appli-
cations, than I’ve done in the earlier chapters; of course, this comes at the cost of
treating that larger number much more briefly.

The present chapter will be devoted to applications in areas which are still
reasonably close to standard group theory. As a general context for these fairly
scattered applications, the discussion we gave in Section 6.4 of some major areas of
applications—for the specific topic of maximal subgroups—is still largely applicable
for the more general material from here on.

But since the first five chapters of the book focused largely on applications to
group structure, we should probably precede the list in Section 6.4 with a slightly-
expanded version of our introductory remarks before Section 1.4:

(0) Internal structure for finite groups. As we’ve seen in earlier chapters,
the CFSG has had a fundamental impact throughout the structure theory of gen-
eral finite groups. We’ll now continue to consider various further applications in
that direction; including (among many possible topics): general subgroup structure
for Lie-type groups, in Section 9.3; solutions of special equations in groups, in Sec-
tions 9.4 and 10.5; and coverings by a union of subgroups or subsets, in Section 9.7,
and also toward the end of Section 10.6.

We’ll summarize some more distant application-areas at the start of Chapter 10.

9.1. Distance-transitive graphs

I thank Cheryl Praeger for assistance with this section.
For this very active area, a number of surveys are available: in fact we had

already mentioned Praeger-Li-Niemeyer [PLN97], in Chapter 6 on maximal sub-
groups. Some others include: Brouwer-Cohen-Neumaier [BCN89], Ivanov [Iva94],
Cohen (in Beineke-Wilson [BW04]), and van Bon [vB07]. In this section, we’ll
sample a few features of this now well-advanced project:

Definition and examples. A group G is distance-transitive on a connected
graph Γ if for each i, G is transitive on pairs of vertices at distance i.

There are some standard classes of examples, including: vertices of hypercubes
(within the larger class of Hamming graphs); Johnson graphs, Grassman graphs,
odd graphs; and some examples from bilinear forms and codes. For definitions
and discussion of these examples, see for example [BCN89], [PLN97, Sec 7.1],
and [vB07, Sec 2].
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Exercise 9.1.1. Check distance-transitivity for the usual 3-cube. (The longest
distance is 3—and the automorphism group acts as S4 on the 4 diagonals exhibiting
this distance.) ♦

Ideally, of course, there should not be too many more examples—if the relevant
classification problem is to be tractable.

Progress toward classification. There is a process for reducing to the case
where G is primitive on the vertices. So we can then apply the actions-list in the
Aschbacher-O’Nan-Scott Theorem, which we discussed in the form of the table in
Remark 6.1.4. (And as we’d mentioned, that result depends on the CFSG, via the
Schreier Conjecture 1.5.1.)

Which of the actions in Remark 6.1.4 should actually arise? The work of
Praeger-Saxl-Yokoyama in [PSY87] showed that if G is primitive and distance
transitive, and Γ is of diameter ≥ 3, then the primitive action has one of the
following types:

• PA (product action)—with Γ a Hamming graph;
• HA (holomorph of abelian)—we usually refer to this case as “affine”;
• AS (almost-simple).

Analysis of the HA and AS cases involves further use of the CFSG:
For the affine case HA, with F ∗

(
G/Or(G)

)
simple, various authors (Liebeck-

Praeger, van Bon, Ivanov, Saxl, Cohen ...) separately treated the usual alternating,
sporadic, and Lie-type cases in the CFSG-list 1.0.2; with the final steps done by
van Bon—see e.g. [vB07, Sec 5].

For the almost-simple case AS, again various authors (Ivanov, Saxl, Liebeck,
Praeger, van Bon, Cohen ...) treated the corresponding alternating and sporadic
cases; as well as the linear groups among the Lie-type cases. Partial results are
available for some other Lie-type cases; for the current status, see for example
Section 4 of [vB07].

Proofs involve detailed properties of the various simple groups; notably maxi-
mal subgroups—e.g. using results we indicated in Chapter 6. But the conclusion-
graphs are comparatively rare; and proofs often require strong restrictions on vari-
ous parameters, so that arguments are often highly computational in nature.

An application via the Sims Conjecture. The paper of Cameron-Praeger-
Saxl-Seitz [CPSS83] uses the CFSG to establish, in their Theorem 1, a conjecture
of Sims: namely that there is a function f , so that for a primitive permutation
group G on a finite set, with d the length of any nontrivial Gα-orbit, we have for
the stabilizer order (not index!) that |Gα| ≤ f(d).

They in turn use this to establish their Theorem 2: that there are only finitely
many connected distance-transitive finite graphs of any fixed valency greater than 2.

The proof of Theorem 1 applies the Aschbacher-O’Nan-Scott Theorem, using
the cases as in Remark 6.1.4, to reduce to the subcase AS with a simple socle.
Subsequent sections then consider the structure of the simple groups in the families
in CFSG-list 1.0.2, to establish the needed bounds.

9.2. The proportion of p-singular elements

I thank Cheryl Praeger and Bill Kantor for suggesting this topic.



9.2. THE PROPORTION OF p-SINGULAR ELEMENTS 155

A surprising result on the proportion. Computational group theorists are
interested in the efficiency of algorithms for various group-theoretic operations; in
particular, we mention searching for p-singular elements (that is, of order divisible
by p). Of course a random search can rely on the proportion of such elements in a
group G. Isaacs-Kantor-Spaltenstein [IKS95] used the CFSG to establish:

Theorem 9.2.1. For p dividing the order of a permutation group G of degree n,
the proportion of p-singular elements in G is at least 1

n .
Equality holds iff either G = Sp; or n = pa with G sharply 2-transitive.

Exercise 9.2.2. Check the indicated proportion in the case G = Sp.

Notice that the main bound 1
n depends on the degree n—but not on the prime p.

This may not seem intuitively clear a priori!

The proof using maximal subgroups of Sn. Section 2 of [IKS95] reduces
to the case where G is almost-simple. It would have been possible to obtain this
by just quoting the structures-list in the O’Nan-Scott Theorem 6.1.1, and reduc-
ing to the almost-simple case (6) there. In fact the authors give an independent
direct proof: though perhaps not surprisingly, the main logic sequence roughly fol-
lows the deduction of the actions-list in the Aschbacher-O’Nan-Scott Theorem in
Remark 6.1.4—and their basic argument culminates in a reduction to the almost-
simple case AS.

We had already discussed some deductions of this type—in appendix Sec-
tion A.1, and in the applications-Section 6.5; so we will not here follow that re-
duction argument in Section 2 of [IKS95].

Instead, we’ll sample a little of the argument in the later sections of that paper:
since there we have L := F ∗(G) simple, those sections treat the various possibilities
for simple L in the CFSG-list.

In fact Section 3 there indicates the comparatively easy calculations which treat
the cases where L is alternating or sporadic; thus we are reduced to L of Lie type.

Section 10 handles the somewhat easier case where p is the characteristic of L:
here p-elements are unipotent, so the theory of unipotent groups can be exploited.

After Section 10, p is not the characteristic prime of L. Consequently the p-
elements lie in some torus—possibly non-split as in Example 5.2.2. In fact, tori
are parametrized by conjugacy classes of the Weyl group W , as we had mentioned
in (5.2.1), with p-elements realized as block-diagonal matrices. These typically com-
mute with suitable unipotent elements, again allowing use of unipotent structure.
Here, the calculations use the minimal permutation degree of L; the possibilities
are tabulated in Section 4, using existing estimates from the literature.

Section 7 then makes the needed calculations (with some computer use) for
exceptional L—one Lie type at a time; while Section 8 handles the classical groups
in a more uniform way.

Some applications and extensions. Aside from the obvious use in searching
for p-elements, Theorem 9.2.1 has also been applied to various other computational
problems, including:

• random generation of G;
• recognition of G, e.g. as a classical group; and
• testing elements of G for containment in a subgroup H.
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These and other applications can be looked up via MathSciNet, starting at [IKS95].
Niemeyer-Praeger [NP10] analyzed the context of the result, and further ex-

tended the methods.

9.3. Root subgroups of maximal tori in Lie-type groups

For a group G of Lie type, we first recall some notions leading up to root subgroups
in 1.3.20(1):

We saw in Remark 1.3.7 that underlying a Lie-type group G is a simple Lie
algebra G over C; including a Cartan subalgebra H, whose action decomposes G via
root spaces, in terms of the root system Φ and Weyl group W . And a corresponding
Cartan subgroup H determines root subgroups in G, as in Remark 1.3.20(1).

Next: Various subgroups X of G, notably those generated by individual root
subgroups, are in fact H-invariant. And then of course the product XH is also a
subgroup of G. Such groups, which we might call H-root groups (and indeed more
general H-invariant subgroups, such as arbitrary overgroups of H) describe much
of the interesting subgroup structure in G. For example, we saw in Section 6.2 that
some natural maximal subgroups of G arise via maximal-rank-as-reductive root
subsystems of Φ.

Seitz’s theorem on overgroups of a maximal torus. In the above situa-
tion, H is in fact a split torus for G; we may also wish to consider similar notions
of root groups, with respect to a nonsplit torus T in the language of Example 5.2.2.
Such subgroups provide even more of the interesting subgroup structure for finite
Lie-type groups G.

A basic work of Seitz [Sei83] extends the above notions of H-root groups to
the case of nonsplit T . We won’t here reproduce the more complicated statement
of his main theorem at [Sei83, p 154]; but the spirit of that result is roughly that

overgroups of T0 := T ∩ Op′(G) are generated essentially by what he calls T -root
groups. To describe these T -root groups, we’ll develop a bit more background.

First just for practice:

Exercise 9.3.1. Describe nonsplit tori in the case L3(4) of Example 5.2.2. ♦

Seitz’s work proceeds mainly in the context of algebraic groups; but since sub-
groups of finite G might not display Lie structure, we mention that the CFSG was
relevant in treating such further configurations. We also note that to avoid com-
plications in groups over small fields of definition for G, say Fq, where q = pa for a
prime p, some of Seitz’s results assume that q and p are roughly “not too small”.

The construction of the T -root groups. We continue with our background
development: We recall from Remark 1.3.23 that the finite Lie-type group G arises
as the fixed points G

σ
, in an algebraic group G over the algebraic closure Fp,

under an automorphism σ (combining a field automorphism possibly with a graph
automorphism); with T = G ∩ T , for a maximal torus T of G. Since T is a full
maximal torus, it has T -root groups in analogy with those for the split torus H of
the finite group G.

Seitz then constructs the finite T -root groups: First he considers subgroups
given by the intersection of finiteG with the T -root groups; and then he takes groups
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generated by σ-orbits of such intersections. From [Sei83, 3.1], each such group is
either a p-group (e.g. when σ is just a field automorphism), or a possibly twisted
Lie-type group over an extension field of Fq (e.g. when a graph automorphism is
involved). And as we had noted earlier, these T -root groups are the building blocks,
for the overgroups of T0 in Seitz’s main theorem.

Exercise 9.3.2. Give some examples of such subgroups in L3(4). These in-
clude the usual root groups; and orbit-determined groups like U3(2). ♦

Remarks on proof and applications. To sketch the proof: The T -root
groups are used e.g. in (10.1) and (10.2) of [Sei83], to describe arbitrary over-
groups Y of T0 in G. Then, assuming that the main theorem about generation
by T -root groups fails, Seitz reduces at (10.11) to the situation where F ∗(G) consists
of at most 2 simple groups L. Now he can apply the CFSG-list 1.0.2 to determine
possible L; and then examining the usual three cases (alternating, Lie-type, and
sporadic L), he uses the known structure of L to obtain numerical contradictions.

The results in [Sei83] are used e.g. to describe more general subgroup structure
in Lie-type groups; notably in the study of:
• maximal subgroups via the algebraic-groups approach,

which we described in the relevant subsections of Section 6.2. But there are appli-
cations in various other areas which make use of the CFSG; e.g.:
• generation and random walks (compare Section 6.5);
• fixed-point ratios in groups (cf. later Section 10.3); and
• logic: model theory related to algebraic groups—e.g. [BB04].

Some applications more briefly treated

The remaining sections of the chapter provide much less detailed discussions.

9.4. Frobenius’ conjecture on solutions of xn = 1

Frobenius (1895) showed that the number of solutions of xn = 1 in G must be a
multiple of n; and in the extremal case of exactly n, he conjectured:

Conjecture 9.4.1. If exactly n elements satisfy xn = 1 (for n which di-
vides |G|), then these elements should in fact give a subgroup of G.

Exercise 9.4.2. Explore this: e.g. for S4 with n = 8; for A4 with n = 4; etc. ♦

Various special cases had been established over the subsequent years; for example,
the case of G solvable, by M. Hall in [Hal76, 9.4.1].

Later Zemlin [Zem54] reduced the problem to the case of G a simple group.
Finally Iiyori and Yamaki announced the completed proof in [IY91], having

checked the various types of simple groups in a number of earlier papers. To give
a quick idea of how they proceeded:

When p divides both n and |G|/n, their Lemma 1 shows that either p is odd,
and G has a cyclic Sylow p-subgroup; or p = 2, and m2(G) ≤ 2. Their Lemma 2
eliminates the former case; and in the latter, they proceed by explicitly examining
the simple groups arising in the Small Odd Subcase of the CFSG. We had indicated
these groups in the applications-subsections following the Z∗-Theorem 8.1.1.
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This reduces to the case where n and |G|/n are coprime. Some sample ar-
guments for various subcases are illustrated in [IY91]: e.g. for Lie-type G, they
exploit the known structure of tori.

The result can be applied for example in the context of the prime graph of G,
with vertices given by the primes p dividing |G|, and edges whenever G has an ele-
ment of order pq. There is a corresponding literature on this graph; see e.g. [Luc99].

9.5. Subgroups of prime-power index in simple groups

For general finite groups H, there is no “co-Sylow” theory: that is, no theory of
subgroups K having p-power index in H. (Though for solvable groups H, there is a
well-known corresponding theory of Hall p′-subgroups—see e.g. [ALSS11, A.1.14].)

On the other hand, for simple G, the possible cases for subgroups which have p-
power index are given in Guralnick [Gur83]. The method of proof had essentially
appeared in Liebler-Yellen [LY79], though that paper only considered solvable
subgroups K. (Cf. also Kantor in [Kan85] and Arad-Fisman in [AF84].)

The argument is a comparatively easy deduction, using the CFSG-list 1.0.2:
The cases where G is alternating or sporadic are fairly straightforward to deal

with; so below we’ll restrict attention to G of Lie type.
If G is defined over a field of characteristic p, then G = KU for a full unipotent

group U ; and it follows that K is flag-transitive on the building of G. For this
condition, the possibilities had been listed by Seitz [Sei73].

Otherwise G has characteristic other than p; so we may assume K ≥ U , and
then K is normal in a parabolic P . Now from the standard order formulas for G
of Lie type, |G : P | is rarely a prime power.

A corollary of the main result of [Gur83] is a new proof of the list of permu-
tation groups of prime degree: that list had earlier been obtained as a consequence
of the CFSG, by Feit [Fei80]—see 4.1 and 4.2 there.1

The main result has also been used in an impressively wide variety of further
applications. I won’t attempt to give details here; but a quick search on MathSciNet
indicates areas such as:
• maximal subgroups;
• permutation groups;
• ordinary and modular character theory;
• group factorizations;
• profinite groups;
• number theory: Mersenne primes, Galois groups, group zeta functions;
• codes, association schemes, game theory;
• and even the Yang-Baxter equation in physics!

The result also describes permutation groups of prime-power degree.

It seems natural to also mention here the determination, again as an application
of the CFSG, of the primitive groups of odd degree—in Liebeck-Saxl [LS85] and
independently Kantor [Kan87]. Kantor also makes use of Aschbacher’s Classical
Involution Theorem; and applies his result to geometry, e.g. projective planes.

1Seemingly the values p = 11, 23 are only implicit in the statement of Feit’s 4.2.
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The sparsity of non-alternating primitive degrees. We close the sec-
tion with a brief sketch of a general result on primitive degrees due to Cameron-
Neumann-Teague [CNT82].

As background, recall that the “structured” primitive cases in (3)–(5) for Sn in
the O’Nan-Scott Theorem 6.1.1—and indeed in the more detailed cases for prim-
itivity in the Aschbacher-O’Nan-Scott Theorem in Remark 6.1.4—required rather
special values for the index n. So we might expect roughly that for almost all n,
the groups An and Sn are the only primitive groups of that degree.

The main result [CNT82, Theorem] makes this precise, in the following way:
Let E denote the set of “exceptional” natural numbers—namely those n for which
some group other than An or Sn has a primitive representation of degree n; and
let e(x) denote the number of members of E which are ≤ x. Then the density of E

is the limit of e(x)
x for increasing x. The Theorem shows that e(x)

x ∼
2

log x ; so from

the limit we get density 0.
The proof uses the Aschbacher-O’Nan-Scott Theorem (though in effect argu-

ments from Jordan’s thesis already suffice), to express E as a union of four subsets,
corresponding to possible socle-structures for a primitive group. Of these, the first
three are easily shown to have density 0; leaving for analysis just the fourth set E4,
corresponding to the simple-socle case AS in 6.1.4.

So now the structures of the groups in the CFSG-list 1.0.2 are examined; the
proof separates alternating groups from Lie-type groups (and the finite number
of sporadic cases can be ignored because of the asymptotic context). Suitable
calculations then give estimates establishing that E4 also has density 0.

9.6. Application to 2-generation and module cohomology

For module cohomology H∗(H,V ), namely of a group H with coefficients in a
module V , a number of results show (or else conjectures assert) that for suitable
small dimensions n, Hn(H,V ) should be “not too large” in terms of V . Aschbacher
and Guralnick in [AG84, Thm A] show:

(9.6.1) For H faithful on irreducible V/Fp, we have |H1(H,V )| < |V |.

We give a very quick overview of their proof:
They reduce to the case where H is simple; and they consider the cohomology

group H1(H,V ) using the standard interpretation via conjugacy of complements
to V in the semidirect product HV .

Now their Theorem C allows them to express the generation of the prod-
uct HV , in terms of cohomology H1(H,V ) and the generation of H. And they
get 2-generation of simple H using their [AG84, Thm B].

As we had mentioned at the start of Section 6.7, that result depends on
the CFSG. We mention that their proofs for H alternating and Lie-type are fairly
short; while the sporadic cases require a few more individual details.

Again these results are applied in many areas, such as:
• complements and module cohomology (e.g. H2(H,V ));
• generation and presentations;
• permutation groups and Cayley graphs; and
• profinite groups.
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9.7. Minimal nilpotent covers and solvability

Work of a number of authors has recently culminated in:

(9.7.1) A group with a minimal nilpotent covering is solvable.

Here a covering is via the union of a set of proper subgroups; it is minimal, if no
subgroup can be removed; and nilpotent, if the subgroups are nilpotent.

To summarize the treatment:
Bryce-Serena [BS08b, 2.1] reduce to the case of F ∗(G) simple; and in the

subcase where G is itself simple, they handle the alternating and sporadic cases, as
well as several Lie-type cases.

Blyth-Fumagalli-Morigi [BFM15, Thm 2] complete the analysis, covering the
usual 3 classes in the CFSG-list 1.0.2 for the simple group F ∗(G); here are a few
features:

Their Lemma 2 easily reduces the Lie-type subcase to small rank. Then
for any simple F ∗(G), their Proposition 6 eliminates the possibilities for outer
automorphisms—using basic facts such as those in our discussion of these auto-
morphisms in Section 1.5. So now G is simple; and they can finish by individually
treating the only two small-rank Lie-type cases remaining after [BS08b] above.

9.8. Computing composition factors of permutation groups

I thank Bill Kantor for suggesting this topic.
An important task in computational group theory is the determination of

composition factors of an input-group G. In particular, Luks [Luk87] gave a
polynomial-time algorithm for finding composition factors, in the case where G
in a permutation group. The proof of correctness of the algorithm uses the CFSG;
here are a few features:

Some sub-algorithms of the main algorithm, in Sections 4–5 of [Luk87], are
shown to involve primitive actions.

The possible actions are given by the Aschbacher-O’Nan-Scott Theorem; and
the cases needed are summarized in [Luk87, 2.1]. Recall we described the actions
via the table in Remark 6.1.4; and 6.1.4 uses the CFSG, via the Schreier Conjec-
ture 1.5.1. Indeed at [Luk87, p 98], that dependence becomes visible in Luks’
analysis: for arguments there reduce down to the almost-simple case AS; and at
that point, they further require the Schreier Conjecture: namely solvability of the
automorphism group of the relevant simple group.

These arguments are in effect applied to the output of the main algorithm,
namely a section H of G which is a potential composition factor: in order to prove
that H is indeed simple, and hence really is a composition factor.

Luks’ algorithm was later substantially improved; see for example Babai-Luks-
Seress [BLS97]—which still uses the Aschbacher-O’Nan-Scott Theorem.

Recently Babai in [Bab16] has shown that graph isomorphism can be solved in
quasipolynomial time. The proof heavily uses the CFSG; and also earlier work of
Luks [Luk82], showing that graph isomorphism for bounded valence is polynomial-
reducible to other problems—which do explicitly involve groups.



CHAPTER 10

Some applications farther afield from finite groups

This final chapter contains a number of applications that are farther removed
from finite group theory. Of course since they are beyond my own experience, I am
grateful to the colleagues nearer to those other areas, who suggested them to me.

Before examining these individual specific topics, we indicate some more general
contexts of applying finite groups in other areas of mathematics:

(1) Geometry and topology . Here the groups which occur naturally are mostly
infinite, rather than finite. But often they satisfy weaker conditions, which still
involve some suitable kind of finite behavior: Such conditions include for example
finitely generated, and residually finite; these arise in the application we discuss in
Section 10.1. Furthermore locally finite groups and generalizations appear in the
application in Section 10.4.

(2) Number theory and field theory . Here groups arise in various ways: One
standard area is given by Galois groups of field extensions; these are often but not
always finite. Field theory also includes the study of Brauer groups; and we discuss
an application to relative Brauer groups of suitable field extensions in Section 10.2.

(3) Algebraic geometry . This wide area of course has considerable overlap with
the two areas just indicated. For example, many papers of Abhyankar on Galois
groups invoke various applications of the CFSG. In Section 10.3, we examine an
application to the monodromy groups of coverings of the Riemann sphere.

(4) Computer science. We had indicated one aspect, namely computational
group theory, in our discussion of application areas in Section 6.4. But groups
also arise more generally in computer science: One standard example is symme-
try in network design—for example, expander graphs, which are the topic of the
application we discuss in Section 10.6.

It would be possible to indicate many further research areas here. Indeed, as we
have indicated explicitly in many of the sections in Chapters 9 and 10, such areas
turn up in a MathSciNet search on the further papers which quote the application-
papers discussed in those sections.

10.1. Polynomial subgroup-growth in finitely-generated groups

In this section, we focus on subgroup growth in a group G which is finitely
generated and residually finite. (Recall that the latter means that the intersection
of all finite-index subgroups is trivial.) The growth is measured by expressing the
number of subgroups of index n in G, as a function f(n). And one finiteness-type
condition on this measure is given by polynomial subgroup-growth (PSG): when
this function is polyomial in n—as opposed to say exponential in n.

161
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A characterization of PSG. Lubotzky-Mann-Segal in [LMS93] completed
a characterization of such groups:

Theorem 10.1.1. A finitely generated, residually finite G has (PSG) iff it has
finite rank and is virtually solvable.

Here rank r means that finite-index subgroups are r-generated; and virtually solv-
able means that some finite-index subgroup is solvable.

The paper [LMS93] builds on earlier work in Lubotzky-Mann [LM91] and
Mann-Segal [MS90]. It also gives a good introduction to the literature.

The CFSG is used at [LMS93, pp367ff], to identify nonabelian chief factors of
finite quotients of G; and similarly at [MS90, 4.1].

We indicate some features of the overall proof: The Lemma in [LMS93] (which
is similar to an earlier argument of J.S. Wilson) shows that for N the centralizer of
such chief factors, G/N must be a linear group in characteristic 0. By earlier results
applying to this explicit situation, they can conclude using (PSG) that G/N is a
finite extension of a solvable group X/N . Now any finite nonabelian chief factor
of X would lie in a finite nonabelian chief factor of G—but such chief factors
can’t appear either in solvable X/N , or in N which centralizes them; so they lie
above X/N . Consequently any finite chief factors of X must be solvable. And then
an earlier result1 leads to X itself being a finite extension of a solvable group, so
that the same structure holds for G. �

Further developments. Theorem 10.1.1 has inspired much further work: for
example, on analogous properties such as “polynomial index growth”. Furthermore
the result has been applied in many other areas, including:
• profinite groups;
• arithmetic groups and their zeta functions;
• crystallographic groups; and
• branch groups of trees.

A good survey article on the general area of growth in groups is Helfgott [Hel15].
That discussion is fairly explicit about uses of, as well as avoidance of, the CFSG.

10.2. Relative Brauer groups of field extensions

We turn to a topic in field theory; beginning with a rough sketch of some background
material:

For a field K, the Brauer group B(K) is given by the set of Morita-equivalence2

classes of finite-rank central-simple algebras over K. These are relevant to the
classification of division algebras, and to class field theory.

For a field extension L/K, the relative Brauer group B(L/K) is the kernel of
the natural map of B(K)→ B(L).

We restrict attention to global fields: This term covers certain types of fields
roughly arising via “one generator” constructions: namely algebraic number fields
(i.e., finite extensions of Q, which are of form Q(α) by a standard result in Ga-
lois theory); function fields of algebraic curves (functions of the “one parameter”
defining the curve); and finite extensions of the rational functions Fq(t). They have

1I suspect their mention of a result “in Section 3” is a misprint for “in Section 2”?
2That is, equivalence of module-categories for the indicated algebras.
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the property that a extension L of K of global fields can similarly be realized in
the form K(α).

Relative Brauer groups of global fields are infinite. The work of Fein-
Kantor-Schacher in [FKS81, Cor 4] showed:

(10.2.1) For global fields L > K, B(L/K) is infinite.

We’ll now extract some features from the proof in [FKS81]:
This result (their Corollary 4) is deduced using their more general Theorem 2—

which describes the p-part B(L/K)p; and indeed more directly from Corollary 3 of
Theorem 2, essentially showing that, for E the Galois closure of L/K,

B(L/K)p is finite iff p-elements of Gal(E/K) fix roots;
where the indicated roots are those of the minimal polynomial of some α, such
that K(α) realizes the extension L.

Corollary 4 now follows—using their permutation-group theoretic Theorem 1,
which states that:

(10.2.2) A transitive G has, for some p, a p-element fixing no points.

This result is independently interesting, for the theory of permutation groups.

We turn to some features of its proof. If (10.2.2) fails, we have:
(*) Each p dividing |G| also divides |Gα|.

Inductive arguments reduce to the case where G is simple (and in fact primitive);
so we can examine the usual three type in the CFSG-list 1.0.2:

If G = An, using (*) leads to having Gα also transitive on the n-set for An; and
a contradiction can be reached using (*) along with some known related number-
theoretic estimates.

For G of Lie type, the arguments use (*) along with other standard struc-
tural features, such as: the subgroups of L2(q); subgroups generated by long-root
elements—for this influential topic, see e.g. [Kan79][LS94]; Seitz’s determina-
tion [Sei73] of flag-transitive subgroups; etc.

When G is sporadic, usually Gα is in the normalizer of some simple subgroup,
and then it is fairly easy to check that (*) can’t hold.

Further directions. The results in [FKS81] have inspired extensions in other
parts of field theory; and have also been applied in a number of other research areas,
including:
• “elusive” groups (meaning that no element of p fixes a point);
• orbital partitions and other topics in permutation groups;
• conjugacy class sizes in groups;
• solvability criteria for groups; and
• factorizations in graph theory.

We mention that Degrijse-Petrosyan [DP13] approach (10.2.1) instead via Bredon-
Galois cohomology.

10.3. Monodromy groups of coverings of Riemann surfaces

Our next topic involves algebraic geometry; again we sketch some background:
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A Riemann surface X is a 1-dimensional C-manifold. Ordinarily we restrict
attention to the case where X is connected and compact. A standard example is
the Riemann sphere, namely the complex projective line. The genus of X (say g) is
the number of “handles”, viewed in R-space; for example, the Riemann sphere has
genus 0, a torus has genus 1; etc. A branched covering is given by a meromorphic
function φ, which surjects X onto the Riemann sphere. Removing the finitely
many branch-points leads to a covering in the usual topological sense—so that we
can apply corresponding theory such as the fundamental group. And then lifting
loops around those branch points maps the potentially huge fundamental group
down to the finite monodromy group of the cover.

It is known that such monodromy groups often have composition factors which
are cyclic, or alternating; what other simple composition factors could occur?

The Guralnick-Thompson Conjecture. Guralnick and Thompson [GT90]
proposed the following:

Conjecture 10.3.1 (Guralnick-Thompson Conjecture). For fixed g—but vary-
ing over all covers X,φ of that genus—only finitely many non-alternating non-
abelian simple groups can arise as composition factors of a monodromy group.

Various authors contributed to the proof of the Conjecture; and it was completed
by Frohardt-Magaard in [FM01, Thm A]. We extract some features:

Note first that using the CFSG-list 1.0.2, there are only finitely many sporadics;
so the “non-alternating” restriction in the Conjecture amounts to saying “only
finitely many Lie-type simple groups”.

Here is some general background to the work:
A standard variant of the Conjecture given in [GT90] reformulates the mon-

odromy group in terms of the action of a permutation group H on a set Ω: it has r
generators xi; along with a relation x1x2 · · ·xr = 1 coming from the fundamental
group; and the action satisfies:

(10.3.2)
∑
i

(
|Ω| −#(orbits of xi)

)
= 2( |Ω|+ g − 1 ) .

The corresponding strategy is then to try to eliminate composition factors above
some particular size—by getting lower bounds on the left side of (10.3.2), sufficiently
large to exceed the right-hand side. In [Gur92], Guralnick showed that such lower
bounds could in fact be obtained via upper bounds on the fixed-point ratio:

|FixΩ(xi)|
|Ω|

.

Within the above context, [FM01, Sec 1] reviews the earlier literature:
First Guralnick [Gur92, 5.1ff] reduced to showing that only finitely many

almost-simple subgroups K can arise in the monodromy group. So as usual we
apply the CFSG-list 1.0.2 to examine the cases for G := F ∗(K); recall we had
already reduced to considering just Lie-type groups.

Liebeck-Saxl [LS91] then treated large Lie-type groups of exceptional types;
so the problem was reduced to showing only finitely many classical G are possible.

Next Liebeck-Shalev [LS99b] treated classical G which have actions on Ω which
are not of “subspace” type; this reduced to the case of Ω arising from the subspaces
of natural module V for classical G.
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Now the main work of Frohadt and Magaard in [FM01] can be quickly summarized:
Using fixed-point ratios for such V , obtained in an earlier work [FM00], they

obtained in their Theorem B a group-theoretic result in the context of (10.3.2); lead-
ing to their main result Theorem A, the Guralnick-Thompson Conjecture 10.3.1.

Further developments. The proof of the Guralnick-Thompson Conjecture
in [FM00] has inspired a number of further refinements; and has led to applications
in various directions, such as orbits on tuples of group-elements closed under braid
operations, and non-simple abelian varieties.

The particular technique of fixed-point ratios has also been applied in some
other areas; for example, Keller’s [Kel05] route to the k(GV ) problem: this is an
alternative to e.g. the Robinson-Thompson route mentioned earlier, in (2) of the
introductory remarks in Section 6.4.

See also Magaard-Waldecker [MW15b][MW15a], for some related applica-
tions of the CFSG.

Some exotic applications more briefly treated

These last few applications seemed unusual and possibly even surprising to me; see
if you agree.

10.4. Locally finite simple groups and Moufang loops

See [Hal06] for fuller definitions and references of material only informally sketched
in this section.

Recall that locally finite means that all finitely-generated substructures are
finite. For example, we mention for reference below the standard fact (e.g. 1.2
in [Hal06]) that the fields which are locally finite but not finite are the infinite
subfields K of the algebraic closure Fp of a prime field Fp.

Locally finite simple groups. A natural wider context for Hall’s result on
Moufang loops, indicated later in this section, is provided by the locally finite simple
groups. It’s probably hopeless to expect a full classification; but there is progress
in classifying these groups under reasonable restrictions.

The usual standard example of an infinite simple group which is locally finite,
but not finite, is the alternating group AΩ on an infinite set Ω. Another class of
examples is provided by the simple Lie-type groups G(K), where K is a locally
finite field as above.

Here the G(K), but not the AΩ, are linear : that is, they are embedded in a
suitable GLn(K), for some finite dimension n.

Indeed the G(K) were characterized as the only locally finite simple groups
which are linear—in a series of papers by Belyaev, Borovik, Hartley, Shute, and
Thomas. (The original proof depended on the CFSG; but later work of Larsen and
Pink removed that dependence.)

Now the groups AΩ do satisfy the weaker property of being finitary-linear :
that is, they can be represented linearly on an infinite-dimensional space V over K,
with every element g having finite-dimensional commutator [V, g]. Indeed further
examples of locally finite simple groups arise from the finitary subgroups of the
usual classical simple groups (linear, unitary, symplectic, orthogonal) on V .
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Correspondingly Theorem 1.1 in Hall [Hal06], shows that the only finitary
examples are those listed above. His proof uses the indicated linear-subcase result.
Hall’s paper quotes, as 5.1 and 5.2 there, an earlier result of Hall-Liebeck-Seitz,
along with its extension by Guralnick-Saxl, on bounds for the minimal number of
generators from a conjugacy class. Their proofs use the CFSG—including some
detailed properties of representations, maximal subgroups, and Bruhat structure in
Lie-type groups. But Hall actually only needs his weaker 5.3 and 5.4; the finitary
condition gives some geometric leverage, which might lead to CFSG-free proofs of
these results.

Hall’s result reduces the treatment of locally finite simple groups to the non-
finitary case. Here a description by Meierfrankenfeld in [Mei95] should allow for
further analysis, if not necessarily full classification.

Simple Moufang loops. One generalization of a group is provided by a
loop—which has the group axioms, except perhaps associativity. A Moufang loop
then adds a weak version of the associativity axiom, namely:

(ax)(ya) = a
(
(xy)a

)
.

Moufang loops arise in various contexts, notably projective geometry.
In the absence of any concept like a normal subloop, the appropriate analogue of

simplicity is to say that a Moufang loop is simple, if any surjective homomorphism
must in fact be an isomorphism. (Hence any contemplated full treatment of locally
finite simple Moufang loops would have to include a classification of locally finite
simple groups, which may be out of reach.)

A result of J. Hall. Hall’s [Hal07, Cor 1.3] has an intriguing statement:

Theorem 10.4.1. A simple locally finite Moufang loop which is uncountable
must in fact be a group (i.e. associative).

First some remarks, on various details in the statement:
(1) We cannot replace “uncountable” above with finite or countable; as the

example of the Paige loop below shows.
(2) Associativity is checkable locally, indeed on triples; but seemingly an un-

countable checking is crucial for the result here?
(3) Even simplicity is “fairly” local; indeed Zaleskii had noted early on that

a locally-finite simple group need not be a limit of finitely-generated simple sub-
groups. (E.g. infinite-dimensional finitary symplectic cases, as noted above, are (in
odd characteristic) limits only of quasisimple groups.)

The background to this result involves a standard non-group example, namely
the Paige loop: it is given by PSOct(F ), i.e. the norm-1 split octonions (mod ±1)
over a field F .

Some features of the proof. The story starts in the finite case; Liebeck
in [Lie87b] had shown that a finite simple Moufang loop is:

either a finite simple group, or PSOct(F ) for a finite field F .
He uses techniques of Glauberman and Doro related to triality; and applies the CFSG
to determine the relevant simple G with S3 ≤ Out(G).

Hall [Hal07, Thm 1.2] extended this to the locally finite case: namely he
showed that a locally finite simple Moufang loop is:

a locally finite simple group, or PSOct(F ) for a locally finite field F .
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And now his Corollary 1.3, namely Theorem 10.4.1 above, follows: Recall we had
mentioned that a locally finite field is a subfield of countable Fp for some p; and the
octonions are of dimension 8 over F—so that the second case above is countable.
Thus uncountable locally finite simple Moufang loops must in fact be groups.

We mention that Hall’s application above is one of various later applications of
Liebeck’s result; primarily in further developments in loop theory.

10.5. Waring’s problem for simple groups

For background on this area, see e.g. [Tie14, Sec 3.3], and the survey [BGK14].

We first recall the classical theorem of Lagrange: that any positive integer can
be written as the sum of at most 4 squares. For powers xk higher than x2, this was
generalized to the classical Waring problem; solved by Hilbert in 1909:

Theorem 10.5.1. For any k, there is a value g(k), such that any positive
integer is the sum of at most g(k) k-th powers.

Within a group G—and we will restrict attention to simple G—we can ask the
analogous question about finding g(k): for representing elements now as a product
of k-th powers in G.

Indeed we can go on to ask about g(w)—where we ask about powers of w,
where w is some “word” in appropriate variables, more general than just the single
variable x. For example, we can express the Ore Conjecture 5.6.3 as the statement
that g(w) = 1, for w := [x, y] = x−1y−1xy.

There is an increasing literature on questions of this type.

One strong result is that of Larsen-Shalev-Tiep [LST11]:

Theorem 10.5.2. For any w, there is value Nw such that: for |G| > Nw we
have g(w) = 2.

This says for example that in large enough simple G, any element is a product of 2
squares; or 2 cubes; etc.

Of course the proof assumes the CFSG-list 1.0.2; and uses detailed structure
of the groups in that list.

10.6. Expander graphs and approximate groups

The notion of an expander graph arose in computer science; for any reasonable

subset S of vertices, and its neighbors ∂S, the ratio |∂S||S| should exceed some ε > 0.

This is roughly so that the distribution of information should generally expand, as
paths in the graph lengthen; rather than being isolated in some subset of vertices.

Furthermore for scalability in possible construction, such graphs should come
in increasing families—for a fixed value of ε, so that the expansion does not decay
with the increase.

And indeed such infinite increasing families, with fixed ε, have been built from
Cayley graphs of discrete subgroups in infinite Lie groups; see e.g. Lubotzky [Lub94]
for background.

Similar constructions have been applied to families of finite Lie-type groups;
typically fixing a single Lie type (and possibly characteristic), and increasing the
field-size. Of course this assumes properties of the groups in the CFSG-list 1.0.2.
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Indeed Kassabov-Lubotzky-Nikolov [KLN06] show that for Lie types other
than the Suzuki groups Sz(q) (i.e. twisted type 2C2(q)), expander families can
always be constructed in this way.

That remaining Suzuki-case was subsequently also shown to provide expanders,
in work done by Breuilard-Green-Tao [BGT11]; they make use of Tao’s notion of
a k-approximate group. Roughly: this is a subset A of G, closed under inverses,
with products A · A covered by k translates, that is, by k cosets gA. For an
introduction to approximate groups and their literature, see e.g Green [Gre12]
and Breuillard [Bre14].

A few more uses of simple groups with approximate groups appear in the later
paper Breuillard-Green-Tao [BGT12]. There are also further developments in the
expander literature on constructions via simple groups.
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This Appendix contains some supplementary notes to the text. Most of them
were composed during the course of the original Venice Summer School 2015 lec-
tures, in response to student questions; and were posted as pdf files on the Web at
that time.



APPENDIX A

Some supplementary notes to the text

The material in this Appendix should provide some further background, on
certain of the features introduced in the original text.

A.1. Notes for 6.1.1: deducing the structures-list for Sn

The fairly technical details in this appendix-section are not really required for
the main flow of the chapter. I present the material only because I had found it
necessary to clarify for myself certain points in the literature which had seemed
unclear. Ideally these details will also be useful at least for the reader who wants
to pursue this area more fully.

Unfortunately, in the literature it seems difficult to find more explicit treatment
of the further details—such as inclusions among action-types in the Aschbacher-
O’Nan-Scott Theorem in 6.1.4—which underlie any deduction, such as the one we
indicated after that result, of the structures-list in the O’Nan-Scott Theorem 6.1.1.

For example, Scott at [Sco80, p 329] gives just a 5-line sketch for actions-
list; and Aschbacher’s later correction in [AS85, App], giving the final form of the
actions-list (A) (i.e. 6.1.4, in our treatment), makes just a bare statement of the
inclusion (TW < (3))—which is crucial for seeing that the original statement of the
structures-list (S) in 6.1.1 is unaffected by the correction to (A).

Some further details on containments within the types in (A) can be found in
various early sources; and they are more methodically treated in Praeger [Pra90].
For example: it is fairly standard that the twisted wreath product TW is properly
contained in the holomorph of its socle—leading to action-type HS or HC, and
hence to structure-type (3). We mention that the containments (HS,HC ≤ PA) are
in fact detailed in Kovacs [Kov85, Sec 3]. Finally the containments (HS ≤ SD),
and (CD ≤ PA), are treated in [Pra90, 3.4,3.9].

Properness (<) of various containments is usually left implicit: but typically
the reader can use the action and the socle-structure to see non-isomorphism of the
smaller term with the larger.

Further discussion relevant to these issues appears in [PS].

We mention that Wilson [Wil09, 2.6.2] does not quote the actions-list (A)
of 6.1.4, in deducing the structures-list (S) of 6.1.1; so in particular, he gives
a CFSG-free proof of the O’Nan-Scott Theorem 6.1.1. We will give a quick overview:

For a proper subgroup H of Sn, distinct from An and primitive on the n
points, he subdivides cases via partial information on socle-shapes and actions—
rather than via the fuller information which would be given if he quoted (A). And
then working in the explicit group Sn rather than with abstract actions—in effect,
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via determining the containments among his subcases—he reduces those subcases
for primitive H down to just (3)–(6) of Theorem 6.1.1.

His main logic-sequence is roughly parallel to the proof in [LPS88], partic-
ularly the inclusions among the 8 types, which we gave in columns 2 and 3 of
Remark 6.1.4. Namely: He first reduces to a non-abelian socle—otherwise struc-
ture (4) arises. Then, he reduces to H having a unique minimal normal subgroup N ;
for if there were at least two such N , then H would lie in a group having their
product as its as unique minimal normal subgroup. This argument parallels the in-
clusions (HC,HS < (3),(5)) from 6.1.4. The subsequent reduction is to N having at
least two components (say isomorphic to T ); otherwise structure (6) arises. Then
he reduces to the case where Nα surjects on T ; otherwise structure (3) arises—
this is parallel to (TW < PA). Finally he observes that a compound-diagonal is
proper in structure (3), parallel to (HC < CD < PA); while a single diagonal gives
structure (5), corresponding to (HS < SD).

Thus Wilson’s argument in effect shows in an implicit way that four of the
primitive-types in column 2 of 6.1.4 are non-maximal; so the remaining four give
the candidate-maximal structures (3)–(6) of the O’Nan-Scott Theorem 6.1.1.

A.2. Notes for 8.2.1: the cohomological view of the transfer map

In describing the proof of the Thompson Transfer Theorem 8.2.1, I only briefly
mentioned the transfer map—of a group G into a subgroup H; and I also indicated
that the map could be viewed from a homological perspective. Some of the students
requested more detail on this connection—so these notes were provided (online, at
that time), as a least the beginning of an answer.

This connection seems to be mentioned fairly frequently in the literature, es-
pecially the topological literature; but typically without much detail—especially
detail in a format suitable for those with a mainly group-theoretic background.
However, a fairly explicit reference is Exercise III.9.2 in Brown [Bro94]; later in
the section, I’ll try to expand a little on that view. Another possible reference
is [Wei69, p 116].

The classical transfer map in group theory. The transfer map is some-
times denoted by V , from the German name Verlagerung . For a subgroup H ≤ G,
it is typically viewed as:

the group homomorphism V : G/G′ → H/H ′ described below.
In many classic group-theory texts (see e.g. [CR90, 13.11]), the definition of V is
given by a computational formula, as follows:

Assume that the cosets of H in G are given by Hgi (i = 1 · · ·n). Then corre-
sponding to the action of g ∈ G permuting these cosets, for each i, we get unique
values i′ and hi ∈ H such that:

gig = higi′

Using these, we define:

(A.2.1) V (g) := Πn
i=1 hi = Πn

i=1 (gigg
−1
i′ ) ∈ H;

where the g on the left is read modulo G′, and the values on the right are read
modulo H ′.
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Of course the standard references check that this map is well-defined—that
is, independent of choice of coset representatives; and that it does indeed give a
homomorphism.

Some other texts (e.g. [Asc00, Sec 37]) give a more general version, first defin-
ing a homomorphism α : G→ A to some abelian group A, and then the transfer V
is recovered from the special case A := H/H ′.

The viewpoint of group homology H1. The definition (A.2.1) above makes
no mention of homology. And as mentioned above, the literature can sometimes
be rather terse about the connection: For example, [Bro94, Exer III.9.2] has the
reader derive the formula in (A.2.1) from the abstract definition of the group ho-
mology H1(G) with coefficients in Z. And [CR90, p 336] indicates just that such

a derivation “can be shown” (but using the language of Tate cohomology Ĥ−2).

One common shorthand version of the connection is via the statements that:
there is a natural “restriction” of H1(G) to H1(H); where one standard interpreta-
tion of H1(G) is the quotient G/G′ (and similarly for H)—giving the desired map
from G/G′ to H/H ′.

However, for those whose background is group theory (with perhaps less ho-
mological algebra), it may be difficult to extract these statements from the fuller
generality of definitions given in many algebraic-topology texts. So below I’ll try
to give a somewhat more leisurely expansion.

For purely formal reasons in homological algebra, the group-inclusion given
by i : H → G induces correponding maps i∗ : Hn(G)→ Hn(H) in group homology;
see e.g. [Bro94, II.3] for general definitions of H∗(G). We’ll want to see that for
dimension n = 1, the induced map i∗ is in fact just the transfer map V above.

The transfer map i∗ is often called “restriction” from G to H; though it does
not correspond to a simple-minded restriction—for example, restricting the action
on a G-module to H.

For our dimension n = 1, the first key point is to see that H1(G) can be
naturally identified, as claimed above, with the group quotient G/G′: To this end,
see e.g. the displayed equation at the end of [Bro94, II.3]: The map from the chain
space C1 to C0 = 0 is necessarily the zero map; so that the space C1 of chains
is just the space Z1 of cycles—and furthermore a copy of G gives a spanning set
for this space. On the other hand, the space B1 of boundaries is the image of the
map shown there from chains C2; and that boundary map is just the additive form
of the group commutator hg(gh)−1 = hgh−1g−1, so that the image B1 is spanned
by G′. Thus we get an identification of H1 = Z1/B1 with G/G′. (See also 8.54
in [CR90] for a more formal discussion.)

At this point, we have expressed i∗ as a homomorphism from G/G′ into H/H ′.
So the remaining key point is to show that i∗ “has to be” the map computed by
the formula (A.2.1) for the group-theoretic transfer V .

And now, in a rough summary of my understanding of a standard way of
proceeding: One can use the duality of H1 with H1 in e.g. [Bro94, VI.7.1];
this expresses the non-canonical isomorphism of a finite abelian group with its
dual—which we can apply to each of G/G′ and H/H ′. Now H1(G) is defined
as Hom(G,Z); and we can restrict such homomorphisms, defined on G, down to H
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in the intuitive way—that is, the restriction i∗ : H1(G) → H1(H) is straightfor-
ward. Then if we compose on each side with the non-canonical isomorphisms of H1

with H1 (for G and H, respectively), we obtain a map from G/G′ into H/H ′.
Because of the non-canonical isomorphisms used, in effect one uses a dual-basis cal-
culation of i∗, carried through that composition, to get the formula (A.2.1) for V .
(Again, I’m not sure I can point to a source in the literature for fuller details.)

A.3. Notes for (8.3.4): some details of proofs in Holt’s paper

These notes are not really needed for the treatment in the main text.
Instead, they are intended as possible assistance to the more interested reader,

who may wish to examine arguments in Holt’s original paper [Hol78]—which de-
termines transitive groups satisfying (8.3.4), a condition somewhat weaker than
strong embedding.

Holt’s paper is written in the terse style of exposition which was fairly common
around the late 1970s . And I found that in researching the material that became
this book, at the much later date of 2015, I sometimes had difficulties in recovering
arguments at various points there. So I have provided these notes, indicating some
places where for my own understanding I had to expand the original exposition;
I hope they may save potential readers from having to repeat some of that effort.
And I thank Derek Holt for reading these notes, and providing some improvements.

In the notes in this section, I will often refer to Holt’s original numbering
of results; but for consistency with the numbering used throughout the present
book, I will typically also assign them LaTeX label-numbers of the form A.3.x—for
convenient reference within this section. Of course I will also be assigning such
numbers to the additional remarks that I have added.

Some preliminary remarks on Section 1 of [Hol78]. First we will discuss
some issues which arise in Holt’s introductory Section 1; including a number of
additional lemmas which may help streamline the later exposition.

In Holt’s paper, G is assumed to be a permutation group on a set Ω. We write
the group action via a superscript: as in αg, for α ∈ Ω and g ∈ G.

The term “permutation group” by definition includes faithful action on Ω. For
several later references, it will be convenient to assign a number to this admittedly
very basic fact:

(A.3.1) (faithful:) kerG(Ω) = 1. (Implicitly G > 1; so that |Ω| ≥ 2.)

We mention that G is not initially assumed to be transitive on Ω; instead this
emerges at A.3.7.

Next we recall that Holt’s analysis is motivated by the condition (8.3.4) that
a 2-central involution fixes a unique point. Thus Holt begins with [Hol78, p 165]:

Definition A.3.2. Following Holt, let J denote the set of involutions in G that
fix exactly one point of Ω. For α ∈ Ω, set Jα := J ∩Gα.

And note, for this section only: For a subgroup H ≤ G, we write J(H) for the
analogous subset within H. (Elsewhere in this book, J(−) denotes the Thompson
subgroup 3.1.1.) ♦
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So we will mainly be concerned with groups G for which J 6= ∅. And indeed this
condition will hold for G, from Holt’s Section 2 onward.

Some consequences when J 6= ∅. At this point, Holt’s exposition in Section 1
proceeds to a more general condition he calls (*)—which does not, at least explicitly,
assume that J 6= ∅. We’ll give that condition (*) in a moment, at A.3.5.

But first we “digress”—to add a number of useful properties, of the later situ-
ation from Section 2 on, where we do explicitly know that J 6= ∅:

Lemma A.3.3. Assume that J 6= ∅: say z ∈ Jβ, for β ∈ Ω. Then:
(1) (unique fixed point:) FixΩ(z) = {β}.
(2) CG(z) ≤ Gβ.
(3) For γ 6= β, we have z 6∈ Gγ ; indeed Jβ ∩ Jγ = ∅.
(4) |Ω| is odd (and hence ≥ 3).
(5) βG is the unique G-orbit on Ω of odd size.
(6) (inheritance:) Assume that z ∈ H ≤ G, with H � Gβ; and further

that βH ⊆ ∆ = ∆H ⊆ Ω. Then in H := H∆, we have z ∈ J(H)β, and |∆| is
odd ≥ 3.

Proof. Note that (1) is just a re-phrasing of the basic unique-fixed-point con-
dition (8.3.4), which gives J in Definition A.3.2. Next (1) implies (2), since CG(z)
permutes Fix(z); and also (1) immediately implies (3). Furthermore as z has or-
der 2, by (1) all z-orbits on Ω, other than β, have size 2—so that |Ω| is odd;
and there must be at least one such nontrivial orbit, by faithfulness in (A.3.1)—
giving |Ω| ≥ 3, completing (4). Indeed we see by oddness in (4) that G must have
an orbit of odd size on Ω: and again as z has order 2, it must fix a point on any
such orbit; so that (1) gives the uniqueness of that orbit, as required for (5).

Finally consider the situation in (6): in particular, recall that the standard
notation H∆ means the quotient H/kerH(∆); and in particular H is faithful on ∆.
Since H � Gβ by hypothesis, we have |βH | ≥ 2. So by (1), z must have a nontrivial

orbit on βH and hence on ∆. Then z 6= 1, and so z is also an involution in H; and
further |∆| ≥ 3. Using (1) again, we conclude that z ∈ J(H)β . Finally |∆| is odd,

by (4) applied in H. �

The relationship with Holt’s condition (*). We now return from our digression
above on J 6= ∅, essentially to Holt’s exposition at [Hol78, p 165]. However before
stating his condition (*), it seems important to first discuss one background detail:

Namely, Holt does not—at least explicitly, as far as I can see—assume |Ω| ≥ 3.
Of course for |Ω| = 2, the only faithful permutation group is S2, and there J = ∅;
so it’s clear that Holt is implicitly making the indicated assumption. So for clarity,
we do make that detail explicit:

Hypothesis A.3.4. |Ω| ≥ 3.

And indeed, we will continue to indicate that assumption explicitly, wherever it
seems needed in the remainder of the notes in this section.

With that issue ideally clarified, we return to Holt’s initial exposition; stating
his alternative more technical condition (*), under which he does his main work:

Hypothesis A.3.5 (Holt’s condition (*)). Whenever a 2-subgroup S ≤ Gα
satisfies |Fix(S)| ≥ 3, there is t ∈ Jα ∩ CG(S).
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Notice that the condition “|Fix(S)| ≥ 3”, in order to be non-vacuous when S = 1,
implicitly requires |Ω| ≥ 3—which we have made explicit as Hypothesis A.3.4.

And again we digress briefly, to indicate the technical need for that hypothesis:
If |Ω| = 2 were to be allowed, then no 2-group S (including the case S = 1) can
satisfy |Fix(S)| ≥ 3. And then Hypothesis A.3.5 by itself actually does hold—
though only vacuously. However, it is easily checked that G = S2 does not satisfy
the conclusion of Holt’s main theorem: either in the form at [Hol78, p 165]; or in
the form of his Theorem 1. (In the latter case, we’d have “H” trivial—since J = ∅
in this case of S2.)

So the admittedly-technical observation in the previous paragraph emphasizes
that Holt was implicitly assuming Hypothesis A.3.4. And it motivates our policy of
continuing to emphasize it explicitly, in the remainder of the notes in this section.

We also briefly continue our present digression from Holt’s exposition, in an-
other direction: it will be convenient to interpolate here an explicit statement of
an inheritance-situation for Hypothesis A.3.5, in the spirit of our earlier A.3.3(6);
this seems to be used implicitly later in Holt’s proof:

Lemma A.3.6. Assume that Hypothesis A.3.5 holds. Take any S ≤ Gα with
at least 3 fixed points, and any t ∈ Jα ∩ CG(S) (these t exist in view of Hypothe-
sis A.3.5). Then in C := CG(S)Fix(S), we have t ∈ J(C)α, and |Fix(S)| is odd.

Proof. Set C := CG(S). Since Fix(S) has size ≥ 3 by hypothesis, it contains
some further point β 6= α. Then also S ≤ Gβ ; and we may apply Hypothesis A.3.5
also to β, to similarly get some u ∈ Jβ ∩ C. Now u 6∈ Gα by A.3.3(3), so C � Gα.

And as α ∈ Fix(S), we see αC ⊆ Fix(S). So now we get t ∈ J(C)α and |Fix(S)| is
odd, by A.3.3(6) applied with t, α, C,Fix(S) in the roles of “z, β,H,∆”. �

We now return from our digression(s), to Holt’s exposition at [Hol78, p 165].
At this point, Holt states that the case S = 1 in Hypothesis A.3.5 implies

that G is transitive on Ω. To me this seemed to require some details. This point
partly motivated some of the extra material that I added above; so I’ll re-state the
transitivity remark in the form:

Lemma A.3.7. Assume Hypotheses A.3.4 and A.3.5. Then Jα 6= ∅,∀α ∈ Ω;
and G is transitive on Ω.

Proof. For the trivial 2-group S = 1, we have Fix(1) = Ω and CG(1) = G.
Now as discussed above: here it is necessary to have |Ω| ≥ 3: for we had noted
earlier that J = ∅ when |Ω| = 2. But since we have added Hypothesis A.3.4, we
see Fix(1) = Ω has size ≥ 3; and then Hypothesis A.3.5, applied for any α and this
choice of S = 1, gives Jα 6= ∅, as required for the first statement.

For the final statement of transitivity: We see α is in the unique G-orbit of odd
length using A.3.3(5). Since this applies to each α ∈ Ω, that unique odd-length
orbit is all of Ω. �

Holt’s next sentence states that transitive groups with the unique-fixed-point
condition (8.3.4) in fact satisfy Hypothesis A.3.5. Again this seemed to me to
require details; so having developed some tools above, I’ll re-state that assertion as:

Lemma A.3.8. Any transitive G with (8.3.4) satisfies A.3.4 and A.3.5.
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Proof. From the hypothesis (8.3.4), we have an involution z ∈ Z(T ) for
some T ∈ Syl2(G), with z ∈ Jβ for some β. In particular J 6= ∅, so via A.3.3(4), we
get Hypothesis A.3.4 that |Ω| ≥ 3. For reasons explained earlier, it seems important
to state this explicitly.

Furthermore T ≤ CG(z), and CG(z) ≤ Gβ using A.3.3(2); so we have:
|Gβ |2 = |G|2.

In particular, β ∈ Fix(T ) ⊆ Fix(z), while Fix(z) = {β} using the re-phrasing
in A.3.3(1) of the unique-fixed-point condition (8.3.4). So we conclude that:

Fix(T ) = Fix(z) = {β}.
With these facts in hand, we can start to verify the requirements for Hypothe-
sis A.3.5: We take any α ∈ Ω, and any 2-group S ≤ Gα with |Fix(S)| ≥ 3; and we
must show Jα ∩ CG(S) 6= ∅.

So embed S ≤ R ∈ Syl2(Gα). Then using |Gβ |2 = |G|2, and the hypothesis
that G is transitive on Ω, we see that R ∈ Syl2(G); so R = T g for some g ∈ G.
We must have zg ∈ J , since z ∈ J ; and zg ∈ Z(R) ≤ CG(S). Now using the
equality Fix(T ) = Fix(z) = {β} above, we have:

α ∈ Fix(Gα) ⊆ Fix(R) = Fix(zg) = {βg}.
Thus α = βg, and so zg ∈ Gα. Combining this with earlier remarks, we now
have zg ∈ Jα ∩ CG(S), as required for Hypothesis A.3.5 �

We recall that (8.3.4) is the form of Holt’s hypothesis that is used in most appli-
cations of his result; in particular, for those suggested in toward the end of our
discussion in that area of Section 8.3.

Conjugacy of involutions in dihedral groups. The material above concludes our
discussion of parts of the exposition of Holt in [Hol78, Sec 1].

Before continuing with Holt’s further exposition, we explicitly state some stan-
dard facts about conjugacy of involutions in dihedral groups—these are in fact
applied in later sections of [Hol78]:

Lemma A.3.9. Consider a dihedral group D = 〈d, e〉, generated by distinct
involutions d, e. Set x := de 6= 1, to denote a generator of the cyclic subgroup of
index 2 in D. Write a ∼D b when a, b are D-conjugate (or just a ∼ b when D is
understood).

(1) If |x| is odd (hence ≥ 3), all involutions in D are conjugate; and in partic-
ular, d and e are interchanged by an involution in D.

(2) If |x| is even, the unique involution of cyclic 〈x〉 is central in D; and we
have d ∼ dx2 ∼ dx4 ∼ · · · , and e ∼ ex2 ∼ ex4 ∼ · · ·—accounting for all the
other involutions of D.

Notes for Section 2 of Holt. Next we will discuss some aspects of the more
general exposition in [Hol78, Sec 2]; where Holt establishes some basic properties
under his main hypothesis.

Preliminary observations. For the remainder of the notes in this section:
We assume Hypotheses A.3.4 and A.3.5.

We already indicated why we have added A.3.4, namely |Ω| ≥ 3, to Holt’s original
hypothesis.

In view of Lemma A.3.7, this means we can start out with the properties:

(A.3.10) G is transitive on Ω, and Jα 6= ∅ for each α ∈ Ω.
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We mention that the transitivity here is presumably the reason for the statement
that “m is ... independent of α”, in the second sentence of Section 2 of Holt.
Furthermore Jα 6= ∅ is seemingly required for the statement that mαβ 6= 0 in 2.1
of [Hol78]. But in any case, from J 6= ∅ in (A.3.10):

We may apply the various properties in A.3.3.
In particular, we recall that A.3.3(4) gives us:

|Ω| is odd (and ≥ 3).

Remarks on the proof of [Hol78, 2.1]. Here we expand on the first few lines
of the proof of Holt’s (2.1)—showing that certain involutions t, u are interchanged
by an involution in 〈t, u〉. In particular, this allows us demonstrate another use
of A.3.3(6); as well as the use of the dihedral-conjugacy results above.

For any distinct α, β ∈ Ω, by (A.3.10) we can find t ∈ Jα and u ∈ Jβ . We now
set D := 〈t, u〉, and Y := 〈tu〉. We recall in this situation that:

Y is cyclic of index 2 in dihedral D.
Set ∆ := αD, and D := D∆ = D/kerD(∆). Our initial goal is to show that Y has
odd order ≥ 3.

Using A.3.3(2)(3) we have:

(A.3.11) u 6∈ Gα, so u 6∈ CG(t).

In particular [t, u] 6= 1, so that |tu| > 2; and so we’ve already shown at least that:

(A.3.12) Y has order ≥ 3.

The oddness of |Y | will require a little more work.
Since u 6∈ Gα by (A.3.11), we see D � Gα. So by the inheritance prop-

erty A.3.3(6):
t ∈ J(D)α, and |∆| is odd ≥ 3.

So u of order 2 must fix some point of ∆—which by the usual unique-fixed-point
condition A.3.3(1) can only be β; and in particular, we have β ∈ ∆. And now we
can argue symmetrically, interchanging t and u: Arguing as for (A.3.11), z 6∈ Gβ
by A.3.3(3); so we may apply A.3.3(6) to u, to get that also u ∈ J(D)β . The

arguments for (A.3.12), made now in D, go through to show |Y | ≥ 3.

Further ∆ = αD has size |D : Dα|. And since Y has index 2 in D, while we
got t ∈ Dα in the previous paragraph, we see that ∆ in fact has size |Y : Y α|.
But Y α is normal in D, as Y is cyclic of index 2 in D, and D is transitive on ∆;
so Y α must in fact fix all the points of ∆—and we get Y α = 1, since D is faithful
on ∆ by construction. Thus we conclude that |∆|, which is odd (and ≥ 3) by the
previous paragraph, is equal to |Y | (which we also saw there is ≥ 3). This achieves
our initial goal.

In particular, D now has twice odd order: 2|Y |. And so by A.3.9(1), all invo-
lutions of D are conjugate; with t and u interchanged by an involution of D. This
completes our expansion of the first few lines of the proof of [Hol78, 2.1].

Remarks on [Hol78, 2.2]. We also comment on Holt’s subsequent result, on an
inheritance-property for his main hypothesis:

Lemma A.3.13. Assume that S ≤ G is a 2-group which satisfies |Fix(S)| > 1.
Then CG(S)Fix(S) satisfies Hypotheses A.3.4 and A.3.5.
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Proof. We will provide some details—since the result is crucial for the later
application of induction (for example, via [Hol78, 2.5]).

Recall that our overall hypotheses on G gave J 6= ∅ in (A.3.10); and this
implies by A.3.3(4) that |Ω| is odd and ≥ 3. Since nontrivial orbits on ∆ of
the 2-group S have size given by a power of 2, we see that |Fix(S)| is odd; so
our present hypothesis that |Fix(S)| > 1 in fact guarantees that |Fix(S)| ≥ 3.
In particular, we have established Hypothesis A.3.4 for Fix(S). So it remains to
establish Hypothesis A.3.5, for CG(S)Fix(S).

Set C := CG(S), ∆ := Fix(S), and C := C∆ = C/kerC(∆). Let α denote
any point of ∆; in particular S ≤ Gα. Then from Hypothesis A.3.5 in G, since
we obtained |Fix(S)| ≥ 3 in the previous paragraph, we get some t ∈ Jα ∩ C; and
indeed from A.3.6, we even get that t ∈ J(C)α.

But this isn’t quite the same as concluding Hypothesis A.3.5 for C. For this,
we must consider any 2-group T ≤ Cα with |Fix∆(T )| ≥ 3, and we must show
that J(C)α ∩ CC(T ) 6= ∅.

So let T denote the preimage in C of T , so that S ≤ T ; and take U to be any
Sylow 2-subgroup of T , so that we have U = T . Since S is central in C and hence
in T , while U is Sylow in T , we have S ≤ U . Now α ∈ Fix∆(T ) of size ≥ 3; and
also Fix∆(T ) = Fix∆(U) ⊆ FixΩ(U), so the latter has size ≥ 3 as well.

Thus we can apply Hypothesis A.3.5 in G, with U in the role of “S”, to α. This
provides us with some z ∈ Jα∩CG(U). Indeed as S ≤ U , we have CG(U) = CC(U),
so z ∈ Jα∩C; and our earlier argument via A.3.6 shows that z ∈ J(C)α. But also we

have CC(U) ≤ CC(U) = CC(T ). Thus we have shown that z ∈ J(C)α∩CC(T )—as

required for Hypothesis A.3.5 in C. �

It is also convenient to explicitly state here one consequence of A.3.13:

Lemma A.3.14. For S in A.3.13, CG(S) is transitive on Fix(S) of odd size ≥ 3.

Proof. We saw early in the previous proof that |Fix(S)| is odd ≥ 3. So A.3.14
gives us the hypotheses, inside C, for A.3.7—establishing the indicated transitivity.
(This is essentially the subcase T = 1 in the previous proof.) �

We now skip over the remaining preliminary results in [Hol78, Sec 2].

Some remarks on Section 3 of Holt. Section 3 of [Hol78] begins the
main proof: Namely Holt continues to assume Hypothesis A.3.5 (and implicitly
also A.3.4 that |Ω| ≥ 3, as we have discussed). And he now further assumes that G
is a counterexample to his Theorem 1, and aims to produce a contradiction. His
Section 3 develops a number of general properties of this more specific situation.

In particular, the preliminary results of his Section 2 continue to be available:
notably transitivity and Jα 6= ∅ in (A.3.10). By the latter, we can continue to use
the properties in A.3.3; especially |Ω| odd, via A.3.3(4).

The proof uses induction on |G|; so that faithful G = GΩ is chosen as a coun-
terexample of minimal order. We will record Holt’s fundamental remark on in-
duction, in his first paragraph, in the following form; and also we will indicate an
explicit proof:

Lemma A.3.15. If |Fix(S)| > 1 for a 2-group S > 1, then CG(S)Fix(S) satisfies
Theorem 1.
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Proof. We saw in A.3.13 that C := CG(S)Fix(S) has Hypotheses A.3.4 and A.3.5.
This part of the argument works even if we have S = 1.

To apply induction on |G|, we will need CG(S) < G. So now we apply the
hypothesis S > 1: If we had CG(S) = G, then G would permute Fix(S); which
would then by transitivity of G in (A.3.10) be all of Ω. But now faithfulness of G
(recall (A.3.1)) would force S = 1, contrary to hypothesis.

Thus by induction, C satisfies Theorem 1. �

Notice we could re-phrase the argument on faithfulness in the previous proof as:
In A.3.15, S ∩ Z(G) = 1; so that CG(S) < G.

We now skip over the remaining results in [Hol78, Sec 3].

Notes on Section 4 of Holt. We had introduced Holt’s Theorem in Sec-
tion 8.3, as an application (indeed, extension) of the Strongly Embedded Theo-
rem 2.0.17.

In fact the groups in Theorem 2.0.17 arise as conclusion-groups for Holt during
the proof of his [Hol78, 4.1]—which we state below as Lemma A.3.16. Consequently
in this subsection, we will primarily explore Holt’s treatment of that result.

We observe that the condition in A.3.16 does not hold in the Bender groups,
which are conclusion-groups in Theorem 2.0.17 and consequently also in his The-
orem 1. Thus A.3.16 is true only in the context of his overall proof of Theorem 1
by contradiction: namely when the Bender groups do arise, they will contradict
his assumption at the start of Section 3 that G is a counterexample to Theorem 1.
However, if we choose to view the overall logic in a more “forward” direction, we
are actually seeing the Bender groups arising as conclusions; and hence reducing
the proof thereafter to the situation in A.3.16.

Lemma A.3.16. There exist distinct a, b ∈ Jα, with [a, b] = 1 and ab 6∈ J .

We will expand on Holt’s proof of this lemma. The proof proceeds by contradiction.
One aspect of assuming that A.3.16 fails is:

(A.3.17) For any distinct a, b ∈ Jα with [a, b] = 1, also ab ∈ Jα.

Along the way, we will want to show that the elements of J are G-conjugate. We
approach that condition via the following more technical statement:

(A.3.18) Given t ∈ Jα, all u ∈ Jγ (for γ 6= α) are G-conjugate to t.

Proof. We set up just as in our earlier remarks on the proof of 2.1 in [Hol78]:
Set D := 〈t, u〉, y := tu and Y := 〈y〉. We saw at (A.3.12) that u 6∈ Gα, and Y has
order ≥ 3. And using A.3.9(1) (as we did for Y at the end of those remarks), we
see that if Y has odd order, then we have the conjugacy t ∼D u, as required.

This reduces us to even |Y | ≥ 4. Let v denote the unique involution in Y ,
which is central in D. Here we get v ∈ CG(t, u) ≤ Gα ∩ Gγ using A.3.3(2). So
setting ∆ := Fix(v), we have |∆| > 1.

Also set C := CG(v) and C := C∆. By A.3.15 with 〈v〉 taken in the role of “S”,
we see C satisfies Theorem 1. Here Holt’s earlier lemma [Hol78, 2.5] shows that:

all elements of J(C) are C-conjugate.
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We will use this fact, to pull back to suitable conjugacy in G.

For note that we have t, u ∈ D ≤ C; and by the inheritance property A.3.6,
we have t ∈ J(C)α and u ∈ J(C)γ . Hence t ∼C u by the previous paragraph. So
there is an element w ∈ C, with w = t and w ∼C u; in particular w is also an
involution. Thus it will now suffice to show that w ∼G t. We are done if w = t; so
we may assume that wt 6= 1. Note since w = t that also w ∈ Gα.

At this point, Holt indicates “by assumption |wt| is odd”. Presumably he
means that this follows by assuming failure of A.3.16—probably via something
like (A.3.17). This doesn’t seem to me to be immediate, so I’ll supply some details:

Set E := 〈w, t〉 ≤ Gα, x := wt, and X := 〈x〉.
Assume by way of contradiction that |x| is even. Let z denote the unique

involution of X, which is central in E = 〈w, t〉. Since w ∼C u with u ∈ J(C),
we also have w ∈ J(C) ⊆ J ; so as we saw w ∈ Gα, in fact w ∈ Jα. Next

since w = t, and w is an involution, we have wt = (wt) = 1; and hence we see
that x = wt ∈ kerC(∆). So we get z ∈ X = 〈x〉 ≤ kerC(∆). And then as |∆| > 1,
we conclude from the unique-fixed-point condition A.3.3(1) that z 6∈ J . On the
other hand, since |x| is even, we can apply A.3.9(2): Since tz 6∈ X, it must be E-
conjugate to either w or t. But in either case, we get tz ∈ Jα, via that conjugacy
under E ≤ Gα; and we also have [t, tz] = 1, since z ∈ Z(E). We can now finally
apply our contradiction-hypothesis (A.3.17) to conclude that also t(tz) = z ∈ Jα;
but this contradicts our observation above that z 6∈ J .

This contradiction establishes that |x| is odd (and hence ≥ 3). So again arguing
as at the outset with A.3.9(1), we have w ∼E t. And as observed earlier, this suffices
to complete the proof of (A.3.18). �

In particular (A.3.18) shows that all members of Jγ are G-conjugate; so by
transitivity (A.3.10) this conjugacy also holds for all other Jα. And since (A.3.18)
also shows that members of Jγ are fused into some other Jα, transitivity now
establishes:

(A.3.19) All elements of J are G-conjugate.

We will now see how strongly embedded subgroups arise, as we complete the proof
of Lemma A.3.16:

Let Γ denote the commuting graph of J . Here (A.3.11) shows that connected
components lie within the separate Jα; so in particular, Γ is disconnected. Further
we have G = 〈J〉 and O(G) = 1, by earlier 3.1 in [Hol78]; this essentially just
applies induction on |G|.

These properties, together with our contradiction-hypothesis (A.3.17), corre-
sponding to the failure of Lemma A.3.16, give the hypotheses for 1.2 in [Hol78]:
this is the sufficient condition of Aschbacher [Asc73] for G to contain a strongly
embedded subgroup, which we had mentioned in our briefer discussion of Holt’s
Theorem in Section 8.3.

Thus by the Strongly Embedded Theorem 2.0.17—given as 1.1 in [Hol78]—we
can conclude that F ∗(G) is a Bender group: that is, a Lie-type group of rank 1 in
characteristic 2.

This contradicts Holt’s assumption that G is a counterexample to Theorem 1;
and so completes the proof of Lemma A.3.16. �
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But, as we noted before the proof: The more natural contradiction to observe
here is that the Bender groups do not satisfy the condition of A.3.16—for in them,
the role of Jα is played by the involutions in a root group; they commute, but
they are also all conjugate, so that products remain in J . Thus really the Bender
groups in the conclusion of Holt’s Theorem 1 (they are described more explicitly in
his Theorem 2) are actually arising here; and hence the remainder of the proof is
reduced to the situation that holds in A.3.16.

We conclude the section with a final remark on the remainder of Holt’s Sec-
tion 4, where he completes the proof of Theorem 1. He proceeds with a pair t, u
chosen as in Lemma A.3.16: namely t, u ∈ Jα with [t, u] = 1 and tu 6∈ J . This will
lead, with considerable further work, to the alternating and symmetric conclusion-
groups in Theorem 1 (again the groups are more clearly visible in Theorem 2); they
arise notably toward the bottom of [Hol78, p 182].



APPENDIX B

Further remarks on certain Exercises

B.1. Some exercises from Chapter 1

Remark B.1.1 (More on Exercise 1.3.22: Some practice with root systems and
parabolics). We first recall that Example 1.3.21 described the general root system
of type An−1, for SLn(q); and in particular, positive roots are characterized as
sums of simple roots which are adjacent in the ordering on Π. For fuller rerefence
see e.g. [Car89, Sec 3.6(i)].

Subspace stabilizers in L4(2). Now we specialize to n = 3, for G = L4(2). We
have simple roots given by α1, α2, α3 in Π; the remaining positive roots in Φ+ are
given by the pairs α1+α2 and α2+α3 (but not α1+α3 !), and the triple α1+α2+α3.

First consider k = 1: namely the stabilizer P1̂ of a 1-space V1 in the natural 4-
dimensional module V . We use the description given in Remark 1.3.20(4): Here

for J = 1̂ = Π \ {α1} = {α2, α3}, we first compute the unipotent radical U1̂:
The positive roots which are not linear combinations from J are α1, α1 + α2,
and α1 + α2 + α3. These generate the unipotent radical U1̂; notice that it is
elementary abelian 23 using the property (1.3.13): for the sum of any two of these
generating-roots is not in the root system Φ. We can in fact recognize U1̂ as
the classical “point” transvection subgroup: For this we recall a standard general
definition:

Definition B.1.2 (transvection). An x of order p, acting on V in characteris-
tic p, is a transvection if CV (x) is a hyperplane of V ; or equivalently, if [V, x] has
dimension 1.

In our present case of U1̂, all the elements have the same commutator on V , given
by the projective point V1; in particular, they are trivial on both V1 and V/V1.

We turn now to the Levi complement L1̂: The positive roots that are J-
combinations are given by α2, α3, and α2 + α3. The root subgroups for these
roots and their negatives generate L1̂

∼= L3(2): which is trivial on V1, but acts
naturally on V/V1.

Next consider k = 3: namely the stabilizer P3̂ of a 3-space V3. Here since a
graph automorphism of G interchanges α1 and α3, while fixing α2, we can obtain
the structure of P3̂ by making these same interchanges, in the setup of the previous
paragraph. In particular, U3̂ is the “hyperplane” transvection subgroup: whose
elements are transvections, all centralizing the hyperplane V3, and whose commu-
tators on V given by various 1-subspaces within V3. This group is trivial on V3

and V/V3; while L3̂
∼= L3(2) is natural on V3, but trivial on V/V3.

Finally consider k = 2, namely the stabilizer P2̂ of a 2-subspace V2. This time

we work with the subset J = 2̂ = Π \ {α2} = {α1, α3}. The positive roots which
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are not J-combinations are α2, α1 +α2, α2 +α3, and α1 +α2 +α3. These generate
the unipotent radical U2̂, which is elementary abelian of rank 4. And the positive
roots that are J-combinations are α1 and α3; the root subgroups for these roots
and their negatives then generate the Levi complement L2̂

∼= L2(2)×L2(2), whose
factors act naturally on V2 and V/V2, respectively. �

Isotropic-subspace stabilizers in Sp4(2). Here we have root system of type C2;
for reference see e.g. [Car89, Sec 3.6(i)].1 Then the simple roots in Π are α1 (short)
and α2 (long); with further positive roots in Φ+ given by α1 + α2 (short), along
with 2α1 + α2 (long).

For the natural 4-dimensional module V , as in Exercise 1.3.6 we take a hy-
perbolic basis given by orthogonal hyperbolic pairs v1, v4 and v2, v3—that is, such
that (v1, v4) = 1 = (v2, v3) in the form. Then the totally isotropic subspaces are
represented by V1 := 〈v1〉 and V2 := 〈v1, v2〉.

So for k = 1 and the stabilizer P1̂ of the 1-space V1: With J = 1̂ = {α2}, the
positive roots which are not J-combinations are α1, α1 + α2, and 2α1 + α2. The
corresponding root subgroups generate the unipotent radical U1̂: which turns out,
in characteristic 2, to be elementary abelian 23—though this is not immediate just
from (1.3.13) and the root system, Note that U1̂ acts trivially on the quotients of
the series 0 < V1 < V ⊥1 < V . Next for the Levi complement L1̂: The only positive
root which is a combination from J is just α2 itself; and the root subgroups for ±α2

generate L1̂
∼= L2(2); this acts naturally on V ⊥1 /V1; but trivially on V1 and V/V ⊥1 .

The parabolic P1̂ for Sp4(2) can be studied in the intersection P1̂∩P3̂ of parabolics
for L4(2) above—since it is invariant under a graph automorphism switching α1

and α3.
Finally for k = 2 and the stabilizer of the totally isotropic 2-subspace V2:

With J = 2̂ = {α1}, the positive roots which are not J-combinations are given
by α2, α1+α2, and 2α1+α2. Again these generate an elementary abelian unipotent
radical U2̂, which is trivial on V2 and V/V2. For the Levi complement L2̂: The
only positive root which is a J-combination is α1; and the root subgroups for ±α1

generate L2̂
∼= L2(2), which acts naturally on V2 and V/V2. Again this group can be

studied inside the parabolic P2̂ for L4(2) above; in particular, the L2(2) in the Levi
complement in Sp4(2) is a suitable diagonal embedding in the two factors L2(2) of
the Levi complement in L4(2). �

This concludes our further remarks on practice with parabolics. ♦

B.2. Some exercises from Chapter 4

Remark B.2.1 (More on Exercise 4.0.2: The Thompson Order Formula). The
case A8 suggested in Exercise 4.0.2 is perhaps a little complicated for the beginner.
So I’ll record here the details which I gave in the corresponding problem-session
and in a web pdf file, at the time of the original lectures.

Recall that for G with classes of involutions z, t, Thompson’s formula in The-
orem 4.0.1 reads:

(B.2.2) |G| = a(z)|CG(t)|+ a(t)|CG(z)|,

1Note that the diagram labeled B2 on [Car89, p 46] would usually be denoted C2, since the

first simple root is short.
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where a(u) is the number of ordered pairs (x, y) from the classes z, t with u ∈ 〈xy〉.
Of course since x, y are involutions, D := 〈x, y〉 is dihedral, with xy generating a
cyclic normal subgroup W of index 2 in D.

Thus if we wish to compute a(z), we must consider cases with z ∈W . In such
cases, z is the unique involution in cyclic W , so that:

D is a dihedral subgroup, of order divisible by 4, in CG(z) .
Consequently the structure of CG(z) is part of the local information that we will
use, to implement Thompson’s formula.

Indeed in calculating a(z), we may as well compute the entire CG(z)-orbit of
each pair (x, y)—rather than trying to write down individually all the pairs in that
orbit. And that orbit-size is just the index in CG(z) of CCG(z)(x, y) = CCG(z)(D):

(B.2.3) |CG(z) : CCG(z)(D)|

We’ll use the small cases G = S4 and S5 in Exercise 4.0.2 for a quick warmup.

The case G = S4. Take z := (12)(34) and t := (12) to represent the two classes.
Then we have CG(z) ∼= D8 is dihedral of order 8; while we see CG(t) ∼= S2 × S2 is
a 4-group.

We first consider cases for a(z):
Here CG(z) ∼= D8, so dihedral subgroups D of order divisible by 4 can have size

either 4 or 8. But we can’t have D = 〈x, y〉 a 4-group: for this would give z = xy—
impossible as z, x are even permutations, but y is odd.

The remaining order-8 case in fact forces D = CG(z): And we see we can
take x as either of the involutions of A4 other than z, say (13)(24); and y either of
the involutions of CG(z) outside A4, say (12). Here we’ve directly counted 4 such
pairs; but we can also derive that count by the general orbit-method in (B.2.3):
for we see that CCG(z)(D) = CD(D) = Z(D) = 〈z〉 has index 4 in CG(z). Further
as D = CG(z) here, this is the only orbit of x, y.

From these calculations, we conclude that a(z) = 0 + 4 = 4.

We turn to cases for a(t):
Here CG(t) is a 4-group; so the only possible dihedral subgroup D is CG(t) itself.

And as we saw for z above, D of order 4 forces xy = t. Now in the explicit situation
of D = CG(t) = 〈(12)〉× 〈(12)(34)〉, we see that x = z = (12)(34) and y = (34) give
the only possible pair. Thus a(t) = 1.

The main formula (B.2.2) now gives |S4| = 4 · 4 + 1 · 8 = 24, as desired. �

The case G = S5. Here we can re-use much of the above setup for S4: For
example, we can again take z = (12)(34) and t = (12). And still CG(z) ∼= D8; but
now CG(t) ∼= S2 × S3 has order 12 rather than 4.

Again a(z) = 4: as CG(z) is unchanged, the S4-arguments still apply.

So we turn to cases for a(t):
This time CG(t) ∼= D12; so dihedral subgroups D of order divisible by 4 can

have size either 4—or a new possibility given by 12.
We get from S4 the order-4 case, with D = 〈(12)〉 × 〈(12)(34)〉 = 〈t, z〉; notice

that we have x = z and y = tz = (34). But this time D < CG(t), so the pair is not
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uniquely determined. Indeed since CG(t) ∼= D12, we see that CCG(t)(D) = D is of
index 3 in CG(t). Thus from (B.2.3) this orbit-length contributes of 3 pairs.

The case D of order 12 forces D = CG(t). And such a D does indeed arise—
for example, from x = z = (12)(34) and y = (35). Furthermore here we find
that CCG(t)(D) = CD(D) = Z(D) = 〈t〉. This has index 6 in CG(t); so via (B.2.3)
we get a contribution of 6 pairs. Furthermore we see this is the only such orbit
from CG(t).

We conclude that a(t) = 3 + 6 = 9.

Now the main formula (B.2.2) gives |S5| = 4 · 12 + 9 · 8 = 120, as desired. �

The case G = A8. We turn to the main work of this Exercise. Notice that A8

provides the first “realistic” example: in the sense of being the smallest simple
group with exactly two classes of involutions.

I’ll regard A8 primarily as L4(2) (recall the isomorphisms in Exercise 1.5.5), for
several reasons:
• I’m not skillful with permutations, and could probably never get the calcula-

tion right in that notation. However, I will make occasional comparisons with the
viewpoint of A8.
• I find the linear-group view more natural for the structures of CG(t) etc. (You

might disagree!) For example, sometimes using (1.3.13) with knowledge of the root
system helps to describe the action of involutions.
• Historical value: The structures are similar to those in various calculations via

the Thompson Order Formula in the literature. In particular, we’ll see features that
were used in large-extraspecial theory (cf. Definition 8.1.3); recall this is a part of
the GF (2)-type case, which we saw as branch (3) of the Trichotomy Theorem 2.2.8.

And of course I hope that you (the readers) will find future applications: both of
the formula, and of the methods used in implementing it.

Let me expand briefly on the “realistic” aspect mentioned just above: I will be
giving explicit representatives in L4(2) of the cases for pairs x, y etc. But observe
that if you remove the explicitness from the examples, and just use the abstract
group-theoretic structures of CG(z) etc: you should still be able to see “abstract”
representatives of x, y, and make the same orbit-length calculations. That is: you
can work just as you’d have to do, in a classification problem: where you would
have local information about your group G; but still have to prove it was L4(2), or
something else—starting with finding its order via the formula.

Some general setup in L4(2):
A less advantageous feature of my L4(2)-convention (compared with permu-

tations in A8) is that 4 × 4 matrices are rather bulky to write out. So I’ll adopt
a terse notational abbreviation for matrices; leaving the reader to write them out
more fully. It will be possible to give representatives of our needed pairs (x, y) using
essentially only unipotent matrices; for example:

1
a 1
b c 1
d e f 1

 .
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Definition B.2.4. For the remainder of this Exercise, I’ll use vertical bars to
delimit the set of nonzero values in such a matrix; for example: |a, e|, to denote the
with a = e = 1—but with b = c = d = f = 0. Sometimes we’ll need the transposes
of such matrices; so a′ · · · f ′ will index the corresponding transposed-positions. The
reader will probably still find it helpful to expand the occurrences of this notation
back to matrix pictures. ♦

Remark B.2.5 (The root-system viewpoint). Notice that we can regard |a|
as the generator of the root subgroup Uα1 ; and |b| as the generator of the root
subgroup Uα1+α2 ; and so on. Indeed we had already interpreted matrices via root-
structure, in Example 1.3.10—for the smaller group L3(2) and root system A2,

And for the present larger root system of type A3, the root-viewpoint will again
be useful: especially, as we had mentioned above, using (1.3.13) to reduce some of
our calculations of actions of involutions below. In fact we recorded many facts
about the A3 root system, in Remark B.1.1. ♦

The involution classes in L4(2):
The class of an involution u is determined by the dimension (1 or 2) of the

commutator [V, u] on the 4-dimensional natural module V .
The case of of commutator of dimension 1 (namely a transvection) gives the

class of 2-central z—it can be represented by the matrix |d| in the above convention.
(In A8 it has cycle-type 24.) Notice that CG(z) essentially appeared earlier as the
Even Case Example 2.0.6. This centralizer can be recognized Lie-theoretically as the
minimal parabolic P2, in the conventions of Remark 1.3.20(4). Indeed its unipotent
radical Q := U2 is determined by the positive roots which are not combinations
of J = {2}—these are given by α1, α1 + α2, α1 + α2 + α3, α2 + α3, and α3;
these come from the matrices |a|, |b|, |d|, |e|, |f |. So we see that U2 is obtainable
as the product U1̂U3̂ of the transvection subgroups which we saw earlier, in the

cases “k = 1, 3” of Remark B.1.1. This product is extraspecial of type 21+4
+ —as we

can see using (1.3.13), by checking which sums of these roots are also roots in Φ+;
cf. also the discussion in later Exercise 8.1.4. And we see that P2 has its Levi
complement L2

∼= L2(2) generated by the matrices |c|, |c′|; corresponding to ±α2,
where α2 is the only positive root which is a J-combination. In particular, we
see CG(z) has order 26 ·3 = 192. Note that Q is “large” in G, as in Definition 8.1.3,
because F ∗

(
CG(z)

)
= O2

(
CG(z)

)
= Q.

The case of commutator dimension 2 gives the other class t; it can be repre-
sented by |b, e|. (In A8 it has cycle-type 22.) Here CG(t) gives most of the maximal
parabolic subgroup P2̂ as in Example 1.3.21: It contains the full unipotent radi-
cal U2̂

∼= 24, which we saw in Remark B.1.1; in the matrix notation used here, it
is generated by |b|, |c|, |d|, |e|. And CG(t) is in fact the extension of U2̂ by a sin-
gle L2(2)-subgroup (a diagonal embedding across the two such L2(2)-subgroups in
the Levi complement L2̂) which is generated by the matrices |a, f | and |a′, f ′|. So
we see CG(t) has order 25 · 3 = 96.

We also record a further useful fact:

(B.2.6) zG ∩Q = (U1̂ ∪ U3̂)#,
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where U1̂ = 〈|a|, |b|, |d|〉 and U3̂ = 〈|d|, |e|, |f |〉. This is visible from matrix forms:
for x ∈ zG ∩ Q must have 1-dimensional commutator [V, x]. These groups are
the standard point- and hyperplane-transvection subgroups, which we saw after
Definition B.1.2; namely the unipotent radicals of the corresponding point- and
hyperplane-stabilizers P1̂, P3̂ there.

Cases for a(z):
Since A8 has no elements of order 8 or 12 (see e.g. [CCN+85, p 22]), any

dihedral subgroup D of order divisible by 4, in CG(z) of order 25 · 3, has size given
by 4, 8, or 12.

For D ∼= D4: Here as in earlier cases where D has order 4, we must have xy = z.
Further we cannot have x ∈ Q: for (B.2.6) shows in that case2 that also xz ∈ zG,
whereas we need xz = y ∈ tG. So now looking for x, and hence also y, in CG(z)\Q:
We find that x = |c′| with y = xz = |c′||d| gives such a D. We compute then
that CCG(z)(D) = CCG(z)(x) has order 24—either work directly with matrices; or
use root-subgroup theory, say as follows: For x = |c′| ∈ U−α2

centralizes in Q
the root groups corresponding to α1, α3, and α1 + α2 + α3; and in the viewpoint
of (1.3.13), adding −α2 to any of those three roots produces a result that is not in
the root system of type A3—which was described in Remark B.1.1. This subgroup
has index 22 · 3 = 12 in CG(z), giving the orbit-size for such pairs via (B.2.3). And
essentially since 〈x〉 is Sylow in CG(z)/Q, we get that all such pairs must arise from
this orbit.

For D ∼= D8: In this case, we have z = [x, y] = (xy)2. Suppose first x 6∈ Q:
then via Sylow considerations as above, we may as well calculate with x = |c′|.
The group CQ(|c′|), via our root-group argument above, also in fact equals [Q, |c′|].
From this equality, it follows that |c′| inverts no element of order 4 in Q; so this
forces y ∈ Q. Then [x, y] = z means that x centralizes y modulo z, and so y lies
in CQ/〈z〉(x); but we check that the preimage of this group is in fact centralized by x.
We conclude that z ∈ Q. Suppose next we had y 6∈ Q; then a similar argument,
since the action of y on Q is essentially that of |c′|, again produces a contradiction.
So we also have y ∈ Q. And now the pair given by e.g. x = |b|, y = |a, f |
can be used. This time we compute (again the root-group viewpoint of (1.3.13)
is useful) that CCG(z)(D) = 〈|a|, |d|〉, of order 22. This has index 24 · 3 = 48
in CG(z), giving the orbit-size of such pairs via (B.2.3). However: this time our
example does not give the unique orbit of such pairs. Instead, another orbit is given
essentially by the transpose about the anti-diagonal: namely instead we take x = |e|,
with the same y. This new orbit is distinct, basically because the point- and
hyperplane-transvection subgroups U1̂, U3̂ in Q are not in fact conjugate in G. And
the new orbit works just as well as the original—basically because the transevection
subgroups are conjugate by an outer automorphism, of graph type.3 Thus the
two transvection subgroups have the same group-theoretic behavior—and so each
contributes an orbit of suitable pairs x, y, of length 48. As a result, we get an
overall contribution of 48 + 48 = 96 such pairs.

2This conjugacy of the three elements of 〈x, z〉# is a standard feature of the large-extraspecial
situation in the abstract; see e.g. [Smi80, 1.6(b)].

3This extra-orbit property, corresponding roughly to reducibility of CG(z) on Q/〈z〉, is
a very unusual feature, within the context of large-extraspecial theory, of the linear groups;
cf. e.g. [ALSS11, 7.2.6].
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For D ∼= D12: Since 3-elements of CG(z) are fixed-point-free on Q/〈z〉, elements
of Q do not invert them; so x, y ∈ CG(z)\Q. We can now mimic the D4 case above:
continue with the x = |c′| as there; but replace the y there by the product |c′||c||d|.
We saw |c′||c| of order 3 is fixed-point-free on Q/〈z〉; hence CCG(z)(D) is just 〈z〉.
This has index 25 · 3 = 96 in CG(z), for the orbit-contribution via (B.2.3). And
again Sylow considerations show that this orbit exhausts the possibilities.

We conclude from the cases above that a(z) = 12 + (48 + 48) + 96 = 204.

Cases for a(t):
The same argument as for CG(z) above show that any dihedral D of order

divisible by 4, in CG(t) of order 24 · 3, has size 4, 8, or 12. And indeed order 8 is
ruled out: the power map [CCN+85, p 22] shows that elements of order 4 square
to elements in zG; whereas here we would need to have (xy)2 = t 6∈ zG.

For D ∼= D4: As before for D of order 4, we get xy = t. Here we can
take x = z = |d|, and y = |b, d, e|. In this case we check (say using root sub-
groups in (1.3.13)) that CCG(t)(D) = CCG(t)(y) is a Sylow subgroup of CG(t), of

order 25—an extension of the subgroup 〈|d|, |b|, |e|, |a||f |〉 by 〈|c|〉. This has index 3
in CG(t), giving the orbit-contribution via (B.2.3). Again we check that this orbit
exhausts the possibilities: for example, if we had x, y ∈ CG(t) \ U2̂, both would
have a 2-dimensional commutator on V , and so lie in tG—whereas we need x ∈ zG.

For D ∼= D12: Involutions of CG(t) inverting 3-elements, such as the invo-
lutions x and y, lie outside the subgroup of index 2 given by U2̂ extended by
a 3-element. But we saw just above that these lie in tG, whereas we need x ∈ zG.
Thus there are no candidates for pairs x, y in this case.

We conclude that a(t) = 3.

And now the main formula (B.2.2) gives:
|A8| = 204 · (25 · 3) + 3 · (26 · 3) = (34 + 1) · (26 · 32) = 26 · 32 · 5 · 7,

as desired. �
This concludes our further remarks on the Thompson Order Formula. ♦

Remark B.2.7 (More Exercise 4.1.1: Some classical 3-transposition groups).
We indicate some details for one particular group—under three different names:

The unitary group U4(2). See e.g. [CCN+85, p 26] for more detailed reference.
Take G = U4(2), with 2-central class z; we have |zG| = 45. The class consists of
transvections: that is, dim [V, z] = 1, where V is the 4-dimensional unitary module.

In fact W := [V, z] is an isotropic point, in the polar space on V . (Cf. Exam-
ple 7.0.1; this case is in fact a generalized quadrangle in the sense of 7.3.1.) Since
transvections z correspond 1:1 with these points, we can do some of our group
computations in the context of that geometry.

In the viewpoint of the rank-3 discussion leading up to Exercise 4.3.2, we will
want to compute the suborbits: that is, the orbits of CG(z) on zG. Here CG(z)
is the analogue of the 1-space stabilizer for the full linear group in Example 1.3.4:
namely, the parabolic P1̂ which stabilizes the 1-subspace W ; it is the extension of
the extraspecial group U1̂

∼= 21+4 by L1̂
∼= 32·2. And we find that CG(z) is transitive

on the 12 isotropic points in W⊥ other than W , as well as on the remaining 32
points in V \W⊥. For example, let A be an isotropic point in W⊥ \W . Then
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the stabilizer in CG(z) of the isotropic 2-space 〈W,Z〉 has structure 2 · 22 · 3 · 2, of
index 12. Next for isotropic X 6∈ W⊥, we find that the stabilizer in CG(z) of the
unitary 2-space 〈W,X〉 is a Levi group L1̂ = 32 · 2, of index 32. Since this now
accounts for all 1 + 12 + 32 = 45 isotropic points, these must be the suborbits—and
we see G has permutation rank 3 on zG.

To complete the verification of the 3-transposition property (1.2.2), we check
the orders |xy| of products from zG: For t ∈ CG(z)\O2

(
CG(z)

)
we get |zt| = 2; and

we get |tu| = 3 for a pair t, u of such conjugates in CG(z) \O2

(
CG(z)

)
, generating

an S3 in L1̂
∼= 32 · 2. So we do indeed have a class of 3-transpositions. �

The orthogonal group Ω−6 (2). We now mention a relevant standard isomor-
phism: Because the diagram D3 is the same as A3, we see that Ω−6 (q) ∼= U4(q). So
here, we may also regard U4(2) as the orthogonal group Ω−6 (2). And because an
orthogonal transvection t does not lie in the simple group Ω−6 (2), we in fact consider
the almost-simple extension given by G = O−6 (2) = Ω−6 (2)〈t〉. We get calculations
fairly similar to those for U4(2) above, so we present them with less detail:

We have CG(t) ∼= Sp4(2)× 〈t〉, so |tG| = 36. Now W := [V, t] is a non-singular
point, and again these points are in correspondence with tG. This time there are 15
non-singular points other than W in W⊥, and 20 in V \W⊥; and again CG(t) is
transitive on each set, so G has permutation rank 3 on tG.

And then for orders |xy|: Taking u = tv for a suitable involution v taken
from Sp4(2)′ ∼= A6, we get |tu| = 2; and taking t′ ∈ CG(t) \ Sp4(2) generating
with t an S3, we get |tt′| = 3. So again we have 3-transpositions. �

The symplectic group Sp4(3) and the orthogonal group Ω5(3). Finally we men-
tion the standard isomorphism U4(2) ∼= Sp4(3) (cf. p261 in [ALSS11]). Here we
can take r to be a symplectic reflection—which lies outside the simple group Sp4(3),
so that again we consider the almost-simple extension given by G = Sp4(3)〈r〉. And
once again summarizing rapidly:

Taking W := [V, r], we get correspondence of such points with reflections rG.
Here we have characteristic p = 3, and CG(r) is the parabolic P1̂ stabilizing a 1-
space—of structure 31+2 : SL2(3); and we get |rG| = 40. There are 12 points other
than W in W⊥, and 27 in W \ W⊥. Again CG(r) is transitive on these sets—
using calculations with the parabolic P1̂ much like those for U4(2) above; so G has
permutation rank 3 on rG.

Then for |xy|: If s is a reflection with S := [V, s] ≤ W⊥, we get |rs| = 2.
But if S � W⊥, we find that 〈r, s〉 induces on the 2-space W ⊕ S the natural
group GL2(3) ∼= 2S4—so that |rs| = 3. And yet again we see we have a class
of 3-transpositions.

To conclude, we mention that since the root systems of type B2 and C2

are exchanged by a suitable graph automorphism, it is standard that the finite
groups Sp4(q) and Ω5(q) are isomorphic. Thus Sp4(3) above is isomorphic to Ω5(3)—
and essentially the above calculations make the 3-transposition verification for the
almost-simple extension of the group Ω5(3) by an orthgonal reflection. �

This finishes our further remarks on 3-transpositions. ♦
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B.3. Some exercises from Chapter 5

Remark B.3.1 (More on Exercise 5.1.2: Some irreducible degrees for Sn). We
first recall the background for the hook-length formula:

For a partition λ, by convention we arrange the parts in decreasing order of
size. The Young diagram is the arrangement of “boxes”, in descending rows, of
lengths given by the part-sizes. The hook length of a box is the number of boxes in
its “hook”—starting from the bottom, and pivoting at the box to reach the end of
the row. The hook-length formula (e.g. 20.1 in [Jam78]) states:

(B.3.2) dim(Iλ) =
n!

Π (hook lengths in λ)

Now to verify the remarks stated just before Exercise 5.1.2:
For the partition with a single part, the single box has hook length n. Thus the

formula gives dimension n!/n! = 1—for the fully-expected dimension of the trivial
module.

For the partition with parts (n − 1), 1: the boxes in the top row have hook
lengths given by n, (n − 2), (n − 3), · · · , 2, 1; with just 1 in the second row. And
correspondingly the formula gives n!/

(
n · (n − 2) · (n − 3) · 3 · 2 · 1

)
= (n − 1), for

the dimension of the natural irreducible. �

Next let’s examine all the partitions λ, for the case n = 4; these are:
4 and 3, 1 and 2, 2 and 2, 1, 1 and 1, 1, 1, 1.

Of course, the first two cases are covered by our remark above: giving dimensions 1
and 3.

For λ = 2, 2, the hook lengths in the two rows are 3, 2 and 2, 1. So here the
formula gives the dimension 4!/(3 · 2 · 2 · 1) = 2. This is just the natural irreducible
for the quotient S4/O2(S4) ∼= S3.

Finally we observe that the remaining partitions are in the image of the duality-
operation: in the Young diagram, this just transposes the boxes about the usual
diagonal. Since this leaves the hook lengths invariant, we see—using our earlier
computations for 3, 1 and 4—that 2, 1, 1 and 1, 1, 1, 1 give dimensions 3 and 1.

The latter is the sign representation—namely trivial on the even permuta-
tions A4, and with value −1 on the odd permutations S4 \A4 �

This concludes our further remarks on irreducibles of Sn. ♦

Remark B.3.3 (More on Exercise 5.2.5: Weight theory for some representa-
tions). Recall we wish to mimic the observations for L3(2) given in Example 5.2.4.

Sp4(2) on its natural module. The root system of type C2 is described in Re-
mark B.1.1: Positive roots are α1, α2, α1 + α2, and 2α1 + α2; the first and third
are short roots.

Check that the highest weight is λ1, which is fundamental and hence dominant;
it can be expressed in terms of roots as α1 + 1

2α2. The remaining, lower weights
are λ1 − α1, λ1 − (α1 + α2), and λ1 − (2α1 + α2); exhibiting via (1.3.9) the action
of negative-root subgroups.

L3(2) on its adjoint module. Since the weights on the adjoint module are by
definition roots, the highest weight λ is necessarily the highest root: namely α1+α2.
Now in Example 5.2.4, we saw that λ1 = 2

3α1+ 1
3α2. Symmetrically λ2 = 1

3α1+ 2
3α2;
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for example, using the action of a graph automorphism. And so λ = α1 + α2 can
also be expressed as λ1 + λ2—which we see is dominant (though this time not
fundamental).

The remaining, lower roots are λ − α1 = α2 and λ − α2 = α1, exhibiting
via (1.3.9) the action of negative-root subgroups; as does λ − (α1 + α2) = 0; in
fact we get a 2-dimensional space for the 0-weight—corresponding to the Cartan
subalgebra H of dimension 2 in the adjoint module afforded by the underlying Lie
algebra G. And further action of negative-root subgroups then leads to the three
root spaces for those negative roots. ♦

Remark B.3.4 (More on Exercise 5.2.7: Some Steinberg tensor-product mod-
ules). We’ll adopt some shorthand notation, using the dimension as an abbeviation
for the module itself.

Irreducibles for SL2(4). The basic irreducibles, for SL2(2), are the trivial mod-
ule of dimension 1, and the 2-dimensional natural module.

So the Steinberg tensor-product irreducibles from 5.2.6 are expressed as:
1⊗ σ(1), 2⊗ σ(1), 1⊗ σ(2), and 2⊗ σ(2).

Now σ(1) is still the trivial module. So these tensor-product modules are: the triv-
ial module; the natural 2-dimensional SL2(4)-module, and its algebraic conjugate
under a field automorphism; and a 4-dimensional module—this is in fact the natu-
ral module for Ω−4(2) ∼= L2(4), and is the Steinberg module for SL2(4) in the sense
of Definition 5.2.8. Since L2(4) has Lie rank n = 1, altogether we get qn = 41 = 4
irreducibles.

Irreducibles of SL3(4). The basic irreducibles, for SL3(2), are the trivial mod-
ule 1; the natural module 3, and its dual 3; and the adjoint (Steinberg) module of
dimension 8. To see completeness of this list, recall we have seen that they afford all
four of the 2-restricted dominant weights—these are given by 0, λ1, λ2, λ1 +λ2—in
earlier Example 5.2.4 and Remark B.3.3.

So mimicking the work above for SL2(4), we get: the trivial module; the natu-
ral module 3 and its conjugate σ(3), and their duals 3 and σ(3); four 9-dimensional
modules—namely the product of (3 or 3) with conjugates under σ; the adjoint
module 8 and its conjugate σ(8); four 24-dimensional modules—namely the prod-
uct of (3 or 3) with σ(8); and their σ-conjugates; and the 64-dimensional Steinberg
module 8 ⊗ σ(8). The rank of SL3(4) is n = 2; and indeed we have qn = 42 = 16
irreducibles altogether. ♦

Remark B.3.5 (More on Exercise 5.2.10: Some Weyl module dimensions for
the case of Sp4(2)). We first set the stage for Weyl’s formula: Write δ :=

∑n
i=1 λi

for the sum of the fundamental weights; and let λ be some dominant weight. Then
the formula (e.g. [Hum78, p 139]) is:

(B.3.6) dim(Wλ) =
∏
α∈Φ+

(λ+ δ, α)

(δ, α)

The meaning of these terms is actually reasonably straightforward: Since δ is the
sum of the fundamental weights, the denominator term at α is essentially the “con-
tent” of α: namely the sum of its coefficients as a combination of the simple
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roots αi—but weighted by the squared-lengths of the αi, since the λi are actu-
ally dual to the simple co-roots, rather than to the roots themselves. And then
the corresponding numerator term simply adds to the denominator term the value
of (λ, α)—where each λi in λ contributes the weighted αi-content of α.

We now apply this to the root system of type C2: Recall this was given in
Remark B.1.1: The positive roots are α1, α2, α1 + α2, and 2α1 + α2.

Here the 2nd and 4th roots are long—with squared-length 2. Thus the corre-
sponding denominators term give the weighted coefficient-sum values:

1, 2, 3, 4.
First consider λ = λ1: To the above, we add the α1-contents 1, 0, 1, 2 to get:

2, 2, 4, 6.
So from the Weyl formula (B.3.6) we conclude that dim(Wλ1) = 4.

Next consider λ = λ2: This time we add the (weighted!) α2-contents—these
are 0, 2, 2, 2—to the denominators, obtaining:

1, 4, 5, 6.
So from the formula we conclude that dim(Wλ2

) = 5. ♦

Remark B.3.7 (More on Exercise 5.4.1: Alperin-weights (UJ , λ · StJ) in Lie–
type groups). For G given by either L4(2) or Sp4(2), the natural module V has
high weight “λ” given by the first fundamental weight λ1—as in Example 5.2.4 and
Remark B.3.3. So the high-weight space “X” on V is given by the 1-dimensional
subspace we usually call V1. Now NG(X) is a parabolic by 5.2.3(2), and we see it is

one we recognize: Namely we can take “J” as 1̂—in the case k = 1 of Remark B.1.1:
Thus our “PJ” is P1̂, so that “UJ” is the unipotent radical U1̂

∼= 23 as described
there. Furthermore for the Levi complement, we have K1̂

∼= L3(2) or L2(2),
respectively—and this has Steinberg module “StJ” given by the 8-dimensional ad-
joint in Exercise 5.2.9, or the natural module for L2(2).

Next consider the 6-dimensional orthogonal module W , for G = L4(2) regarded
as Ω+

6 (2): One calculates (much as for V above) that the highest weight “λ” for this
module is the second fundamental weight λ2. Using (1.3.9), as in Example 5.2.4 and
Remark B.3.3, we find that the parabolic NG(X) for a highest-weight space “X”

in W as in 5.2.3(2) is in fact the maximal parabolic P2̂. So here we take “J” as 2̂,
in the case k = 2 in Remark B.1.1. Our “UJ” is the unipotent radical U2̂

∼= 24 de-
scribed there. Further for our “StJ”: the Levi complement K2̂

∼= L2(2)×L2(2) has
its Steinberg module of dimension 4 given by the tensor product of the natural mod-
ules for the two factors. we could instead use the language for the orthogonal group:
The space X is spanned by a singular vector, which has stabilizer given by 24Ω+

4 (2);
now StJ of dimension 4 above is just the natural module for the quotient Ω+

4 (2). ♦

B.4. Some exercises from Chapter 6

Remark B.4.1 (More on Exercise 6.1.2: Maximals in S4, · · · , S8). We look
for cases (1)–(6) in the O’Nan-Scott Theorem 6.1.1, as candidates for possible
maximality. Recall those cases are in addition to the obvious maximal An of Sn.

In more detail: We will in effect prove the completeness of the maximals-lists
for these groups in the Atlas [CCN+85]. We will quote that reference only for
more basic information—such as group orders, and existence of certain subgroups.
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And often we can then see just directly that various subgroups are maximal. But
when we say below that a subgroup “is maximal”, it might be more appropriate to
say that it “will be maximal”: For once we have found all occurrences of (1)–(6) in
Theorem 6.1.1—and further check that there are no containments among them—
then we will know first that our candidates really are maximal; and second that
our list is in fact complete.

We note first of all that case (5) is ruled out in all our groups: For it would
require k ≥ 2; whereas even for our largest value of n = 8, the order |An| is not
divisible by the squared-order of a nonabelian simple group.

Furthermore case (3) is ruled out in all our groups: Numerically it could arise
with j = 2; and k = 2, 3, when n = 4, 8. But a standard result (e.g. 3.2 in [Cam81])
shows that when k > 1, j > 2 is required for primitivity.

We now turn to the individual groups:

For n = 4: Simple subgroups as in (6) are ruled out, as S4 is solvable. Case (4)
with r = 2 = d does not arise: for 22L2(2) is all of S4, and so is not even proper.
But case (2) with j = 2 = k does arise—with maximal S2 o S2

∼= D8 transitive
but imprimitive via a 2, 2 partition. Finally case (1) with j = 3 gives maximal S3;
but j = 2 = k in (1) does not arise, since S2 × S2 is not maximal—via case (2)
above. So our candidate-list is:

S3, D8 ;
and since there are no inclusions among them, we conclude that they are maximal,
and that the list is complete.

For n = 5: Again (6) is ruled out: this time because A5 is the smallest simple
group, so that its proper subgroups are solvable. And case (2) is ruled out, since 5
is prime. But case (4) arises with r = 5 and d = 1: and in fact 5 : GL1(5) is the
Sylow 5-normalizer in S5, which is maximal. Finally case (1) arises, with j = 4
or 3, giving maximal S4 and S3 × S2. Our final list is:

S4, S3 × S2, 5 : GL1(5) ;
and there are no inclusions, so the list is complete.

For n = 6: Case (4) is ruled out, since 6 is not a power rd. Since |A6| is not
divisible by the order of L3(2), which is the only simple group beyond A5 of order
smaller than that of A6, case (6) can only arise with F ∗(H) = A5. And indeed
there is a maximal subgroup of S6 which is given by an S5 that is transitive on
the 6 points—which are visible as the cosets in S5 of the subgroup 5 : GL1(5)
of the previous paragraph. Note that we get an isomorphic group S5 from the
subcase j = 5 of (1)—but this S5 in (1) is not transitive. The subcase j = 4 of (1)
also leads to a maximal subgroup, of form S4×S2. But the subcase j = 3 = k of (1)
with S3×S3 is not maximal—it is proper in maximal S3 oS2, from the subcase j = 3
of (2). Finally the subcase j = 2 of (2) arises—and here the group S2 oS3 happens to
be isomorphic to S4×S2 in (1) above; but that group in (1) was intransitive, whereas
this group in (2) is transitive. In fact an outer automorphism of S6 interchanges
these two subgroups; as well as the two subgroups S5 above. So our final list is:

(intrans:) S5, S4 × S2; (imprim:) S2 × S3
∼= S4 × S2, S3 o S2; (prim:) S5 ;

with no inclusions, as desired.

For n = 7: Since 7 is prime, some arguments are similar to n = 5 above:
Namely we rule out case (2); and case (4), given by 7 : GL1(7), is in fact the
Sylow 7-normalizer, which is maximal. All three subcases of (1) also arise, giving
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maximal S6, S5 × S2, and S4 × S3. Finally case (6) does not arise: For by order-
divisibility much as for n = 6 above, the only simple groups that might arise
as F ∗(H) in (6) are A5, L3(2), A6, and L2(8); but in (6), we see H must be
transitive on 7 points—and among these groups, only L3(2) has a subgroup of
index 7. Now L3(2) does appear as a maximal subgroup of A7; but an outer
automorphism in S7 \A7 interchanges two such subgroups, so they are not maximal
in S7. Thus our list for S7 is:

S6, S5 × S2, S4 × S3, 7 : GL1(7) ;
with no inclusions, as desired.

For n = 8: First (4) does not arise: for r = 2, d = 3 gives 23L3(2); and while
this is maximal in A8, two conjugacy classes of such subgroups are interchanged by
elements of S8 \ A8, so they are not maximal in S8. The subcases j = 2, 4 of (2)
do arise—giving S2 o S4 and S4 o S2, which are maximal in S8; so in particular, the
subcase j = 4 of (1) does not arise, as we see S4×S4 is not maximal. The remaining
subcases j = 7, 6, 5 of (1) give maximal subgroups S7, S6×S2, and S5×S3. However,
the groups A7, A6, A5 do not appear in the transitive case (6), since those groups
have no subgroup of index 8 (e.g. using our lists above). Furthermore in the only
other simple groups of smaller order dividing |A8|, namely L3(2), L2(8) and U3(3),
the latter two also have no subgroup of index 8; so the only possibility for (6)
has F ∗(H) = L3(2). And indeed S8

∼= L4(2) : 2 has a subgroup L3(2) : 2, which is
transitive on the 8 points: for it is not contained in any of the intransitive subcases
in (1) above—in particular this uses our maximals-list for n = 7 above. So our final
list is:

S7, S6 × S2, S5 × S3, S2 o S4, S4 o S2 , L3(2) : 2 ;
with no inclusions, as desired.

This concludes our further remarks on maximals of Sn. ♦

Remark B.4.2 (More on Exercise 6.2.2: Maximals of L3(2) and L4(2)). We
proceed much as we did for Sn in earlier Remark B.4.1, again verifying the maximals-
list in the Atlas [CCN+85]: This time, we first determine all cases from Theo-
rem 6.2.1; and again, on checking that there are no inclusions in that list, we know
that the subgroups are maximal, and that the list is complete.

For n = 3: Since 3 is prime, cases (2)(2′)(3) of Theorem 6.2.1 are ruled out.
Also (4) does not arise: for r = 3, d = 1 requires a group 31+2, whose order 33 does
not divide that of L3(2). Thus we are reduced to cases (1) and (6).

Now quasisimple groups in (6) are ruled out: for A5 is the only simple group
smaller than L3(2), and 5 does not divide the order of L3(2). But in (6) we get solv-
able F ∗(H) = GL1(8) ∼= Z7: indeed the Sylow 7-normalizer of structure Z7 : Z3

is maximal in L3(2). Notice this is the extension-field subcase refining case (6),
namely C3 in Aschbacher’s terminology after Theorem 6.2.1. Finally (1) in the
cases j = 1 or 2 yields subgroups 22L2(2), which we recognize as the parabol-
ics P1̂,P2̂ of Example 1.3.21; these are conjugate by a graph automorphism. Thus
our resulting list is:

22L2(2) (two classes), Z7 : Z3 ;
since there are no inclusions, our subgroups are maximal, and the list is complete.

For n = 4: We will compare with our results for S8
∼= L4(2) : 2 in earlier

Remark B.4.1. Indeed, note first that L3(2) : 2 and S2 o S4
∼= 24S4, which were
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maximal in S8 in B.4.1, in fact intersect A8
∼= L4(2) in subgroups L3(2) and 23S4—

which are not maximal in L4(2). So these groups from S8 will not appear in our
list here.

Case (4) of Theorem 6.2.1 does not arise: for n = 4 is not a power of r 6= 2.
Furthermore the cases (2)(2′)(3) do not arise: For j = 2 = k in (2′) yields the
group L2(2) × L2(2) ∼= S3 × S3; while these same values j = 2 = k in (2)(3)
give L2(2) o S2

∼= S3 o S2. Both these groups normalize a subgroup E9, which is
Sylow in L4(2). Indeed the latter is the full Sylow 3-normalizer—and hence contains
the former; but it is not maximal, as it lies in an S6

∼= Sp4(2) to be discussed below.
So as for n = 3 above, again we are reduced to cases (1) and (6).

Case (1) with the values j = 1 or 3 yields subgroups 23L3(2)—which we recog-
nize as the parabolic subgroups P1̂ and P3̂ of earlier Remark B.1.1; recall these were
maximal in A8 but not in S8, in B.4.1. Again these are conjugate via an outer au-
tomorphism. Further j = 2 in (1) yields the structure 24

(
L2(2)×L2(2)

) ∼= S4×S4,
namely the maximal parabolic P2̂; this is the intersection of A8 with the maximal
subgroup S4 o S2 of S8.

We turn finally to case (6): Here a subgroup H must have an irreducible
representation of dimension 4 over F2; so the quickest way to finish might be to quote
the modular character tables in the Modular Atlas [JLPW81]. However, we can
actually present many of the details, using just the basics of modular representation
theory that we indicated in earlier Chapter 5:

We observe first that GL1(16) is not maximal, as it lies in GL2(4); but in
fact GL2(4) : 2 is maximal in L4(2)—again we have the extension-field refinement
of (6), namely C3 in Aschbacher’s terminology after 6.2.1. This subgroup, of struc-
ture (A5×3) : 2, is the intersection of A8

∼= L4(2) with the earlier maximal S5×S3

of S8. We remark also that the subgroup A5 here exhibits a 2-dimensional modular
irreducible over F2, read over the subfield F2, from the list of modules of dimen-
sions 1,2,2,4 for SL2(4) given in Remark B.3.4. A different subgroup A5 exhibits
the 4-dimensional Steinberg module for Ω−4 (2)—but this subgroup is not maximal,
as it is contained in the subgroup Sp4(2) to be discussed below.

Note next that since our group L4(2) is over F2, we see that GL4(2) is the
same as simple PSL4(2) = L4(2); so instead of quasisimple preimages, we just have
simple groups as the remaining possibities for F ∗(H) in (6). Now just as for S8

in B.4.1, we get only A5, A6, A7, L3(2), L2(8), and U3(3) as choices for F ∗(H)
using order-divisibility.

In fact F ∗(H) = A5 occurs in a subgroup H = S5—but this is not maximal:
for from the representation theory of SL2(4) indicated just above, it either acts
as Ω−4 (2) lying in Sp4(2); or as SL2(4)—lying in the maximal subgroup given
by K := GL2(4) : 2 ∼= (A5 × 3) : 2 above, where F ∗(K) also contains F (K) of
order 3. Next, the cases A6 and A7 do lead to maximal subgroups S6 and A7

of L4(2): we can conclude that both are irreducible, since they do not lie in the
reducible possibilities in (1) above. They are the intersections with A8

∼= L4(2) of
the earlier maximal subgroups S7 and S6 × S2 of S8. Furthermore S6

∼= Sp4(2)
gives the classical-subgroup refinement of (6) called C8 in Aschbacher’s terminology
after 6.2.1; and it gives a different view of the irreducibility of S6.

It remains to eliminate the three further simple groups listed prior to the previ-
ous paragraph: First any subgroup L3(2) necessarily acts reducibly: e.g. we noted in
earlier Remark B.3.4 that the 2-modular irreducibles of L3(2) have dimensions given
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by 1, 3, 3, 8. Next a Steinberg tensor-product analysis of the irreducibles for SL2(8),
similar to that for SL2(4) in B.3.4, shows that 4-dimensional irreducibles for L2(8)
are defined over F8, but not over F2. Finally U3(3) ∼= G2(2)′—and the smallest
irreducible for the latter corresponds to the 6-dimensional quotient of the Cayley-
algebra module of Example 5.2.13.

So our final list of candidates consists of:
23L3(2) (two classes), 24

(
L2(2)× L2(2)

)
, GL2(4) : 2, S6, A7 ;

as there are no inclusions, we see they are maximal, and the list is complete. ♦

Remark B.4.3 (More on Exercise 6.2.7: Maximal parabolics for G2 and E6).
We can proceed much as in Remark B.1.1: using [Car89, Sec 3.6] to describe root
systems, and (1.3.13) to describe the interaction of root subgroups.

For type G2: The root system is even sketched on [Car89, p 46]. The simple
roots are α1 (which is short) and α2 (long). The remaining positive roots are the
short roots α1 + α2 and 2α1 + α2, and long 3α1 + α2 and 3α2 + 2α2.

For J = {1}, we have Levi complement determined by root subgroups for ±α1,
with the structureGL2(q). And observe that the remaining positive roots satisfy the
condition indicated in the Hint to Exercise 8.1.4: namely in addition to the highest
root 3α2 + 2α2, we have pairs given by α2,3α1 + α2 and α1 + α2,2α1 + α2, which
sum to the highest root—but no other pairs sum to a root. It follows using (1.3.13)
that the unipotent radical U1 has “semi-extraspecial” structure q1+4; when q = p
is prime, this is extraspecial.

For J = {2}, similar calculations give L2
∼= GL2(q) via ±α2; and U2 has

structure given by composition factors q2+1+2.

For type E6: The description of the root system given at [Car89, p 49] is fairly
complicated. Instead the representation of positive roots at pages 5–6 of [AS76],
essentially as a sum of simple roots, is more convenient for our purposes here: so
we will adopt the notation of that paper. In particular, the Dynkin diagram is
numbered so that 1 appears at the end of a long branch of the E6 diagram, and 2
at the end of the short branch.

We begin with J = 2̂: The roots not involving α2 form a subdiagram of type A5;
and the corresponding ± root groups determine a Levi complement L2̂ of struc-
ture GL6(q). For the unipotent radical U2̂, note that there are 21 positive roots
involving α2; namely, remove from the first 26 listed in [AS76] those which are
numbered 2, 3, 5, 8, 17. Note that the highest root is numbered 26; and just as
for J = 1 in type G2 above, again we have the condition that the other 20 roots
fall into pairs summing to α26, with no other pairs summing to a root; so that U2̂

has structure q1+20—and further L2̂ is irreducible on U2̂/Z(U2̂).

Next we consider J = 1̂: Here L1̂ with diagram of type D5 has structure

given by H · Ω+
10(q). As for U1̂: The relevant positive roots are the first 16 listed

in [AS76]. The usual calculations with (1.3.13) give U1̂ elementary of order q16;
this is a “half-spin” irreducible for L1̂.

Similar calculations apply for the other maximal parabolics, which we now
just quickly summarize: In view of the graph automorphism of the diagram, we
only need to consider the cases J = 3̂ and 4̂. From the corresponding subdia-
grams, the Levi complement structures are determined by H with SL2(q)×SL5(q)
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and SL3(q)×SL3(q)×SL2(q), respectively. And the unipotent radicals have com-
position factors q5+20 and q2+9+18. (Cf. Section 4.10.4 in [Wil09].) ♦

Remark B.4.4 (More on Exercise 6.6.2: Some p-exceptional orbit sizes). In
Theorem 6.6.1(iii): For c := 2r−1 or 2r−2, the irreducible permutation module V
has dimension n = c − 1 or c − 2, respectively. Consider the first two nontrivial
values r = 2, 3:

For r = 2: We have for c = 3 that S3 is transitive on the 3 nonzero vectors
in V of dimension 2; so this example is 2-exceptional. But the case c = 2 is too
small to be meaningful, as V would be of dimension c− 2 = 0.

For r = 3: With c = 6, we see that S6
∼= Sp4(2) is transitive on the 15

nonzero vectors of V of dimension 4. With c = 7, we have A7 < A8
∼= Ω+

6 (2)
for V of dimension 6; and the 35 singular vectors have stabilizer 24Ω+

4 (2) in A8,
while the 28 nonsingular vectors have stabilizer Sp4(2) ∼= S6. These stabilizers
intersect A7 in (A4 × 3) : 2, or A6,S5, respectively; so A7 is transitive on the 35
singular vectors; and breaks the 28 nonsingular vectors into orbits of size 7 and 21.
So both these examples for r = 3 are 2-exceptional.

In Theorem 6.6.1(iv), we use the inclusion SL2(5) < SL2(9) < SL4(3). Here
we see SL2(9) is transitive on the 80 nonzero vectors of 4-dimensional V ; and a
vector stabilizer is a 3-Sylow subgroup of order 9. Hence the stabilizer in SL2(5) is
a 3-Sylow of order 3, and index 40: so that the group has 2 orbits of length 40—and
this example is 3-exceptional. ♦
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[BLS97] László Babai, Eugene M. Luks, and Ákos Seress, Fast management of permutation

groups. I, SIAM J. Comput. 26 (1997), no. 5, 1310–1342. MR 1471984 (99d:20007)

[BP03] Robert W. Baddeley and Cheryl E. Praeger, On primitive overgroups of quasiprim-
itive permutation groups, J. Algebra 263 (2003), no. 2, 294–344. MR 1978653

(2004b:20005)
[BPS07] Robert W. Baddeley, Cheryl E. Praeger, and Csaba Schneider, Quasiprimitive groups

and blow-up decompositions, J. Algebra 311 (2007), no. 1, 337–351. MR 2309892

(2008c:20002)
[Bre14] Emmanuel Breuillard, A brief introduction to approximate groups, Thin groups and

superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61, Cambridge Univ.

Press, Cambridge, 2014, pp. 23–50. MR 3220883
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Baer-Suzuki Theorem, 150
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Beineke, L.
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Belyaev, V., 165
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Bender groups, 35
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2-local geometry, 131
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Bruhat decomposition, 128
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Burnside Fusion Theorem, 142, 144, 146
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Cartan subgroup, 17

Cartier, P., 14
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Cayley algebra, as module, 97, 117, 197
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CFSG, 1
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C(G,T ), 62

C(G,T )-Theorem

Global —, 64, 65, 66, 84, 144

Local —, 63, 65

chamber, 124

complex, 128
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table, 89
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core C(G,T ), 62

R < T -version C(G,R), 64

Euler — χ, 46

of a Lie-type group, 6

p type, 40

subgroup, 57

2 type, 32
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Chermak, A.

fusion systems and localities [Che13], 72

Chevalley, C., 14

Chevalley basis, 14

Chevalley construction, 14

Chevalley group, 14
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closure, 67
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group, 6

maximal subgroups of —, 111

Involution Theorem, 82, 158
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doubly- (hence multiply-) transitive
groups, 26, 80

Even Case of CFSG, 44

e(G) = 3 (“rank 3”), 42

GF (2) type, 43, 82, 142
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quasithin—e(G) ≤ 2, 29, 39, 65, 69,
82, 84, 143

quasithin theorem, applied in GLS
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m2(G) ≤ 2, 33, 36, 38, 79, 142, 157

standard form, 38, 42, 82
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Aschbacher-O’Nan-Scott Theorem, 108
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semisimple algebraic groups, 19, 121
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Aschbacher, 45
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transposition-groups (various), 80, 82

transvection groups, 82
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Clifford’s Theorem, 90
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2C2(q), Suzuki twisted group Lie-type
Sz(q), 16
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decomposition of —, 136
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`-adic —, 93

module —, 137, 159

decomposition of —, 137

Tate — Ĥ∗(−), 173
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signalizer functor, 34
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type, 31, 45

p- —, 40, 41

conjugate-symmetric (unitary) form, 8

conjugation family, 70, 146, 151
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contractibility, 45, 46, 134, 135

control of fusion, 145
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et al., Atlas [CCN+85], 3

Cooperstein, B.
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[Coo78], 61

embedding F2 geometries [Coo01], 136
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R < T -version C(G,R), 64

O2′ (−), 31

co-root, 93

coset complex, 124

Coxeter, H. S. M.

Coxeter group, 128

Coxeter number, 96
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64, 66, 68, 69

R < T -version R-(CPU), 64, 65, 85

Craven, D.

fusion systems book [Cra11], 71

Curtis, C., 96

Curtis-Tits presentation, 78, 81

Curtis-Tits relations, 43, 81

-Kantor-Seitz, 2-transitive, 26

Oxford lectures on Chevalley groups
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of permutation in Sn, 80
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D2n, dihedral group of order 2n, 48, 178,
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involution fusion, 177

Dade, E., 99

projective version of Alperin Conjecture,
99, 103

Davies, B.

whither mathematics [Dav05], 29
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Adem- —, transformation groups

[AD02], 121

decomposition

of classifying space, 137

of cohomology, 136

defect

group, 90

zero (projective and irreducible), 90

Delgado, A.

-Goldschmidt-Stellmacher, groups and

graphs [DGS85], 86

Deligne, P., 93

Deligne-Lusztig theory, 92, 103

Diaconis, P., xiii, 115

–Saloff-Coste, walks on group generators

[DSC98], 116

diagonal

anti- —, 9

automorphisms in Lie type, 24

compound — primitive action CD, 109

diagonal-field-graph theorem (Lie-type

outer automorphsims), 24

diagonally embedded, 22

maximal subgroup of Sn, 107

simple — primitive action SD, 109

subgroup, see also Cartan subgroup

diagram

Dynkin —, 10

affine —, 132

twisted —, 12

geometry, 125

inductive (residual) property, 125,

128–131

Young —, 191

Dichotomy Theorem, 33

Dickson, L., 15

Dickson invariants DI(4), 71

dihedral group D2n, 48

discrete geometry, 121

distance-transitive, 153

Dixon, J.

-Mortimer, permutation groups book,
109

probability of generating Sn [Dix69],

119

Dn(q), orthogonal group Ω+
2n(q), 16

2Dn(q), orthogonal group Ω−2n(q), 16
3D4(q), twisted Lie-type group

“triality-D4(q)”, 16

dominant weight, 94

Doro, S., 166

doubly-transitive, 25

classification of — groups, 25

duality

of homology and cohomology, 173

of partitions, 191

of vector spaces, 10

Dwyer, W., 137

Dwyer-Wilkerson space BDI(4), 71

Dynkin, E., 110, 112

Dynkin diagram, 10

affine —, 132

list of —s, 12

twisted —, 12

subalgebras of Lie algebras [Dyn52], 112

E(−), product of components, 21

e(−), maximum of odd 2-local p-ranks

m2,p(−), 36

approximates Lie rank, 39

E6(q), Lie-type group, 16, 112, 113, 197
2E6(q), twisted Lie-type group, 16

E7(q), Lie-type group, 16

E8(q), Lie-type group, 16

embedded

diagonally —, 22

strongly —, see also strongly embedded

tightly —, 37

embedding, of a geometry, 136

Epr , elementary p-group of rank r, 56

equivalence

category —, 72

homotopy —, 72

Euler characteristic χ, 46

reduced — χ̃, 46

even

Case (characteristic 2 type), 32

classification, 44

Example, 31

Small — Subcase (quasithin), 36

characteristic, 39, 84, 147

type, 39, 44, 147

exceptional group, 15

maximal subgroups, 112

representations, 97

usage also for non-classical twisted

groups, 110

exotic

fusion system, 71

local subgroups in Lie-type groups, 113

space, 71

expander graph, 167

exponentiation of matrices, 13

extraspecial, 140

large —, see also large extraspecial

semi- —, 197

extremal, 139

F (−), Fitting subgroup, 21

F ∗(−), generalized —, 21

F1, Monster sporadic group M , 5

F2, Baby Monster sporadic group BM , 5

F3, Thompson sporadic group Th, 5

F4(q), Lie-type group, 16, 113
2F4(q), twisted Lie-type group, 16

F5, Harada-Norton sporadic group HN , 5
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(FA), Frattini factorization relative to

module, 56

factorization

Frattini — relative to normal subgroup,

55, 151

Frattini — (FA) relative to module, 56

Thompson — (TF) based on J(−), 58

weak-closure — (WC), 68

failure of factorization, see also FF

Fein, B.

-Kantor-Schacher, relative Brauer groups

[FKS81], 163

Feit, W.

modular representations book [Fei82], 89

some consequences of CFSG [Fei80], 158

-Thompson, Odd Order Theorem, 30

FF, failure of factorization, 60

p-solvable —, 61
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85, 90, 97

module, 60
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quadratic —, 61, 75
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Fi23, Fischer sporadic group, 4, 65, 66, 69,

77, 80, 83

Fi′24, Fischer sporadic group, 4, 80, 83

field automorphism, of Lie-type group, 24

finitely generated, 161

Fischer, B., 5, 80, 82

Fischer sporadic groups, 4

Fisman, E.

Arad- —, factorizable groups [AF84],

158

Fitting, H.

Fitting subgroup F (−), 21

generalized — F ∗(−), 21

Fitting’s Theorem, 21

generalization to F ∗(−), 22

5-transitive, 4, 25

fixed-point ratio, 157, 164

flag, 6

flag-transitivity, 6, 8, 18, 158, 163

full —, 7

Fong, P.

-Seitz, BN -pair of rank 2 [FS73], 81

form (bilinear), 8

four-group, E4, 70

4-transitive, 4, 25

Fowler, K.

Brauer- —, finitely many G over

CG(t) [BF55], 30

Franchi, C., xii

-Mainardis-Solomon, HN via

bicharacteristic [FMS08], 141

Frattini, G., 26, 55

Frattini Argument, 55

Frattini factorization (FA) relative to
module, 56, 58, 67

free module, 90

Frobenius, G.

character criterion for commutator, 103

Frobenius automorphism of algebraic

group, 92

Frobenius Conjecture on solutions of

xn = 1, 157

Frobenius Normal p-Complement

Theorem, 149

Frobenius reciprocity in representation
theory, 136

Frohardt, D.

-Magaard, Grassmannian fixed-point
ratios [FM00], 165

-Magaard, factors of monodromy groups
[FM01], 164

full unipotent group, 17

Fumagalli, F.

Blyth- — -Fumagalli-Origi, minimal

nilpotent covers [BFM15, Thm 2], 160

fundamental

group in topology, 164

group of Lie type group, 24

SL2(q), 82

weight, 93

fusion, 45, 70, 70, 79, 139

control of —, 145

system, 44, 45, 70, 71, 133, 150, 151

exotic —, 71

simple —, 45

G(q), Lie-type group of type G over Fq , 14,

16

G2(q), Lie-type group, 15, 16, 87, 97, 112,

113, 117, 129, 197
2G2(q), Ree twisted group Ree(q), 16

Garion, S.

Bandman- — -Kunyavskii, equations in

matrix groups [BGK14], 167

gate property of buildings, 134

Gelfand, S., xiii

generalized

Fitting subgroup F ∗(−), 21

hexagon (building for G2 etc), 129, 136

polygon, 129, 131

Moufang —, 81

quadrangle (polar space for Sp4 etc),
129, 189

quaternion group Qn, 58

Steinberg module, 46, 133, 135

triangle (projective plane), 129

genus, 164

geometry

continuous —, 121

discrete —, 121

projective —, 121
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sporadic —, 129

Tits —, 131

2-local —, 129

GF (2) type, 41, 82, 140, 142, 186

classification, 43

GF (2n) type, 42, 141

classification, 43

Gilman, R., 42

-Griess, classification of standard

type [GG83], 42, 81

Giudici, M.

-Liebeck-Praeger-Saxl-Tiep, orbits of

linear groups [GLP+16], 103, 117

Glauberman, G., 49, 166

p-solvable failure of factorization, 61

-Lynd, fixed points and linking systems
[GL16], 72

Z∗-Theorem [Gla66], 139, 141–143, 149

GLn(q), linear group (general), 6

maximal subgroups, 111

global

C(G,T )-Theorem, 64

field, 162

GLS, Gorenstein-Lyons-Solomon

“revisionism”, 44

GLS1, introduction to revisionism
[GLS94], 44, 147

GLS2, general group theory [GLS96], 2,

139

GLS3, properties of the simple groups
[GLS98], 2

GLS4, uniqueness theorems [GLS99],

151

Golay code, 4, 83, 97, 114

Goldschmidt, D.

Delgado- — -Stellmacher, groups and

graphs [DGS85], 86

Gorenstein, D., 21, 29, 34, 37, 41, 147, 150

Alperin-Brauer- —, quasidihedral and
wreathed Sylows [ABG73], 33, 142

Aschbacher- — -Lyons, pre-uniqueness to

Uniqueness [AGL81], 43

CFSG outline

introduction [Gor82], 29, 77

Odd Case [Gor83], 29

Gorenstein-Walter (GW) type

(m2(G) ≤ 2 and component type), 36

-Lyons, trichotomy [GL83], 42, 151

-Lyons-Solomon, GLS1: introduction to

revisionism [GLS94, p 36], 147

-Lyons-Solomon, GLS2: general group
theory [GLS96], 2, 139

-Lyons-Solomon, GLS3: properties of the

simple groups [GLS98], 2

-Lyons-Solomon, GLS4: uniqueness
theorems [GLS99], 151

graph automorphism of Lie-type group, 24

Green, B.

approximate groups [Gre12], 168

Breuillard- — -Tao, structure of

approximate groups [BGT12], 168

Breuillard- — -Tao, Suzuki groups Sz(q)
as expanders [BGT11], 168

Green, D., xiii

-Héthelyi-Mazza, Oliver’s Conjecture II

[GHM10], 75

-Héthelyi-Mazza, strong form of Oliver
Conjecture [GHM11], 75

-Lynd, weak closure and Oliver’s

conjecture [GL13], 75

Griess, R., 5, 42

Gilman- —, classification of standard

type [GG83], 42, 81

Griess algebra, for the Monster M , 5

Schur multipliers of simple groups
[Gri72] , 23

sporadic groups book [Gri98], 3, 83

Grodal, J., xiii, 137, 151

Andersen- — -Møller-Viruel, classifying

odd p-compact groups [AGMV08],
135

higher limits via subgroup complexes

[Gro02], 135, 136

Gross, F.

odd p-central automorphisms [Gro82],

149

group

algebra, 89

cohomology, 45

Guralnick, R., xiii, 93

Aschbacher- —, applications of H1

[AG84], 119, 159

genus of permutation group [Gur92], 164

Guralnick-Thompson Conjecture, 164

-Malle, FF-modules [GM02], 61, 65, 97

-Robinson, extending Baer-Suzuki

[GR93], 149, 150

subgroups of prime power index
[Gur83], 158

survey of applications of CFSG [Gur17],
20

-Thompson, groups of genus 0 [GT90],
164

GW type, 36

H∗(X), group cohomology of X, 45

H∗(−), homology of simplicial complex, 45

H̃∗(−), reduced —, 46

HA, holomorph-of-abelian (affine) primitive

action, 109, 116, 154
1
2

-transitive, 117

Hall, J., xiii
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groups [Hal06], 165

locally finite simple Moufang loops
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solvable Frobenius Conjecture [Hal76],
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-Higman, restricted Burnside problem

[HH56], 27

Harada, K.

Harada-Norton sporadic group HN , 5

Hartley, B., 165

HC, holomorph-of-compound primitive

action, 109, 116, 171

He, Held sporadic group, 5, 79

Hecke algebra, modular —, 99

Held, D.

Held sporadic group He, 5

Helfgott, H.

growth in groups survey [Hel15], 162

Hering, C., 26

transitive linear groups [Her85], 115

Héthelyi, L.

Green- — -Mazza, Oliver’s Conjecture II
[GHM10], 75

Green- — -Mazza, strong form of Oliver
Conjecture [GHM11], 75
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Higman, G.
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[HH56], 27
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Hilbert Nullstellensatz, 19

solution of Waring problem, 167

HN , Harada-Norton sporadic group, 5, 141
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-of-abelian (affine) primitive action HA,
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-of-compound primitive action HC, 109

-of-simple primitive action HS, 109
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-Rees, implementing Neumann-Praeger

algorithm [HR92], 115

homological Sylow theorem (Brown), 46
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equivalence, 45, 47, 72
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Howlett, R., 26

HS, Higman-Sims sporadic group, 4, 5, 26,
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HS, holomorph-of-simple primitive action,

109, 117, 171
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Lie algebra book [Hum78], 9, 93
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hyperbolic pair, 9

hyperelementary, 53
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maximal subgroup of Sn, 107, 116

permutation representation, 105

indecomposable module, 89
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identification, 78

module, 56
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centralizer, 30

irreducible module, 89
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J(−), Thompson subgroup, 58
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J4, Janko sporadic group, 4
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representations of algebraic groups
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-factorization of Ap(−) for group

product, 47, 48, 54
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K-group, 1
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groups [FKS81], 163
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